PRACTICE EXAM

Problem 1. Let $f(x) = x^{11} - 42 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f over Q.
- (c) (1 point) Compute $[L: \mathbf{Q}]$. Justify your answer.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Problem 2. Let f and L be as in Problem 1.

- (a) (2 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbb{Q})$ is solvable.
- (c) (2 points) Show that there is a unique extension K/\mathbb{Q} of degree 10 which is contained in L.
- (d) (2 poins) Show that there is a unique quadratic extension F/\mathbf{Q} contained in L and describe F as $\mathbf{Q}(\sqrt{D})$ for some integer D.

Problem 3. Let $\Phi_{143}(x) \in \mathbf{Z}[x]$ be the cyclotomic polynomial of primitive $143 = 11 \cdot 13$ th roots of unity. Let ζ be a root of $\Phi_{143}(x)$ in some finite extension of \mathbf{Q} .

- (a) (2 points) Show that for every prime p, the reduction of $\Phi_{143}(x)$ modulo p is reducible in $\mathbf{F}_p[x]$.
- (b) (1 point) Is the regular 143-gon constructible by straightedge and compass? Justify your answer.
- (c) (2 point) Show that there are precisely three quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$.
- (d) (2 points) Describe the three distinct quadratic extensions of \mathbf{Q} contained in $\mathbf{Q}(\zeta)$ in the form $\mathbf{Q}(\sqrt{D})$, where $D \in \mathbf{Z}$ is an integer.

Problem 4.

- (a) (2 points) Let p be a prime and $n \ge 1$ an integer. Show that $x^{p^n} x$ factors over \mathbf{F}_p as the product of all the irreducible polynomials $f \in \mathbf{F}_p[x]$ of degree dividing n, each appearing with multiplicity one.
- (b) (2 points) Let G be a subgroup of S_7 which contains a 7-cycle and a permutation of type (2,2). Show that G contains at least 8 Sylow 7-subgroups and that the order of G is at least 56.
- (c) (2 points) Assume k is an integer which is divisible by 5 and not divisible by 7. Show that the Galois group of $h(x) = x^7 x + k \in \mathbf{Q}[x]$ contains at least 8 Sylow 7-subgroups and that the order of G is at least 56 (one can probably show much more but it might be too hard).

Problem 5.

- (a) (1 point) Show that $x^4 + x^3 + 1$ divides $x^{16} x$ in $\mathbf{F}_2[x]$.
- (b) (1 point) Show that $x^4 + 3x^3 1$ divides $x^9 x$ in $\mathbf{F}_3[x]$.
- (c) (1 point) Show that the Galois group of $x^4 + 3x^3 1 \in \mathbf{Q}[x]$ is S_4 .
- (d) (1 point) Assume $t(x) \in \mathbf{Q}[x]$ is irreducible of degree 4 with Galois group A_4 and assume t(x) has a real root α . Show that α is not constructible by straightedge and compass.