FINAL EXAM

Instructions: Justify your answers. You may use results from the homework sets and from class, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^5 - 3 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f.
- (c) (1 point) Compute $[L: \mathbf{Q}]$.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Problem 2. Let $f(x) = x^5 - 3 \in \mathbf{Q}[x]$ and L be as in Problem 1.

- (a) (3 points) Give generators and relations for $\operatorname{Gal}(L/\mathbf{Q})$.
- (b) (2 points) Show that $\operatorname{Gal}(L/\mathbf{Q})$ is solvable.
- (c) (1 point) Show that f is solvable by radicals.
- (d) (1 point) Let α be a root of f in L. Is α constructible by straightedge and compass? Explain.

Problem 3. Let ζ_7 be a primitive 7th root of unity in a field of characteristic zero.

- (a) (1 point) Show that $\mathbf{Q}(\zeta_7)/\mathbf{Q}$ is Galois.
- (b) (2 points) Give an explicit description of $\operatorname{Gal}(\mathbf{Q}(\zeta_7)/\mathbf{Q})$
- (c) (2 points) Let $\alpha = \zeta_7 + \zeta_7^2 + \zeta_7^4$. Find $m_{\alpha,\mathbf{Q}}(x)$. (d) (2 points) Let $\gamma = \zeta_7 + \zeta_7^{-1}$. Find $m_{\gamma,\mathbf{Q}}(x)$.
- (e) (1 point) Find $m_{\zeta_7,\mathbf{Q}(\gamma)}(x)$.

Problem 4.

- (a) (2 points) Construct a Galois extension of \mathbf{Q} with Galois group $\mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.
- (b) (1 point) Let $g(x) = x^3 2x + 4 \in \mathbf{Q}[x]$. What subgroup of S_3 is isomorphic to $\operatorname{Gal}(g)$? Explain.
- (c) (2 points) Now view g(x) as a polynomial in $\mathbf{Q}(i)[x]$, where i is a square root of -1. What subgroup of S_3 is isomorphic to Gal(q) in this case?

Problem 5. Let $h(x) = x^{12} + x^{11} + \dots + x + 1 \in \mathbb{Z}[x]$.

- (a) (1 point) Suppose p is a prime, $p \equiv 1 \pmod{13}$. Show that h(x) splits completely in $\mathbf{F}_p[x]$.
- (b) (2 points) Suppose p is a prime, $p \equiv 2 \pmod{13}$. Show that h(x) is irreducible in $\mathbf{F}_p[x]$.
- (c) (2 points) Show that $x^3 x + 2$ divides $x^{125} x$ in $\mathbf{F}_{125}[x]$. Note: Long division is highly discouraged in this problem.

E-mail address: wgoldring@math.su.se.