
Galois Theory (MM8005) Wushi Goldring May 22, 2017

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets and from class,
but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. You need a score of 12.5/30 or higher to pass this exam.
More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let f(x) = x5 − 3 ∈ Q[x].

(a) (1 point) Show that f is irreducible over Q.
(b) (2 points) Give an explicit description of a splitting �eld L for f .
(c) (1 point) Compute [L : Q].
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f(x) is irreducible over Q because it satis�es Eisenstein's criterion at
p = 3.

(b) Let L be a splitting �eld of F . Since f is irreducible and Q has characteristic zero, f is separable.
Let α, β be two distinct roots of f in L. Put ζ = α/β. Then ζ is a primitive 5th root of unity.

We claim L = Q(α, ζ). The above gives one inclusion: Q(α, ζ) ⊂ L. On the other hand, ζjα,
0 ≤ j ≤ 4 gives �ve distinct roots of f in Q(α, ζ). So f splits completely over Q(α, ζ). This gives the
reverse inclusion L ⊂ Q(α, ζ).

(c) In general, the degree of a composite is at most the product of the degrees of its constituents.
Thus [Q(α, ζ) : Q] ≤ [Q(α) : Q][Q(ζ) : Q] = 5 · 4 = 20. Since [Q(α) : Q] = 5 and [Q(ζ) : Q] = 4 are
relatively prime and both divide [L : Q], we have equality. Thus [L : Q] = 20

(d) The splitting �eld of a separable polynomial is Galois. We have seen that f is irreducible and
separable. Thus its splitting �eld L is Galois over Q. �
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Problem 2. Let f(x) = x5 − 3 ∈ Q[x] and L be as in Problem 1.

(a) (3 points) Give generators and relations for Gal(L/Q).
(b) (2 points) Show that Gal(L/Q) is solvable.
(c) (1 point) Show that f is solvable by radicals.
(d) (1 point) Let α be a root of f in L. Is α constructible by straightedge and compass? Explain.

Solution. Let G = Gal(L/Q).
(a) Since α and ζ generate L/Q, an automorphism of L/Q is determined by its action on α and ζ.
Since an automorphism must map a root of an irreducible polynomial in Q[x] to another root of the

same polynomial, every automorphism of L must have the form

(1)

{
ζ 7→ ζk, 1 ≤ k ≤ 4
α 7→ ζjα, 0 ≤ j ≤ 4

This collection gives at most 20 automorphisms. Since L/Q is Galois, the order of G equals the
degree of L/Q, which was seen to be 20. Thus every map in (1) must de�ne an automorphism of L.

De�ne σ, τ ∈ G by

(2)

{
σ(ζ) = ζ2

σ(α) = α
and

{
τ(ζ) = ζ
τ(α) = αζ

.

and τ(ζ) = ζ, τ(α) Then σ has order 4 and τ has order 5 in G. Let N = 〈τ〉. Then N is a subgroup
of G of order 5.

We claim that N is normal in G. This will be con�rmed by direct computation below, but it also
follows from Sylow's Theorem: In fact, N is a 5-Sylow subgroup of G and the number of 5-Sylow
subgroups in G is ≡ 1 (mod 5) and divides 4, hence equals 1.

Since N is normal in G, it remains only to compute the action of σ on N by conjugation. To
do this, it su�ces to compute στσ−1 on the generators ζ, α of L. One �nds στσ−1(ζ) = ζ and
στσ−1(α) = στ(α) = σ(αζ) = αζ2. Thus στσ−1 = τ2. In sum, generators and relations for G are
given by

G = 〈σ, τ |σ4 = τ5 = 1, στσ−1 = τ2〉.
(b) Since N is cyclic, it is solvable. Since G/N has order 4, it is abelian, hence cyclic. If H is

any group and K is a normal subgroup of H, then H is solvable if and only if both K and H/K are
solvable. Applying this with H = G and K = N gives that G is solvable.

More or less equivalently, the �ltration {1} ⊂ N ⊂ G satis�es the de�nition of solvability: each
group is normal in the next one and the quotients are all abelian.

(c) Solution 1: A separable polynomial is solvable by radicals if and only if its Galois group is
solvable. So f is solvable by radicals by (b).

Solution 2: if K/F is a �nite separable extension and α ∈ K, then α is solvable by radicals starting
from F if there is a �ltration of K by sub�elds Fi such that each successive extension Fi+1/Fi is
obtained by adding to Fi a root of xn − a for some a ∈ Fi. The roots of x5 − 3 are all obtained in this
way in one step, where n = 5 and a = 3. So we also see directly that f is solvable by radicals.

Using the reverse direction of "A separable polynomial is solvable by radicals if and only if its Galois
group is solvable" we obtain a new solution to (b).

(d) If an algebraic number is constructible by straightedge and compass, its degree must be a power
of 2. Since the degree of the roots of f is 5, the roots of f are not constructible by straightedge and
compass.

�
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Problem 3. Let ζ7 be a primitive 7th root of unity in a �eld of characteristic zero.

(a) (1 point) Show that Q(ζ7)/Q is Galois.
(b) (2 points) Give an explicit description of Gal(Q(ζ7)/Q)
(c) (2 points) Let α = ζ7 + ζ27 + ζ47 . Find mα,Q(x).

(d) (2 points) Let γ = ζ7 + ζ−1
7 . Find mγ,Q(x).

(e) (1 point) Find mζ7,Q(γ)(x).

Proof. (a) By de�nition of "primitive" every 7th root of unity is a power of ζ7. Therefore Q(ζ7) is a
splitting �eld of the separable polynomial x7 − 1 over Q; hence Q(ζ7)/Q is Galois.

(b) One has a canonical isomorphism between (Z/7)× and Gal(Q(ζ7)/Q): Given a ∈ (Z/7)× de�ne
σa : Q(ζ7)→ Q(ζ7) by σa(ζ7) = ζa7 . Since the 7th cyclotomic polynomial Φ7(x) is irreducible and ζ7, ζ

a
7

are both roots of it, there exists an isomorphism Q(ζ7) ' Q(ζa7 ) mapping ζ7 to ζ
a
7 . But Q(ζa7 ) = Q(ζ7)

so this isomorphism is σa. Thus σa is an automorphism. On the other hand, every automorphism is
determined by its action on the primitive element ζ7, so we see that a 7→ σa de�nes an isomorphism
as claimed.

(c) The element α is the sum of the ζa7 as a ranges over the squares in F×
7 . Therefore Q(α) is the

�xed �eld of the index 2 subgroup (F×
7 )2 = {1, 2, 4} of F×

7 . Thus the degree of α over Q is 2 and the
other root of its minimal polynomial is β := ζ7 + ζ37 + ζ67 ; this is the sum of the non-square powers of
ζ7. Thus

mα,Q(x) = (x− α)(x− β) = x2 − (α+ β)x+ αβ

The sum α+ β is ζ7 + · · ·+ ζ67 = −1 since Φ7(x) = x6 + · · ·+ x+ 1. As for the product, we �nd

αβ = 3 + ζ7 + · · ·+ ζ67 = 3− 1 = 2,

i.e., 3 terms are equal to 1 and every term di�erent from 1 appears once when we expand as a sum of
powers of ζ7. Therefore mα,Q(x) = x2 + x− 2.

(d) Similar to (c), one has that Q(γ) is the �xed �eld of the index 3 subgroup {1,−1} of F×
7 (it

is the subgroup of cubes). So the other roots of mγ,Q(x) will be δ = ζ27 + ζ−2
7 and ε = ζ37 + ζ−3

7 .
One computes the values of the three elementary symmetric functions in γ, δ, ε: As before, the sum
γ + δ + ε = −1. When we expand γδ + γε + δε, no term is equal to 1. Since we have 4 · 3 = 12
terms total, the expression must be 2(ζ7 + · · ·+ ζ67 ) = −2, since we know the value is rational and that
ζ7, . . . ζ

6
7 is a basis for Q(ζ7)/Q.

Finally, the product γδε = 2 + ζ7 + . . .+ ζ67 = 2− 1 = 1 (and we don't even have to multiply out the
terms since we know the number of non-1 terms must be divisible by 6; since it is not 0 it must be 6).

Thus mγ,Q(x) = x3 + x2 − 2x− 1.
(e) The polynomial

(x− ζ7)(x− ζ67 ) = x2 − (ζ7 + ζ67 )x+ 1

has coe�cients in Q(γ). To conclude it is the minimal polynomial, it su�ces to show that ζ7 does
not belong to Q(γ). By checking which σa �x γ, we �nd that Gal(Q(ζ7)/Q(γ) = {σ1, σ−1}. So
[Q(ζ7) : Q(γ)] = 2. �
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Problem 4.

(a) (2 points) Construct a Galois extension of Q with Galois group Z/4Z× Z/4Z× Z/2Z.
(b) (1 point) Let g(x) = x3−2x+4 ∈ Q[x]. What subgroup of S3 is isomorphic to Gal(g)? Explain.
(c) (2 points) Now view g(x) as a polynomial in Q(i)[x], where i is a square root of −1. What

subgroup of S3 is isomorphic to Gal(g) in this case?

Proof. (a) We pick two primes 5, 13 congruent to 1 modulo 4 and the prime 3 congruent to 1 modulo 2.
We will construct our extension as a sub�eld of Q(ζN ) where N = 3 · 5 · 13 = 195 and ζN is a primitive
Nth root of unity. We seek a subgroup H of Gal(Q(ζN )/Q) such that the �xed �eld Q(ζN )H will have
desired properties. Since Gal(Q(ζN )/Q) = (Z/N)× is abelian, all of its subgroups are normal. By the
fundamental correspondence of Galois theory, the �xed �eld Q(ζN )H is Galois over Q and its Galois
group is (Z/N)×/H. By the Chinese remainder theorem,

(Z/N)× ∼= (Z/3)× × (Z/5)× × (Z/13)× ∼= Z/2× Z/4× Z/12.

So we want H to be a subgroup of order 3 of (Z/N)× such that the quotient is Z/4 × Z/4 × Z/2.
Let H0 be the unique subgroup of (Z/13)× of order 3 (equivalently index 4; it is the subgroup of
4th powers). Let H be the subgroup of (Z/N)× where the (Z/3)× and (Z/5)× components are equal
to 1 and where we require the component in (Z/13)× to belong in H0. Then H ∼= H0

∼= Z/3 and
(Z/N)×/H ∼= Z/4× Z/4× Z/2. Note that (Z/13)×/H0 has order 4 and is cyclic as every quotient of
a cyclic group is cyclic.

(b) Dangerous curve ahead: Polynomials which may appear to be irreducible for some reason may
be reducible unless proven otherwise!

Applying the Rational Root Test, we �nd that−2 is a root. Factoring gives g(x) = (x+2)(x2−2x+2).
The quadratic factor is irreducible over Q because its discriminant is 22− 4 · 2 = −4 is not a square in
Q. Therefore the Galois group of G is cyclic of order 2; it is the transposition of the two roots of the
quadratic factor (which �xes the root −2 as it must).

(c) In Q(i), the discriminant is a square: −4 = (2i)2. So the Galois group is trivial over Q(i). �
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Problem 5. Let h(x) = x12 + x11 + · · ·+ x+ 1 ∈ Z[x].

(a) (1 point) Suppose p is a prime, p ≡ 1 (mod 13). Show that h(x) splits completely in Fp[x].
(b) (2 points) Suppose p is a prime, p ≡ 2 (mod 13). Show that h(x) is irreducible in Fp[x].
(c) (2 points) Show that x3 − x + 2 divides x125 − x in F5[x]. Note: Long division is highly

discouraged in this problem.

Proof. One has h(x) = Φ13(x) and parts (a), (b) are special cases of the factorization of the cyclotomic
polynomial ΦN (x) modulo a prime which doesn't divide N .

(a) If p ≡ 1 (mod 13), then x13− 1 divides xp−1− 1, so h(x) divides xp−1− 1. Since the latter splits
completely over Fp (having all nonzero elements of Fp as roots, each with multiplicity one), so does
its factor h(x).

(b) Since 2(13−1)/2 = 26 and 2(13−1)/3 = 24 are not 1 mod 13, one has that 2 generates F×
13. Assume

h(x) has an irreducible factor q(x) of degree d. Then a root α of q(x) generates Fpd . But every root of

x13 − 1 is a 13th root of unity, hence a power of the primitive root α. Therefore x13 − 1 splits in Fpd .

So every root of x13 − 1 is also a root of xp
d − x. Since x13 − 1 is separable over Fp, we conclude that

x13 − 1 divides xp
d−1 − 1. Hence 13 divides pd − 1. So 2d ≡ pd ≡ 1 (mod 13) since p ≡ 2 (mod 13).

Since 2 is a generator mod 13, one has d = 12 (as 12|d and d ≤ 12).
(c) The polynomial x3−x+2 has no root in F5. Since its degree is ≤ 3, we conclude it is irreducible

over F5. The polynomial x5
3−x = x125−x factors over F5 as the product of all irreducible polynomials

in F5[x] of degree 1 or 3 (each with multiplicity one, though this extra detail is not required for the
problem). Hence x3 − x+ 2 divides x125 − x.

�
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