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Instruktioner för de som skrivit kontrollskrivningar hösten 2025:
Under höstens tre kontrollskrivningar kunde man f̊a maximalt 30 poäng.

• Om du f̊att totalt minst 8 poäng kan du hoppa över deluppgift 1 (a).

• Om du f̊att totalt minst 16 poäng kan du hoppa över deluppgifter 1 (a) och 1 (b).

• Om du f̊att totalt minst 24 poäng kan du hoppa över hela uppgift 1.

Inga hjälpmedel är till̊atna. Kom ih̊ag att ge fullständiga motiveringar för dina lösningar!

1. (a) Ge ett exempel p̊a en funktion f : R → R (dvs. med definitionsmängd Df = R) som
är diskontinuerlig i punkterna x = 0 och x = 1, men är kontinuerlig i alla andra
punkter. (1p)

Lösningsförslag: Funktionen

f(x) :=


0, x ≤ 0,

1, 0 < x ≤ 1,

2, x > 1,

är definierad för alla x ∈ R och är uppenbart kontinuerlig där x ̸= 0, 1. Dessutom
har vi följande höger- och vänstergränsvärden vid x = 0 och x = 1:

lim
x→0−

f(x) = f(0) = 0 ̸= 1 = lim
x→0+

f(x),

lim
x→1−

f(x) = f(1) = 1 ̸= 2 = lim
x→1+

f(x),

s̊a f är inte kontinuerlig vid x = 0 och x = 1.

(b) Ge ett exempel p̊a en funktion f : R → R (dvs. med definitionsmängd Df = R) som
saknar b̊ade egentligt och oegentligt gränsvärde d̊a x → ∞. (1p)

Lösningsförslag: Funktionen
f(x) := sin(x)

är uppenbarligen definierad för alla x ∈ R. Eftersom |sin(x)| ≤ 1 för alla x ∈ R, följer
att f är begränsad, s̊a f kan inte ha ett oegentligt gränsvärde. Eftersom sin (kπ) = 0
och sin

(
π
2 + 2kπ

)
= 1 för alla heltal k, kan inte f ha ett egentligt gränsvärde.

(c) Ge ett exempel p̊a en funktion f : R2 → R (dvs. med definitionsmängd Df = R2)
som inte har n̊agra stationära punkter. (1p)

Lösningsförslag: Funktionen
f(x, y) = x

är definierad för alla (x, y) ∈ R2. Gradienten är given av

grad(f) = (1, 0).

D̊a gradienten av f aldrig är lika med noll-vektorn har f inga stationära punkter.



2. (a) Vilka av följande serier konvergerar? Vilka av följande serier är absolutkonvergenta?

(i)

∞∑
k=1

k3e−k (2p) (ii)

∞∑
k=2

(−1)k
k2 + 1

k4 − 1
(2p)

(b) Är följande generaliserade integral konvergent eller divergent? (2p)∫ ∞

2

x+ 3

x2 − 1
dx

Lösningsförslag:

(a) (i) Serien är positiv, därför antingen absolutkonvergerar den eller divergerar mot
∞. L̊at oss beteckna ak := k3e−k. För att förbereda för användning av Cauchys
rotkriterium noterar vi att

|ak|
1
k = k

3
k e−1 =

1

e
e3

ln(k)
k .

Vi kan nu använda standardgränsvärdet

lim
k→∞

ln(k)

k
= 0

och dra slutsatsen att

lim
k→∞

|ak|
1
k =

1

e
.

D̊a 1
e < 1 följer av Cauchys rotkriterium att serien absolutkonvergerar. D̊a vi bevisat

p̊a föreläsningarna att absolutkonvergens implicerar konvergens följer även att serien
konvergerar.

Svar: Serien konvergerar och absolutkonvergerar.

(ii) L̊at oss beteckna ak := (−1)k k2+1
k4−1

. Vi börjar med att undersöka om serien
absolutkonvergerar, dvs. vi betraktar serien

∞∑
k=2

|ak| .

Serien med ak ersatt av |ak| är en positiv serie, som allts̊a antingen absolutkonvergerar
eller divergerar mot∞. Vi uppskattar |ak| exempelvis som följer. För k ≥ 2 är k4 ≥ 2,
dvs. 1

2k
4 − 1 ≥ 0, vilket innebär att

k4 − 1 ≥ 1

2
k4.

Därför gäller att

|ak| =
k2 + 1

k4 − 1
≤ 2

k2 + 1

k4
= 2

1

k2
+ 2

1

k4

för alla k ≥ 2. Vi kan allts̊a begränsa |ak| med en linjärkombination av summanderna
i p-serier med p = 2 respektive p = 4. D̊a b̊ada dessa värden p̊a p är strikt större
än 1 följer det enligt jämföreläsekriteriet att

∑∞
k=2 |ak| konvergerar. D̊a vi bevisat

p̊a föreläsningarna att absolutkonvergens implicerar konvergens följer även att serien
konvergerar.

Svar: Serien konvergerar och absolutkonvergerar.



(b) Vi betraktar integralen ∫ R

2

x+ 3

x2 − 1
dx.

För alla x ≥ 2 kan vi uppskatta integranden underifr̊an som följer:

x+ 3

x2 − 1
≥ x+ 3

x2
≥ x

x2
=

1

x
.

Av standardjämförelsekriteriet för Riemannintegraler följer∫ R

2

x+ 3

x2 − 1
dx ≥

∫ R

2

1

x
dx = ln(R)− ln(2) → ∞,

när R → ∞. Allts̊a divergerar den generaliserade integralen.

Svar: Den generaliserade integralen divergerar.

3. (a) (Teori) Definiera egentligt gränsvärde i oändligheten för en funktion f(x). (1p)

Svar:

Definition 1. L̊at f : Df ⊂ R → R och antag att Df inneh̊aller godtyckligt stora
tal. Gränsvärdet för f d̊a x g̊ar mot oändligheten existerar och är lika med A ∈ R om
och endast om: För varje ϵ > 0 existerar det ett ω ∈ R s̊a att om x > ω och x ∈ Df ,
s̊a gäller att |f(x)−A| < ϵ.

(b) (Teori) Formulera instängningssatsen för gränsvärden d̊a x → ∞. (1p)

Svar:

Sats 1 (Instängningssatsen för gränsvärden d̊a x → ∞). Antag att

lim
x→∞

f(x) = lim
x→∞

g(x) = A

och att det existerar ett ω0 ∈ R s̊a att

f(x) ≤ h(x) ≤ g(x)

för alla x > ω0. D̊a gäller att
lim
x→∞

h(x) = A.

(c) (Teori) Bevisa instängningssatsen för gränsvärden d̊a x → ∞. (3p)

Svar:

Bevis för instängningssatsen för gränsvärden d̊a x → ∞. L̊at ϵ > 0. Vi vill hitta ett
ω > 0 s̊a att om x > ω, s̊a gäller att A − ϵ < h(x) < A + ϵ. Vi vet att det existerar
ω1, ω2 ∈ R s̊a att om x > ω1, s̊a gäller att A− ϵ < f(x) < A+ ϵ, och om x > ω2, s̊a
gäller att A − ϵ < g(x) < A + ϵ. Därför följer att om x > max(ω0, ω1, ω2), s̊a gäller
att

A− ϵ < f(x) < h(x) < g(x) < A+ ϵ.

Väljer vi ω = max(ω0, ω1, ω2), s̊a följer allts̊a att A − ϵ < h(x) < A + ϵ, vilket var
implikationen vi ville visa.

4. Betrakta funktionen
f(x, y) = (1 + x2 + 2y2)e−(x2+y2),

för alla (x, y) ∈ R2.



(a) Antar funktionen f ett största värde? Om ja: I vilken eller vilka punkter? (2p)

Lösningsförslag:

Först noterar vi att f(x, y) > 0 för alla (x, y) ∈ R2. Vidare f̊ar vi med hjälp av
standardgränsvärden och notationen r :=

√
x2 + y2 att∣∣∣(1 + x2 + 2y2)e−(x2+y2)

∣∣∣ ≤ (1 + 2r2)e−r2 → 0,

när r → ∞. Notera ocks̊a att f(0, 0) = 1. Väljer vi därför ϵ = 1
2 s̊a ger oss

gränsvärdesdefinitionen ett R > 0 s̊a att

f(x, y) = |f(x, y)| ≤ ϵ =
1

2
< f(0, 0) (1)

för alla (x, y) ∈ R2 s̊a att r =
√
x2 + y2 ≥ R, dvs. i dessa punkter kan inte största

värdet antas. D̊a den sluta skivan med radie R är kompakt och f är kontinuerlig,
vet vi att det existerar ett största värde p̊a skivan. Dessutom kan inte största värdet
ligga p̊a randen där r = R, pga. av olikhet (1). Vi undersöker därför de stationära
punkterna i det inre av skivan, dvs. där r < R. De partiella dervatorna är

∂f

∂x
(x, y) = −2x(x2 + 2y2)e−(x2+y2),

∂f

∂y
(x, y) = −2y(−1 + x2 + 2y2)e−(x2+y2).

Dessa är b̊ada lika med 0 om och endast om x = 0 och y = 0 eller y = ± 1√
2
. I dessa

punkter f̊ar vi funktionsvärdena

f (0, 0) = 1,

f

(
0,± 1√

2

)
=

2√
e
.

D̊a 2√
e
> 1 f̊ar vi följande slutats:

Svar: Det största värdet för f är 2√
e
och antas i punkterna(

0,
1√
2

)
,

(
0,− 1√

2

)
.

(b) Antar funktionen f ett minsta värde? Om ja: I vilken eller vilka punkter? (1p)

Lösningsförslag:

Vi vet fr̊an föreg̊aende uppgift att f(x, y) g̊ar mot 0 d̊a r :=
√
x2 + y2 → ∞. Det

följer att inget positivt tal kan vara det minsta värdet. Dessutom kan inte 0 vara det
minsta värdet, d̊a funktionen är positiv.

Svar: Funktionen antar inte n̊agot minsta värde.

(c) Bestäm inf(x,y)∈R2 f(x, y)? (1p)

Lösningsförslag: Vi söker den största undre begränsningen till funktionen. D̊a f
är en positiv funktion är 0 en undre begränsning. Dessutom vet vi fr̊an uppgift (a)
att f(x, y) g̊ar mot 0 d̊a r :=

√
x2 + y2 → ∞. Därför kan inget positivt tal vara en

undre begränsning.

Svar: inf(x,y)∈R2 f(x, y) = 0.

(d) (Teori) Antar funktionen ett minsta värde under bivilkoret x2 + y2 ≤ 1010? (1p)

Lösningsförslag: Billkoret x2 + y2 ≤ 1010 beskriver en sluten skiva i R2 med radie
105, centrerad runt origo. D̊a det är en sluten och begränsad mängd är det en
kompakt mängd och f är definierad och kontinuerlig p̊a denna mängd, existerar ett
minsta värde.

Svar: Ja.



5. Betrakta mängden
M = {(x, y) ∈ R2 | x ≥ 0}.

(a) (Teori) Är M sluten? Förklara! (1p)

Lösningsförslag: Randpunkterna till M är alla (x, y) ∈ R2 s̊a att x = 0. D̊a dessa
är inkluderade i M är M sluten.

Svar: Ja.

(b) (Teori) Är M kompakt? Förklara! (1p)

Lösningsförslag: En delmängd i R2 är kompakt om och endast om den är sluten
och begränsad. Om M skulle vara begränsad skulle det finnas en radie R s̊a att alla
(x, y) ∈ M uppfyllde √

x2 + y2 < R.

Men d̊a skulle punkten (R+ 1, 0) ligga i M , men inte uppfylla olikheten ovan, vilket
vore en motsägelse. Därför är M inte kompakt.

Svar: Nej.

(c) Har funktionen
f(x, y) = 1− x− y

ett största och ett minsta värde i M under bivillkoret x2 + y2 = 1? I vilka punkter i
s̊adana fall? (4p)

Lösningsförslag:

Notera att mängden av alla punkter (x, y) ∈ M som uppfyller bivillkoret är givet av

K =
{
(cos(t), sin(t)) ∈ R2 | t ∈

[
−π

2
,
π

2

]}
.

Randen till K är lika med K, s̊a K inneh̊aller alla sina randpunkter och är därmed
sluten. Dessutom är K begränsad, d̊a√

x2 + y2 < 2,

för alla (x, y) ∈ K. Därför är K kompakt. D̊a f är kontinuerlig och K ligger i
definitionsmängden till f s̊a antar f ett största och minsta värde i K. Max- och min-
punkterna hittas till exempel genom att maximera och minimera den sammansatta
funktionen

f(cos(t), sin(t)) = 1− cos(t)− sin(t)

för t ∈
[
−π

2 ,
π
2

]
. Värdena i ändpunkterna ges av

f(0,−1) = 2, f(0, 1) = 0.

Ett maximum eller minimum vid en inre punkt ges vid stationära punkter, dvs. där

0 =
d

dt
f(cos(t), sin(t))

= sin(t)− cos(t).

I det angivna intervallet f̊ar vi lösningen

t =
π

4
.

Värdet p̊a funktionen i den punkten ges av

f
(
cos

(π
4

)
, sin

(π
4

))
= f

(
1√
2
,
1√
2

)
= 1−

√
2.



Svar: Det största värdet är 2 och antas i (0,−1), och det minsta värdet är 1 −
√
2

och antas i
(

1√
2
, 1√

2

)
.

Alternativ lösning för att hitta max- och min-punkterna:

För att hitta max- eller min-punkter under bivillkoret kan vi ocks̊a introducera

g(x, y) = x2 + y2 − 1

och notera att bivillkoret är g(x, y) = 0. Enligt teori fr̊an föreläsningarna måste en
max- eller min-punkt (a, b) uppfylla att grad(f)(a, b) är parallell med grad(g)(a, b).
Med andra ord m̊aste matrisen (

−1 −1
2a 2b

)
ha determinanten 0, vilket implicerar att a = b. Om vi sätter in detta i bivillkoret
g(a, b) = 0 f̊ar vi samma punkt som ovan, nämligen

(a, b) =

(
1√
2
,
1√
2

)
.

6. (a) (Teori) Definiera vad det innebär att gränsvärdet för en funktion f(x, y) existerar i
en punkt (a, b) ∈ R2. (1p)

Svar:

Definition 2. L̊at f : Df ⊆ R2 → R och a⃗ = (a, b) ∈ Df . Antag att Df inneh̊aller
punkter godtyckligt nära a⃗. Gränsvärdet för f i a⃗ existerar och är lika med b ∈ R
om och endast om följande gäller: För varje ϵ > 0 existerar ett δ > 0 s̊a att om
0 < |x⃗− a⃗| < δ och x ∈ Df , s̊a följer att |f(x⃗)− f (⃗a)| < ϵ.

(b) (Teori) Definiera vad det innebär att en funktion f(x, y) är differentierbar i en punkt
(a, b) ∈ R2. (1p)

Svar:

Definition 3. L̊at f : Df ⊆ R2 → R och a⃗ ∈ Df och antag att Df ⊆ R2 är öppen.

Vi säger att f är differentierbar i a⃗ om det finns ett A⃗ ∈ R2 s̊a att

f (⃗a+ h⃗)− f (⃗a) = A⃗ · h⃗+
∣∣∣⃗h∣∣∣ ρ(⃗h)

och ρ(⃗h) → 0 d̊a h⃗ → 0⃗.

(c) Existerar gränsvärdet för
sin2(xy)

x2 + y2

när (x, y) → (0, 0)? (3p)

Lösningsförslag: Vi betraktar problemet i polära koordinater

x = r cos(θ),

y = r sin(θ),

och ser att
sin2(xy)

x2 + y2
=

sin2(r2 cos(θ) sin(θ))

r2
.

Standardgränsvärdet

lim
z→0

sin(z)

z
= 1



implicerar att för varje ϵ > 0 existerar ett δ > 0 s̊a att om 0 < |z| < δ, s̊a följer att∣∣∣∣sin(z)z
− 1

∣∣∣∣ ≤ ϵ.

Denna olikhet kan skrivas om som

|sin(z)− z| ≤ ϵ |z| ,

vilket i sin tur implicerar att

|sin(z)| ≤ (ϵ+ 1) |z| .

Väljer vi ϵ = 1 drar vi allts̊a slutsatsen att det existerar ett δ > 0 s̊a att∣∣sin(r2 cos(θ) sin(θ))∣∣ ≤ 2
∣∣r2 cos(θ) sin(θ)∣∣ ≤ 2r2

om
∣∣r2 cos(θ) sin(θ)∣∣ < δ. Om vi använder denna olikhet ovan f̊ar vi

sin2(r2 cos(θ) sin(θ))

r2
≤ r4

r2
= r2 → 0,

när r =
√
x2 + y2 → 0.

Svar: Ja, gränsvärdet existerar.


