
Lösningsskiss tenta 2026-01-13, Algebra och kombinatorik.

(1) (a) Eftersom 30 = 2 · 3 · 5 har vi att antalet invertebara element ges av
ϕ(30) = ϕ(2) · ϕ(3) · ϕ(5) = 1 · 2 · 4 = 8 där ϕ är Eulers phi-funktion.

(b) Ordet FALAFELFEST inneh̊aller tre stycken F, tv̊a stycken A, E och
L samt ett S och ett T. Utan restriktioner ges antalet ord därmed av
multinomialkoefficienten

(
11

3,2,2,2,1,1

)
. Om vi ser [FEST] som en symbol

har vi kvar tv̊a A, F och L samt ett E. Det är därför
(

8
2,2,2,1,1

)
ord som

inneh̊aller ordet FEST. Antalet ord som inte inneh̊aller ordet FEST
är därför (

11

3, 2, 2, 2, 1, 1

)
−

(
8

2, 2, 2, 1, 1

)
.

(c) Grafen nedan är sammanhängade med sex hörn och har inte kroma-
tiskt tal 2 eftersom hörnen 1, 2 och 4 alla m̊aste ha olika färger i en
färgläggning. Hörnet 4 har valens 4 eftersom det har fyra grannar.

5
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(2) (a) Fr̊an sats i kursen vet vi att matrisen blir en checkmatris för en kod
som rättar åtminstone ett fel om alla kolonner är nollskilda och unika.
Genom att jämföra kolonn 2 och 7 ser vi därför att a = 1. Kalla den
erh̊alla matrisen för H. Vi har d̊a att

H



1
0
1
0
1
0
0


=


1
0
0
0

 ,

vilket inte är en kolonn i H och vi därmed inte kan rätta. Vi ser sedan
att

H



0
0
1
0
0
1
1


=


0
1
1
0



är den första kolonnen av H och därmed kan rättas till 1010011.
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(b) Vi har att n = 119 = 17 · 7 och ϕ(n) = 16 · 6 = 96. Dekrypteringsny-
ckeln d kan nu hittas som inversen till e = 29 i Z96. Denna finner vi
genom att ställa upp den diofantiska ekvationen

29d+ 96k = 1,

vilket vi kan lösa med hjälp av Euklides algoritm. Den ger att

96 = 29 · 3 + 9

29 = 9 · 3 + 2

9 = 2 · 4 + 1.

Genom att g̊a igenom den baklänges f̊ar vi att 1 = 13 · 96 − 43 · 29.
Allts̊a finner vi att d = −43 = 53 i Z96. Det dekrypterade meddelatet
är därmed

bd = 453 = 2106 i Z119.

Eftersom 2 är inverterbar i Z119 ger Eulers sats oss att 2
ϕ(119) = 296 = 1

(mod 119). Vi kan d̊a förenkla meddelandet till

2106 = 296 · 210 ≡ 210 = 27 · 23 = 128 · 8 ≡ 9 · 8 = 72 (mod 119).

Meddelandet är därmed 72.

(3) (a) Ett polynom i Z7[x] av grad fyra är ett uttryck p̊a formen

a4x
4 + a3x

3 + a2x
2 + a1x+ a0

där alla ai ∈ Z7 och a4 ̸= 0. Det finns allts̊a 7 val var för a0, a1, a2 och
a3 samt 6 val för a4, vilket ger att det finns 6 · 74 polynom i Z7[x] av
grad fyra. För att finna hur m̊anga av dem som uppfyllar att f(1) ̸= 0
och f(2) ̸= 0 använder vi oss av principen av inklusion och exklusion.
Enligt faktorsatsen är f(1) = 0 ekvivalent med att f(x) = (x−1)·g(x)
för n̊agot polynom g(x). Eftersom f har grad 4 har d̊a g grad 3 och
antalet s̊adana polynom g är, p̊a samma sätt som ovan, givet av 6 ·73.
Det finns allts̊a 6 ·73 polynom f i Z7[x] av grad fyra som uppfyllar att
f(1) = 0. P̊a samma sätt finns det lika många, allts̊a 6 · 73 stycken,
som uppfyller att f(2) = 0.
De polynom f av grad fyra som uppfyller att f(1) = f(2) = 0 kan
nu enligt faktorsatsen skrivas som f(x) = (x − 1) · (x − 2) · h(x)
där h(x) är ett polynom av grad 2. Eftersom h(x) måste ha formen
h(x) = b2x

2 + b1x + b0 där b2 ̸= 0 finns det därför 6 · 72 möjligheter
för vad h kan vara och därmed lika många polynom f av grad 4 som
uppfyller att f(1) = f(2) = 0.
Principen av inklusion och exklusion ger oss därmed att antalet poly-
nom i Z7[x] av grad fyra som uppfyller att f(1) ̸= 0 och f(2) ̸= 0
är

6 · 74 − 2 · 6 · 73 + 6 · 72 = 6 · 72 · (72 − 14 + 1) = 63 · 72.
(b) Vi använder oss av Euklides algoritm. Polynomdivision ger först att

x3 + x+ 1 = (x2 + 2) · x+ (2x+ 1).

Eftersom (2x+1) ·(2x+2) = 4x2+6x+2 = x2+2 i Z3[x] är 2x+1 den
sista icke-försvinnande resten och därmed en största gemensam delare
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till f(x) och g(x). För att f̊a den monisk multipliserar vi med 2−1 = 2
i Z3 och f̊ar 2 · (2x + 1) = x + 2. Den moniska största gemensamma
delaren är allts̊a x+ 2.

(4) Betrakta permutationerna α = (7 3 5)(2 4 1)(6 8) och β = (1 5 3 2)(4 8) i
S8.
(a) Vi har att

γ = α−1 · β2 = (5 3 7)(1 4 2)(6 8)(1 3)(5 2) = (1 7 5)(2 3 4)(6 8).

Eftersom 3-cylker är jämna är γ udda.

(b) Vi vet att sgn(σ2) = sgn(σ)2 = 1, s̊a σ2 är jämn. Men vi vet fr̊an (a)
att om σ uppfyller ekvationen, d̊a måste σ2 vara udda. Allts̊a finns
ingen permutation σ som uppfyller ekvationen.

(c) Mängden best̊ar av alla permutationer i S8 som är konjugerade till
β. Enligt sats är detta detsamma som alla permutationer med samma
cykeltyp som β. Eftersom β har cykeltyp [412112] finns det enligt känd
formel

8!

41 · 21 · 2!
=

8!

16
=

7!

2
permutationer med denna cykeltyp i S8.

(5) Betrakta mängden G = {(a, b, c) | a, b, c ∈ (Z3 \ {0})}.

(a) Vi vet att (Z3 \ {0}) = U3 är de inverterbara elementen i Z3 och är
därmed en grupp under multiplikation. Att G är sluten och associa-
tiv följer d̊a direkt fr̊an samma egenskaper i U3. Identiteten i G är
(1, 1, 1) och inversen av (a, b, c) är (a−1, b−1, c−1), vilket finns eftersom
alla element har inverser i U3. Därmed är G en grupp. Ordningen p̊a
G är |U3|3 = 23 = 8.

(b) Enligt Lagrange måste storleken p̊a en delgrupp till G dela storleken
p̊a G, vilket är 8. De möjliga storlekarna p̊a delgrupper är därför 1, 2, 4
och 8. Delgrupper av alla dessa storlekar finns ocks̊a, och som exempel
kan vi ta {(1, 1, 1)}, {(1, 1, 1), (2, 1, 1)}, {(1, 1, 1), (2, 1, 1), (1, 2, 1), (2, 2, 1)}
och G.

(6) Tänk p̊a pärlorna som utplaserade i hörnen av en regelbunden åttahörning
och l̊at G vara gruppen av symmetrier av en s̊adan åttahörning. Om X är
mängden av alla s̊adanna utplaseringar av pärlorna vill vi veta hur m̊anga
banor som G har p̊a X. Dessa banor räknar vi med hjälp av Burnsides
lemma.

För g = id som identitetselementet är ges dess fixpunktmängd av hela
X. S̊a

|F (g)| = |X| =
(

8

3, 3, 2

)
eftersom det finns 8 pärlor totalt och positionen p̊a kulorna i samma färg
spelar ingen roll.
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För g = r, en rotation med en åttondels varv, gäller att |F (g)| = 0.
Detta eftersom att det finns ett udda antal svarta pärlor, men eftersom det
finns 8 antal pärlor totalt s̊a täcker en pärla upp ett jämt antal platser vid
repeterad användning av rotationen. Samma argument ger att |F (g)| = 0
även för g = r2, r3, . . . , r7, de resterande rotationerna.

För g = s1, en spegling i en linje som g̊ar genom motsatta sidor, har vi
att |F (g)| = 0 eftersom det m̊aste vara lika många svarta pärlor p̊a vardera
sida av speglingslinjen, men eftersom det finns ett udda antal svarta pärlor
är det ej möjligt. Det finns 4 av dessa speglingar.

Slutligen, för g = s2, en spegling i en linje som g̊ar genom tv̊a motsatta
hörn, d̊a är |F (g)| ̸= 0. För att f̊a lika många svarta och vita pärlor p̊a
vardera sida av speglingslinjen behöver vi ha att det är en svart och en
vit pärla p̊a linjen, samt en pärla av varje färg p̊a vardera sida av linjen.
Om man har plaserat ut var pärlorna p̊a ena sidan av linjen är, d̊a är det
bestämt var de p̊a andra sidan ligger. Detta ger att |F (g)| = 2 · 3! = 12
där 2 kommer fr̊an att välja vilken pärla p̊a linjen som är svart och vilken
som är vit, medan 3! kommer fr̊an att orda pärlorna p̊a ena sidan av linjen.
Det finns 4 av dessa tyen av speglingar.

Enligt Burnsides lemma finns det därmed

1

|G|
∑
g∈G

|F (g)| = 1

16

((
8

3, 3, 2

)
+ 12 · 4

)
= 38

olika halsband som kan skapas.


