Make up assignment MM5021 Foundations of Analysis 7.5 hp August 8th, 2024

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers. A correct answer without proper justification will not award full points.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 24 points can be achieved.

GOOD LUCK!

- 1. **Cardinality** Classify each of the following sets as either FINITE, COUNTABLE, or UNCOUNTABLE, providing a brief justification for your answer
 - (a) (1 pt) $\mathbb{Q} \cap (0, 1)$
 - (b) (1 pt) The power set of the Natural numbers $\mathcal{P}(\mathbb{N})$.
 - (c) (1 pt) The power set of $\{1, 2, 3\}$.
 - (d) (1 pt) The set of sequences a_n on the set $\{0, 1\}$ such that there is $N \in \mathbb{Z}$ (every sequence has its own N), $N \ge 0$ such that $a_n = 0$ for all $n \ge N$.
- 2. Topology of metric spaces In this exercise you can assume that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{|x|}{|x|+1}$ is continuous when we consider the Euclidean distance in both domain and codomain. Observe that $\lim_{x\to 0} g(x) = 0$.

Consider the real line with the following distance function

$$d(x,y) = \frac{|x-y|}{|x-y|+1}$$

- (a) (1 pt) Show that every $E \subseteq \mathbb{R}$ is bounded with respect of the distance d.
- (b) (2 pts) Show that a sequence a_n is Cauchy with respect to d if and only if it is so with respect the Euclidean distance $d_E(x, y) = |x y|$.
- (c) (2 pts) Deduce from (b) that (\mathbb{R}, d) is a complete metric space.
- (d) (2 pts) Show that neighbourhood with respect to d are open with respect the Euclidean distance $d_E(x, y) = |x y|$.
- 3. Stieltjes integral. (3 pts) Let $\alpha : [0,1] \to \mathbb{R}$ the function defined by

$$\alpha(x) = \begin{cases} 30 + 9x^2 & \text{if } x \le \frac{1}{3}, \\ 50 + 9x^2 & \text{if } \frac{2}{3} \ge x > \frac{1}{3}, \\ 100 + 9x^2 & \text{if } x > \frac{2}{3}. \end{cases}$$

Show that $f(x) = x \in \mathcal{R}(\alpha)$ on [0, 1] and compute

$$\int_0^1 x d\alpha.$$

- 4. Series of functions Let (X, d_X) and consider \mathbb{R} with the Euclidean distance function $d_E(x, y) = |x-y|$ functions $f_n : E \to \mathbb{R}$ with $E \subseteq X$. Consider also $f : E \to \mathbb{R}$ another function.
 - (a) (1 pt) Define formally, using ε and N, what it means that the series of function $s \sum_{n=1}^{+\infty} f_n$ converges pointwise to f.
 - (b) (2 pts) Use the ratio test to show that the power series

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

converges (to e^x) for all $x \in \mathbb{R}$.

(c) (2 pts) Show that the series

$$\sum_{n=0}^{+\infty} \frac{x^{2n}}{n!}$$

converges uniformly (to e^{x^2}) for all $x \in [0, 1]$.

(d) (2 pts) Show that

$$\int_0^1 e^{x^2} dx = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)n!}$$

In order to get points you have to justify every step.

5. Implicit functions (3 pts) Let us consider the function $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$F(x, y, z) = (x + \ln(y) + 2z - 2, x + y^{2} + e^{z} - 1 - e).$$

Show that around the point (0,1,1) F(x, y, z) = 0 defines x and y as a functions of z, that is (x, y) = f(z), with $f : \mathbb{R} \to \mathbb{R}^2$. Compute f'(1).