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• No use of textbook, notes, or calculators is allowed.

• Some problems have multiple parts. You may use the results of an earlier part even if you
did not do it.

• Unless told otherwise, you may quote results that you learned during the class. When you
do, state precisely the result that you are using.

• Be sure to justify your answers, and show clearly all steps of your solutions.

1. For each of the following statements determine if it is true or false. Give a brief justification or
a counterexample.

(a) (1 point) Suppose f : [a, b] → R is a continuous function, and U ⊂ [a, b] is open in [a, b].
Then f(U) is an open subset of R.
Answer: False. For example, let f be the inclusion function; f(x) = x for all a ≤ x ≤ b.
Then [a, b] is an open subset of itself, but f([a, b]) = [a, b] is not an open subset of R.

(b) (1 point) Suppose f : [a, b] → R is a continuous function, and C ⊂ [a, b] is closed in [a, b].
Then f(C) is a closed subset of R.
Answer: True. If C is a closed subset of [a, b] then C is compact, and therefore f(C) is
compact, and therefore closed.

(c) (1 point) If U ⊂ R is an open subset then int(U) = U .

Answer: False. For example, let U = (1, 2) ∪ (2, 3). Then U = [1, 3], and int(U) =
(1, 3) ̸= U .

(d) (1 point) Let fn : [a, b] → R be a sequence of differentiable functions. Suppose that {fn}
converges uniformly to a differentiable function f . Then {f ′

n} converges uniformly to f ′.

Answer: False. Let [a, b] be an arbitrary interval, and define fn(x) =
sin(nx)

n . Then it is
clear that fn converges uniformly to the zero function, but the sequence f ′

n(x) = cos(nx)
clearly does not converge to the zero function.

2. (a) (2 points) Let U ⊂ R be an interval and let f : U → R be a continuous 1-1 function. Prove
that f is monotonic (either increasing or decreasing).

Answer: Assume that f is continuous and 1 − 1. First, we prove that f is monotonic
on any closed interval contained in U . Suppose a, b ∈ U , with a < b. Since f is 1 − 1,
f(a) ̸= f(b), so either f(a) < f(b) or f(a) > f(b).

Claim: if f(a) < f(b) then for all t ∈ ]a, b[, f(a) < f(t) < f(b), and if f(a) > f(b) then
for all t ∈ ]a, b[ it holds that f(a) > f(t) > f(b).

Proof. Suppose, for example, that f(a) < f(b) and a < t < b. Suppose, by contradiction,
that it is not true that f(a) < f(t) < f(b). Then either f(t) > f(b) or f(t) < f(a).
Suppose f(t) > f(b). Then also f(a) < f(t). Choose a z such that

max(f(a), f(b)) < z < f(t).



By the intermediate value theorem there exist points p, q such that a < p < t < q < b
such that f(p) = f(q) = z, contradicting the assumption that f is 1-1. The case when
f(t) < f(a) is handled similarly. Finally, the case when f(a) > f(b) is handled similarly
as well. This proves the claim.

It follows from the claim that if a ≤ c < d ≤ b and f(a) < f(b) then f(c) < f(d) and
conversely if f(a) > f(b) then f(c) > f(d). So we have shown that f is monotonic on
[a, b], for any closed interval [a, b] ⊂ U . Now we prove that f is monotonic on U . Suppose
not. Then there exist points p < q in U such that f(p) > f(q) and points s < t in U such
that f(s) < f(t). Let a = min(p, q, s, t) and b = max(p, q, s, t). Then f is not monotonic
on [a, b], contradicting the claim.

(b) (2 points) Let U ⊂ R be an open interval, and suppose f : U → R is a differentiable
function. Suppose that exists points a, b ∈ U such that f ′(a) < 0 and f ′(b) > 0. Prove
that there exists a point ξ ∈ U for which f ′(ξ) = 0. Notice that we are not assuming that
f ′ is continuous. Hint: try to mimic the proof of Rolle’s theorem.

Answer: Let us assume that a < b. The case a > b is proved similarly. Since f ′(a) < 0
it follows that there exists a δ > 0 such that for all x ∈ (a, a+ δ), f(x) < f(a). Similarly,
there exists a δ > 0 such that for all x ∈ (b− δ, b), f(x) < f(b).

Since f is continuous on [a, b], there exists a ξ ∈ [a, b] such that f(ξ) ≤ f(x) for all
x ∈ [a, b]. It follows from the previous paragraph that in fact a < ξ < b. So ξ is a point in
(a, b) and f attains a local minimum at ξ. It follows that f ′(ξ) = 0.

3. (4 points) Let f : Rn → R be a function satisfying the following conditions:

1. f is continuous.

2. f(0̄) > 0

3. For all x̄ ∈ Rn, f(x̄) ≤ 1
∥x̄∥2+1

.

Prove that f attains a maximum. That is, prove that there exists an x̄ ∈ Rn such that
f(x̄) ≥ f(ȳ) for all ȳ ∈ Rn.

Answer: Consider the set

D =

{
x̄ ∈ Rn | ∥x̄∥ ≤ 1√

f(0̄)

}
.

Then D is a compact set, and therefore f attains a maximum on D. There exists a point x̄ ∈ D
such that f(x̄) ≥ f(ȳ) for all ȳ ∈ D. In particular, f(x̄) ≥ f(0̄).

We claim that f(x̄) ≥ f(ȳ) for all ȳ ∈ Rn. We already know this for ȳ ∈ D, so it remains
to verify the claim for ȳ /∈ D. In this case ∥ȳ∥ > 1√

f(0̄)
, so 1

∥ȳ∥2 < f(0̄), and we have the

inequalities

f(ȳ) ≤ 1

∥ȳ∥2 + 1
<

1

∥ȳ∥2
< f(0̄) ≤ f(x̄).

This is what we wanted to prove.

4. (4 points) Let f : [a, b] → R be a bounded function and let α : [a, b] → R be a monotonic
increasing function. Let P and Q be two partitions of the interval [a, b]. Prove, using just the



definitions of upper and lower sums, that

L(P, f, α) ≤ U(Q, f, α).

Answer: First we consider the case when P and Q are the same partition. Suppose P consists
of points a = t0 ≤ t1 ≤ · · · ≤ tn = b. For i = 1, . . . n let mi and Mi denote the infimum and
the supremum of f on the interval [ti−1, ti]. Also let ∆αi = α(ti)− α(ti−1). By definition

L(P, f, α) =
n∑

i=1

mi∆αi, and U(P, f, α) =
n∑

i=1

Mi∆αi.

Since for all i we have mi ≤ Mi and ∆αi ≥ 0, it follows that L(P, f, α) ≤ U(P, f, α).

Next we claim that if P ′ is a refinement of P then L(P, f, α) ≤ L(P ′, f, α) and U(P, f, α) ≥
U(P ′, f, α).

We will prove the claim for lower sums. The proof for upper sums is exactly the same. Recall
that P ′ is a refinement of P if P ′ is obtained by adding finitely many points to P . It is enough
to prove the claim when P ′ is obtained by adding one point to P .

So, let P be as above, and suppose P ′ consists of points a = t0 ≤ t1 ≤ · · · ≤ tj−1 ≤ ξ ≤ tj ≤
· · · tn = b. For all i = 1, . . . , n, let mi,Mi,∆αi be defined as above. Also let m′

j ,m
′′
j be the

infimum of f on the intervals [tj−1, ξ] and [ξ, tj ] respectively. Finally, let ∆α′
j = α(ξ)−α(xj−1)

and ∆α′′
j = α(xj) − α(ξ). It is clear that we have inequalities mj ≤ m′

j ,m
′′
j , and equality

∆αj = ∆α′
j +∆α′′

j .

Now we have the following

L(P, f, α) = m1∆α1 + · · ·+mj∆αj + · · ·+mn∆αn =

= m1∆α1 + · · ·+mj∆α′
j +mj∆α′′

j + · · ·+mn∆αn ≤
≤ m1∆α1 + · · ·+m′

j∆α′
j +m′′

j∆α′′
j + · · ·+mn∆αn = L(P ′, f, α).

Finally, given two partitions P and Q, we can form their common refinement P ∪Q. We have
the following inequalities

L(P, f, α) ≤ L(P ∪Q, f, α) ≤ U(P ∪Q, f, α) ≤ U(Q, f, α).

5. (4 points) Consider the function f : R2 → R

f(x, y) =

{
xy sin

(
1

x2+y4

)
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

Is f differentiable at (0, 0)? Be sure to justify your answer.

Answer: Yes, f is differentiable at (0, 0), and moreover f ′(0, 0) is the zero transformation. To
prove this, we have to prove that

lim
(x,y)→(0,0)

|f(x, y)− f(0, 0)|√
x2 + y2

= 0.



This means proving that

lim
(x,y)→(0,0)

∣∣∣xy sin( 1
x2+y4

)∣∣∣√
x2 + y2

= 0.

It follows from the inequalities (x± y)2 ≥ 0 that |xy| ≤ x2+y2

2 . Therefore, we have inequalities

0 ≤

∣∣∣xy sin( 1
x2+y4

)∣∣∣√
x2 + y2

≤

∣∣∣√x2 + y2 sin
(

1
x2+y4

)∣∣∣
2

.

Since lim(x,y)→(0,0)

√
x2 + y2 = 0, and sin

(
1

x2+y4

)
is bounded, it follows that

lim
(x,y)→(0,0)

∣∣∣√x2 + y2 sin
(

1
x2+y4

)∣∣∣
2

= 0

and therefore also

lim
(x,y)→(0,0)

∣∣∣xy sin( 1
x2+y4

)∣∣∣√
x2 + y2

= 0.

Remark: Note that we are not saying that f is continuously differentiable at (0, 0).

6. (a) (2 points) Show that there exists an open subset W ⊂ R2 containing (1, 1), and a differ-
entiable function F = (f1, f2) from W to R2, that satisfies

1. f1(1, 1) = f2(1, 1) = 1

2. For all (x, y) ∈ W , xy + xf1(x, y) + yf2(x, y) = 3 and f1(x, y)
2f2(x, y) + x2y = 2.

Answer: Let us define the function G = (g1, g2) : R4 → R2 as follows

g1(x, y, u, v) = xy + xu+ yv − 3; g2(x, y, u, v) = u2v + x2y − 2.

It is clear that G(1, 1, 1, 1) = (0, 0). Let us calculate the derivatives of G with respect to
u and v at (1, 1, 1, 1).

∂g1
∂u = x = 1 ∂g1

∂v = y = 1
∂g2
∂u = 2uv = 2 ∂g2

∂v = u2 = 1.

It is clear that the matrix

[
1 1
2 1

]
is invertible, and therefore the answer follows by the

implicit function theorem.

(b) (2 points) Show that F is invertible in some neighbourhood of (1, 1).

Answer: Now let us calculate the derivatives of G with respect to x and y at (1, 1, 1, 1).

∂g1
∂x = y + u = 2 ∂g1

∂y = x+ v = 2
∂g2
∂x = 2xy = 2 ∂g2

∂y = x2 = 1.

Once again, the matrix of derivatives

[
2 2
2 1

]
is invertible. By the implicit function theo-



rem, the matrix of derivatives of the implicitly defined function F at (1, 1) is

−
[
1 1
2 1

]−1 [
2 2
2 1

]
.

This is a product of invertible matrices, so it is invertible. Moreover, it is clear that F
is continuously differentiable near (1, 1). Therefore, by the inverse function theorem, F is
invertible (i;.e., 1-1) on some open neighbourhood of (1, 1).


