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MA 5021 - Real analysis

Examiner: Gregory Arone

Stockholm University Fall 2024 - final exam Date: January 9, 2025

No use of textbook, notes, or calculators is allowed.

Some problems have multiple parts. You may use the results of an earlier part even if you

did not do it.

Unless told otherwise, you may quote results that you learned during the class. When you

do, state precisely the result that you are using.

Be sure to justify your answers, and show clearly all steps of your solutions.

1. For each of the following statements determine if it is true or false. Give a brief justification or
a counterexample.

(a)

(b)

2. (a)

(1 point) Suppose f: [a,b] — R is a continuous function, and U C [a,b] is open in [a, b].
Then f(U) is an open subset of R.

Answer: False. For example, let f be the inclusion function; f(x) = x for all a < x < b.
Then [a, b] is an open subset of itself, but f([a,b]) = [a,b] is not an open subset of R.

(1 point) Suppose f: [a,b] — R is a continuous function, and C' C [a, b] is closed in [a, b].
Then f(C) is a closed subset of R.

Answer: True. If C is a closed subset of [a,b] then C' is compact, and therefore f(C) is
compact, and therefore closed.

(1 point) If U C R is an open subset then int(U) = U.
Answer: False. For example, let U = (1,2) U (2,3). Then U = [1,3], and int(U) =
(1,3) # U.

(1 point) Let fy,: [a,b] — R be a sequence of differentiable functions. Suppose that {f,}
converges uniformly to a differentiable function f. Then {f)} converges uniformly to f’.

Answer: False. Let [a,b] be an arbitrary interval, and define f,(z) = w Then it is
clear that f, converges uniformly to the zero function, but the sequence f (x) = cos(nx)

clearly does not converge to the zero function.

(2 points) Let U C R be an interval and let f: U — R be a continuous 1-1 function. Prove
that f is monotonic (either increasing or decreasing).

Answer: Assume that f is continuous and 1 — 1. First, we prove that f is monotonic
on any closed interval contained in U. Suppose a,b € U, with a < b. Since fis 1 — 1,
f(a) # f(b), so either f(a) < £(b) or f(a) > F(b).

Claim: if f(a) < f(b) then for all t €]a,b], f(a) < f(t) < f(b), and if f(a) > f(b) then
for all t €]a, b it holds that f(a) > f(t) > f(b).

Proof. Suppose, for example, that f(a) < f(b) and a < t < b. Suppose, by contradiction,
that it is not true that f(a) < f(t) < f(b). Then either f(t) > f(b) or f(t) < f(a).
Suppose f(t) > f(b). Then also f(a) < f(t). Choose a z such that

max(f(a), f(b)) <z < f(?).



By the intermediate value theorem there exist points p,q such that a < p <t < g < b
such that f(p) = f(q) = z, contradicting the assumption that f is 1-1. The case when
f(t) < f(a) is handled similarly. Finally, the case when f(a) > f(b) is handled similarly
as well. This proves the claim. O

It follows from the claim that if a < ¢ < d < b and f(a) < f(b) then f(c) < f(d) and
conversely if f(a) > f(b) then f(c¢) > f(d). So we have shown that f is monotonic on
[a, b], for any closed interval [a,b] C U. Now we prove that f is monotonic on U. Suppose
not. Then there exist points p < ¢ in U such that f(p) > f(¢) and points s < ¢ in U such
that f(s) < f(t). Let a = min(p, ¢, s,t) and b = max(p,q, s,t). Then f is not monotonic
on [a, b], contradicting the claim.

(b) (2 points) Let U C R be an open interval, and suppose f: U — R is a differentiable
function. Suppose that exists points a,b € U such that f'(a) < 0 and f/(b) > 0. Prove
that there exists a point £ € U for which f/(£) = 0. Notice that we are not assuming that
/' is continuous. Hint: try to mimic the proof of Rolle’s theorem.

Answer: Let us assume that a < b. The case a > b is proved similarly. Since f'(a) < 0
it follows that there exists a 6 > 0 such that for all x € (a,a + ), f(z) < f(a). Similarly,
there exists a 0 > 0 such that for all x € (b —4,b), f(x) < f(b).

Since f is continuous on [a,b], there exists a & € [a,b] such that f(¢) < f(z) for all
x € [a,b]. It follows from the previous paragraph that in fact a < £ < b. So £ is a point in
(a,b) and f attains a local minimum at £. It follows that f/(£) = 0.

3. (4 points) Let f: R™ — R be a function satisfying the following conditions:

1. f is continuous.
2. f(0)>0

7 n 7 1
3. Forall z € R", f(z) < EEESE

Prove that f attains a maximum. That is, prove that there exists an £ € R” such that
f(@) > f(y) for all gy € R™.

Answer: Consider the set

1
D=<qzeR"||z| < — 5.
v f(0)
Then D is a compact set, and therefore f attains a maximum on D. There exists a point T € D
such that f(z) > f(y) for all § € D. In particular, f(z) > f(0).

We claim that f(z) > f(y) for all § € R". We already know this for § € D, so it remains

to verify the claim for § ¢ D. In this case ||g| > }(0), S0 ”;HQ < f(0), and we have the

inequalities
1 1 _
< < < f(0) < f(z).
) )
lgl*+1 |yl

This is what we wanted to prove.

4. (4 points) Let f: [a,b] — R be a bounded function and let a: [a,b] — R be a monotonic
increasing function. Let P and @ be two partitions of the interval [a, b]. Prove, using just the



definitions of upper and lower sums, that
L(P7 f’ a) S U(Q7f7 a)'

Answer: First we consider the case when P and () are the same partition. Suppose P consists
of points a =tyg <t; <---<t,=0b Fori=1,...nlet m; and M; denote the infimum and
the supremum of f on the interval [¢t;_1,t;]. Also let Aa; = a(t;) — a(t;—1). By definition

L(P, f,a) = ZmiAai, and U(P, f,a)= ZMiAai.

Since for all @ we have m; < M; and A«; > 0, it follows that L(P, f,a) < U(P, f, ).

Next we claim that if P’ is a refinement of P then L(P, f,«a) < L(P', f,a) and U(P, f,a) >
UP', f,a).

We will prove the claim for lower sums. The proof for upper sums is exactly the same. Recall
that P’ is a refinement of P if P’ is obtained by adding finitely many points to P. It is enough
to prove the claim when P’ is obtained by adding one point to P.

So, let P be as above, and suppose P’ consists of points a = tg < t; < --- < tj1 <&t <
oty = b, Foralli=1,...,n, let m;, M;, Aa; be defined as above. Also let m}, m} be the
infimum of f on the intervals [t;_1,¢] and [€,¢;] respectively. Finally, let Ao} = a(§) —a(x;-1)
and Ao = a(z;) — a(§). It is clear that we have inequalities m; < m/;,m, and equality
Aaj = Aadj; + Aadf.

Now we have the following

L(P, f,a) =miAoq + -+ mjAa; + - + mpAay, =
=miAag +---+ mjAag + mjAa;’ + o+ mpAa, <
< miAag +---+ m;Aa; + m;-/Aa;-’ + -+ mpAay, = L(P, f,a).

Finally, given two partitions P and @), we can form their common refinement P U (). We have
the following inequalities

L(P, f,a) < L(PUQ, f,a) <UPUQ, f,a) <U(Q, f,a).

. (4 points) Consider the function f: R? — R

RIS

T = a:ysin(ﬁ) (z,y) # (0,0)
f(z,y) { N o

Is f differentiable at (0,0)? Be sure to justify your answer.

Answer: Yes, f is differentiable at (0,0), and moreover f’(0,0) is the zero transformation. To
prove this, we have to prove that

L ) = 10.0)
(z,9)—(0,0) Va? 4 y?

=0.




6.

This means proving that

‘xy sin <7z2}ry4 ) }
lim

(zy)=(0,0) /a2 4 y?

It follows from the inequalities (z & y)? > 0 that |zy| < # Therefore, we have inequalities

‘xy sin (T}ry‘l) ‘ g )\/x2 + y2sin (Tiy‘l)‘
o2+ y? N 2 '

Since lim, ) (0,0) V2?2 + 9?2 =0, and sin <ﬁ> is bounded, it follows that

lim ’ Va? +y?sin (fﬁiy“)’ _

(z,y)—(0,0) 2

=0.

0<

and therefore also
o (k)

lim
(zy)=(0,0) /22 +9y?

Remark: Note that we are not saying that f is continuously differentiable at (0, 0).

=0.

(a) (2 points) Show that there exists an open subset W C R? containing (1, 1), and a differ-
entiable function F' = (f1, f2) from W to R?, that satisfies

1. f1(1,1) = fa(1,1) =1
2. For all (l’,y) € W7 Ty + :Ef1(33,y) + yf2($7y) = 3 and fl(xay)2f2($7y) + xzy =2
Answer: Let us define the function G = (g1, g2): R* — R? as follows

gi(z,y.u,0) =y +autyo —3; g2,y u,0) = ulv+ a2y - 2.

It is clear that G(1,1,1,1) = (0,0). Let us calculate the derivatives of G with respect to

wand v at (1,1,1,1).

I
992 _ — 992 _ 2 _
8u—2uv—2 8U—u—1.

It is clear that the matrix F

9 ﬂ is invertible, and therefore the answer follows by the

implicit function theorem.

(b) (2 points) Show that F' is invertible in some neighbourhood of (1,1).
Answer: Now let us calculate the derivatives of G with respect to x and y at (1,1,1,1).

%:y—i—u:Q 991 — gy =

992 _ — — 2

2 2 . .. .
Once again, the matrix of derivatives [2 J is invertible. By the implicit function theo-



rem, the matrix of derivatives of the implicitly defined function F' at (1,1) is

T2 2
2 1 2 1|
This is a product of invertible matrices, so it is invertible. Moreover, it is clear that F

is continuously differentiable near (1,1). Therefore, by the inverse function theorem, F is
invertible (i;.e., 1-1) on some open neighbourhood of (1,1).



