MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Examinator: Matthew de Courcy-Ireland

Final written exam Foundations of Analysis MM5021 7.5 hp 13 August 2025

Please READ CAREFULLY the general instructions:

- During the exam you CANNOT use any textbook, class notes, or any other supporting material.
- Calculators are **not allowed** during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use clear and legible writing. Write preferably in black or dark blue ink.
- Do not write two exercises on the same page.
 - \checkmark The exam comprises four tasks written on both sides of the paper.
 - ✓ The total is 24 points. Each lettered item is worth 1 point unless otherwise indicated. (2a, 2b, and 4d are worth 2 points each.) Show your work as it may be worth partial credit.
 - ✓ You can use earlier items to answer later ones, even without answering the former.
- 1. True or false? Say which and justify your answer.

(An ideal justification: if true, outline a proof; if false, give a counterexample.)

(a) For any increasing function $\alpha:[a,b]\to\mathbb{R}$, the Riemann–Stieltjes integral satisfies

$$\int_{a}^{b} 1 \ d\alpha = \alpha(b) - \alpha(a).$$

(b) The set

$$\left\{ x \in \mathbb{R} \; ; \; 1 < \int_0^x e^{t^2} dt < 2 \right\}$$

is an open subset of \mathbb{R} .

- (c) If $\sum_{n=0}^{\infty} a_n x^n$ converges for x=-3, then it converges for x=2 (where a sequence of real numbers a_n is given).
- (d) If $f:[0,1]\to\mathbb{R}$ is continuous, then there is a countable set $E\subset[0,1]$ such that f is differentiable at all $x\in[0,1]\setminus E$.
- (e) If $f:[0,1]\to\mathbb{R}$ is monotone, then there is a countable set $E\subset[0,1]$ such that f is continuous at all $x\in[0,1]\setminus E$.
- (f) The function ψ defined on $]0,\infty[$ by $\psi(x)=x+\frac{1}{x}$ is a contraction.
- 2. (a) [2 points] Suppose X is a metric space with distance d and let

$$b(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Show that b is a metric on X.

(b) [2 points] Is the following function m a metric on \mathbb{R} ?

$$m(x,y) = \frac{|x-y|}{1 + |x-y|^2}$$

(c) Show that $[1,2] \cup [3,4]$ is a complete metric space, with respect to the usual distance function |x-y|.

(You may use, without proof, the fact that \mathbb{R} is complete.)

(d) Give an example of a metric space X with a subset $E \subset X$ that is both compact and open, but $E \neq \emptyset$ and $E \neq X$.

[exam continues on next page]

Please turn page! \longrightarrow

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Examinator: Matthew de Courcy-Ireland

Final written exam Foundations of Analysis MM5021 7.5 hp 13 August 2025

Please READ CAREFULLY the general instructions:

- During the exam you CANNOT use any textbook, class notes, or any other supporting material.
- Calculators are **not allowed** during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use clear and legible writing. Write preferably in black or dark blue ink.
- Do not write two exercises on the same page.
- 3. Given $-1 \le x \le 1$, define

$$\varphi(t) = t + \frac{x^2 - t^2}{2}.$$

Define a sequence of functions on [-1,1] inductively by $p_0(x) = 0$ and

$$p_{n+1}(x) = \varphi(p_n(x)) = p_n(x) + \frac{x^2 - p_n(x)^2}{2}$$

where $n \geq 0$ is an integer.

- (a) What are the fixed points of φ ? (Your answer should depend on x.)
- (b) Show that

$$|x| - p_{n+1}(x) = (|x| - p_n(x))(1 - \frac{|x| + p_n(x)}{2})$$

- (c) Show that for all $x \in [-1, 1]$ one has $0 \le p_n(x) \le p_{n+1}(x) \le |x|$.
- (d) On the interval $0 \le u \le 1$, where does $u \cdot (1-u)^n$ attain its maximum?
- (e) Show that $p_n(x) \to |x|$ uniformly on [-1,1] as $n \to \infty$.
- (f) Calculate $\lim_{n\to\infty} \int_{-1}^1 p_n(x) dx$.
- 4. Let $\varphi(x) = x + \sin(x)$ for $x \in \mathbb{R}$.
 - (a) Show that φ is a monotone function from \mathbb{R} to \mathbb{R} .
 - (b) Show that φ maps the interval $\left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$ to itself.
 - (c) Show that φ is a contraction on the interval from (b).
 - (d) [2 points] Suppose $|\varphi(x) \varphi(y)| \le c|x-y|$ where $0 \le c < 1$. Let x_n be the sequence defined inductively by

$$x_{n+1} = \varphi(x_n)$$

starting from a given x_0 . Let

$$p = \lim_{n \to \infty} x_n$$

(you do not need to show the limit exists).

Show that

$$|p - x_n| \le \frac{c^n}{1 - c} |x_1 - x_0|.$$

(e) If we start from $x_0 = 3$ and want to make $|x_n - \pi| < 2^{-2025}$, how large should n be?