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Please READ CAREFULLY the general instructions:

• During the exam you CANNOT use any textbook, class notes, or any other supporting material.
• Calculators are not allowed during the exam.
• In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
• Use clear and legible writing. Write preferably in black or dark blue ink.
• Do not write two exercises on the same page.

✓ The exam comprises four tasks written on both sides of the paper.

✓ The total is 24 points. Each lettered item is worth 1 point unless otherwise indicated.
(2a, 2b, and 4d are worth 2 points each.) Show your work as it may be worth partial credit.

✓ You can use earlier items to answer later ones, even without answering the former.

1. True or false? Say which and justify your answer.
(An ideal justification: if true, outline a proof; if false, give a counterexample.)

(a) For any increasing function α : [a, b] → R, the Riemann–Stieltjes integral satisfies∫ b

a
1 dα = α(b)− α(a).

(b) The set {
x ∈ R ; 1 <

∫ x

0
et

2
dt < 2

}
is an open subset of R.

(c) If
∑∞

n=0 anx
n converges for x = −3, then it converges for x = 2 (where a sequence of real

numbers an is given).
(d) If f : [0, 1] → R is continuous, then there is a countable set E ⊂ [0, 1] such that f is

differentiable at all x ∈ [0, 1] \ E.
(e) If f : [0, 1] → R is monotone, then there is a countable set E ⊂ [0, 1] such that f is continuous

at all x ∈ [0, 1] \ E.
(f) The function ψ defined on ]0,∞[ by ψ(x) = x+ 1

x is a contraction.

Solution to task 1

(a) True. The integral
∫ b
a 1 dα is a limit of Riemann sums

∑
i

(
α(xi) − α(xi−1)

)
where a =

x0 ≤ x1 ≤ . . . ≤ xN = b. This is a telescoping sum, where most terms cancel leaving
α(xN )− α(x0) = α(b)− α(a).

(b) True. This set is f−1(V ) where V =]1, 2[ and f(x) =
∫ x
0 e

t2dt. Since V is open and f is
continuous, the pre-image f−1(V ) is also open.

(c) True. Since the series converges for x = −3, the radius of convergence R for this power series
satisfies R ≥ 3. The series converges for all x satisfying |x| < R, and in particular for x = 2.

(d) False. We know from Rudin that there is a nowhere-differentiable continuous function. See
Theorem 7.18 for a proof.
Just knowing that there is a nowhere-differentiable continuous function was enough for this
true/false question. It is of course a good thing if you sketch how the construction goes. The
idea is to consider

f(x) =

∞∑
n=0

α(pnx) · qn
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where p and q are numerical parameters one can play with, and α is a periodic version of the
absolute value function: α(x) = |x| for −1 ≤ x ≤ 1 extended periodically by α(x+ 2) = α(x).
We will see that choosing p = 4 and any q in the range 1

2 < q < 1 makes f continuous but
nowhere differentiable.
We claim f is continuous for any parameter in the range 0 < q < 1. Since |α(x)| ≤ 1 and∑
qn converges, the Weierstrass M-test shows that the series converges uniformly (Theorem

7.10). Therefore, since α and its rescalings are continuous, the series f is also continuous.
However, given any point x, estimates of the difference quotients show that f is not
differentiable at x. There is a sequence of values h→ 0 for which∣∣∣f(x+ h)− f(x)

h

∣∣∣ → ∞

whereas these would converge to |f ′(x)| if f were differentiable at x.
In more detail (much more than necessary to get the 1 point!), the proof of Theorem 7.18
uses two key properties of α. By periodicity, α(y) = 0 for all even integers y ∈ 2Z, and from
properties of the absolute value, we also have

|α(s)− α(t)| ≤ |s− t|

for any s, t ∈ R. Let us now fix x and show f is not differentiable there. The difference
quotients are

f(x+ h)− f(x)

h
=

∞∑
n=0

qn
(
α(pnx+ pnh)− α(pnx)

)
h

The numerator vanishes by periodicity provided that pnh ∈ 2Z. Let us therefore choose

p = 4

and take a sequence of values

h = hk = ±1

2
4−k, k = 1, 2, 3, . . .

The sign is chosen depending on k so that there are no integers between 4kx and 4k(x+h), in
other words, depending on whether 4kx must be rounded up or rounded down to the nearest
integer. Then the terms in the series vanish for n > k, while the term for n = k is

qk
(
α(pkx+ pkh)− α(pkx)

)
h

= ±qk p
kh

h
= ±qk4k

because the choice of ± means α is evaluated within the same period for both terms. For
n < k, we can bound the remaining terms by∣∣∣∣∣qn

(
α(pnx+ pnh)− α(pnx)

)
h

∣∣∣∣∣ ≤ qn
|(pnx+ pnh)− pnx|

|h|
= (4q)n.

By the triangle inequality,∣∣∣∣∣
k∑

n=0

qn
(
α(pnx+ pnh)− α(pnx)

)
h

∣∣∣∣∣ ≥ (4q)k −
k−1∑
n=0

(4q)n

which leaves a geometric series. Let use choose q so that 4q > 1, that is, any parameter in the
range 1

4 < q < 1. We conclude from the formula for a geometric series that∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≥ (4q)k − (4q)k − 1

4q − 1
=

(
1− 1

4q − 1

)
(4q)k +

1

4q − 1
.

This diverges as k → ∞, as long as 4q − 1 > 1. The simplest choice is Rudin’s q = 3
4 , so that

4q − 1 = 2 > 1. Any choice in the range 1
2 < q < 1 works.
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(e) True. This is Theorem 4.30 in the text by Rudin. We let E be the set of all points where f
is not continuous, and show E is countable. The proof uses two key facts: Q is a countable
dense subset of R, and monotone functions have limits from the left and from the right. We
may assume f is increasing rather than decreasing, and then

lim
x→b−

f(x) < lim
x→b+

f(x)

for each point b where f is not continuous. The fact that Q is dense means there is a rational
number q(b) such that

lim
x→b−

f(x) < q(b) < lim
x→b+

f(x)

and although q(b) is not unique, we choose one such rational number for each discontinuity b.
Since f is increasing, q is also increasing and in particular q(b) 6= q(b′) for b 6= b′. Therefore E
can be mapped injectively into a subset of Q, which shows that E is countable.

(f) False. A contraction would satisfy |ψ(x)−ψ(y)| ≤ c|x− y| for some c < 1 and all x, y ∈]0,∞[.
In this case

ψ(x)− ψ(y) = x− y +
1

x
− 1

y
=

(
x− y

)(
1− 1

xy

)
which shows that ψ is not a contraction. For any c < 1, there are x and y for which
|ψ(x)− ψ(y)| > c|x− y|. Indeed

1− 1

xy
> c⇐⇒ xy >

1

1− c

so for example the contraction property would fail for y = 1 and x = 2
1−c .

There is a tempting alternative that does not quite work but is worth commenting on. You
could try to argue that there are no solutions to ψ(x) = x since 1/x 6= 0, whereas a contraction
mapping on a complete space must have a fixed point. However ]0,∞[ is not complete (a
Cauchy sequence might converge to 0, which is not in the space) so the contraction mapping
theorem would not apply even if ψ were a contraction. You could argue this way for a function
defined by the same formula on [1,∞[ instead of ]0,∞[.

2. (a) [2 points] Suppose X is a metric space with distance d and let

b(x, y) =
d(x, y)

1 + d(x, y)
.

Show that b is a metric on X.
(b) [2 points] Is the following function m a metric on R?

m(x, y) =
|x− y|

1 + |x− y|2

(c) Show that [1, 2]∪ [3, 4] is a complete metric space, with respect to the usual distance function
|x− y|.
(You may use, without proof, the fact that R is complete.)

(d) Give an example of a metric space X with a subset E ⊂ X that is both compact and open,
but E 6= ∅ and E 6= X.

Solution to task 2

(a) Since d is a distance, we have the symmetry property d(x, y) = d(y, x) and the inequality
d(x, y) ≥ 0 with equality only for x = y. The same properties are inherited by b. It remains
to verify the triangle inequality

b(x, y) ≤ b(x, z) + b(z, y)
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where x, y, z are any points in X.
Since d is a distance on X, we have

d(x, y) ≤ d(x, z) + d(z, y).

Let us abbreviate
p = d(x, y), q = d(x, z), r = d(z, y)

which are all non-negative and satisfy p ≤ q + r because d is a metric. We must show
p

1 + p
≤ q

1 + q
+

r

1 + r

This claim is equivalent to

p(1 + q)(1 + r) ≤ (1 + p)
(
q(1 + r) + r(1 + q)

)
that is

p+ pq + pr + pqr ≤ q + r + 2qr + pq + pr + 2pqr

or most simply
p ≤ q + r + 2qr + pqr

This follows from p ≤ q + r because 2qr + pqr ≥ 0.
(b) No, m is not a metric on R because it does not satisfy the triangle inequality. Suppose, for a

contradiction, that
m(x, y) ≤ m(x, z) +m(z, y)

for all x, y, z in R. Fix any x 6= y. Then as z → ∞ the inequality gives

|x− y|
1 + |x− y|2

≤ |x− z|
1 + |x− z|2

+
|z − y|

1 + |z − y|2
→ 0

so |x− y| = 0, contrary to x 6= y.
Alternatively, instead of a proof by contradiction, one can give specific values of x, y, z for
which the triangle inequality fails. One such example is

x = 0, y = 1, z = 5.

For those values,
|x− y|

1 + |x− y|2
=

1

2

compared to
|x− z|

1 + |x− z|2
+

|z − y|
1 + |z − y|2

=
5

26
+

4

17
<

1

2

Indeed, after multiplying by 2, the final inequality holds if and only if

5

13
+

8

17
< 1 ⇐⇒ 5× 17 + 13× 8 < 13× 17 ⇐⇒ 5× 17 < 13× 9

which follows from 85 < 117. We could also calculate in decimals that
5

26
+

4

17
=

189

442
= 0.4276 . . . < 0.5

Choosing a larger value of z gives larger denominators but makes the result less than 1
2 by an

even wider margin.
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(c) Let xn be a Cauchy sequence in [1, 2]∪ [3, 4]. The same sequence also has the Cauchy property
in R because we are using the same distance function. By the completeness of R, there is
some x ∈ R so that xn → x as n→ ∞. Since [1, 2] ∪ [3, 4] is a finite union of closed intervals,
it is a closed subset of R. Therefore any sequence in [1, 2] ∪ [3, 4] has its limit points also in
[1, 2]∪ [3, 4]. Thus the limit x shows xn converges not only in R but also in the original space
[1, 2] ∪ [3, 4].
We have shown all Cauchy sequences in [1, 2] ∪ [3, 4] are convergent, which is the definition of
completeness.

(d) For example take X = [1, 2] ∪ [3, 4] and E = [1, 2]. It’s clear enough that E is both open and
closed. Compactness follows from the Heine–Borel theorem since E is closed and bounded.

(d) Alternatively: let X be a discrete space and let E be any finite subset other than ∅ and (in
case X is finite) X itself.

(d) Pitfall: several answers incorrectly proposed to let E be the Cantor set in X = [0, 1]. This is
a compact subset but not open. The Cantor set has empty interior. In that sense, it is as far
as possible from being open. An open set contains a neighbourhood of every one of its points,
whereas the Cantor set does not contain any.

3. Given −1 ≤ x ≤ 1, define

φ(t) = t+
x2 − t2

2
.

Define a sequence of functions on [−1, 1] inductively by p0(x) = 0 and

pn+1(x) = φ
(
pn(x)

)
= pn(x) +

x2 − pn(x)
2

2

where n ≥ 0 is an integer.

(a) What are the fixed points of φ? (Your answer should depend on x.)
(b) Show that

|x| − pn+1(x) =
(
|x| − pn(x)

)(
1− |x|+ pn(x)

2

)
(c) Show that for all x ∈ [−1, 1] one has 0 ≤ pn(x) ≤ pn+1(x) ≤ |x|.
(d) On the interval 0 ≤ u ≤ 1, where does u · (1− u)n attain its maximum?
(e) Show that pn(x) → |x| uniformly on [−1, 1] as n→ ∞.
(f) Calculate limn→∞

∫ 1
−1 pn(x)dx.

Solution to task 3
This is close to an exercise from Rudin (23 in chapter 7).

(a) The fixed points of φ are x and −x. Indeed φ(t) = t if and only if x2 = t2, that is, t = ±x.
(b) On the right(

|x| − pn(x)
)(

1− |x|+ pn(x)

2

)
= |x| − pn(x)−

(
|x| − pn(x)

)(
|x|+ pn(x)

)
2

= |x| − pn(x)−
x2 − pn(x)

2

2

where the remaining |x| cancels with the absolute value on the other side |x| − pn+1(x). The
claim is equivalent to

−pn+1(x) = −pn(x)−
x2 − pn(x)

2

2

which is the recurrence defining pn+1, multiplied by −1.
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(c) Here is a proof by induction on n.
As a base case, clearly p0 = 0 satisfies 0 ≤ p0(x) ≤ |x|. The next polynomial is
p1(x) = x2

2 ≥ 0 = p0, which also satisfies x2

2 ≤ |x| for all x in the range |x| ≤ 1, so we
have verified 0 ≤ pn(x) ≤ pn+1(x) ≤ |x| for n = 0.
Suppose 0 ≤ pn(x) ≤ pn+1(x) ≤ |x| as an induction hypothesis. We claim 0 ≤ pn+1(x) ≤
pn+2(x) ≤ |x|. The first inequality pn+1(x) ≥ 0 is part of the induction hypothesis. The
second inequality pn+2 ≥ pn+1 follows from the definition

pn+2(x) = pn+1(x) +
x2 − pn+1(x)

2

2

because the induction hypothesis pn+1(x) ≤ |x| implies x2 − pn+1(x)
2 ≥ 0 in the second term.

Finally the inequality pn+2(x) ≤ |x| follows from the identity in (b). Indeed, one more appeal
to the induction hypothesis pn+1(x) ≤ |x| gives

1− |x|+ pn+1(x)

2
≥ 1− |x| ≥ 0

for |x| ≤ 1. Then by (b) we conclude

|x| − pn+2(x) =
(
|x| − pn+1(x)

)(
1− |x|+ pn+1(x)

2

)
≥ 0

since both factors are greater than or equal to 0.
We have shown that all three inequalities in 0 ≤ pn+1(x) ≤ pn+2(x) ≤ |x| follow from the
previous case, completing the induction.

(d) By calculus, the maximum is attained at

u =
1

n+ 1
.

Indeed, setting the derivative equal to 0 gives

0 = (1− u)n − u · n(1− u)n−1 = (1− u)n−1(1− u− nu)

so 1
n+1 is a critical point. The maximum is attained at this critical point rather than at the

endpoints, because at u = 0 and u = 1 the function u(1 − u)n vanishes for any n ≥ 1. For
n = 0, the endpoint u = 1 coincides with 1

n+1 . Thus in all cases 1
n+1 is where the maximum

is attained.
(e) Using the identity from (b) and the fact that pn(x) ≥ 0 from (c), we deduce that

∣∣|x| − pn+1(x)
∣∣ ≤ ∣∣|x| − pn(x)

∣∣(1− |x|
2

)
Substituting this into itself n times, we get

∣∣|x| − pn+1(x)
∣∣ ≤ ∣∣|x| − pn(x)

∣∣(1− |x|
2

)
≤

∣∣|x| − pn−1(x)
∣∣(1− |x|

2

)2
≤ . . .

≤
∣∣|x| − p0(x)

∣∣(1− |x|
2

)n+1

Since p0(x) = 0, the inequality says

∣∣|x| − pn+1(x)
∣∣ ≤ 2

|x|
2

(
1− |x|

2

)n+1

or, the same for n instead of n+ 1,∣∣|x| − pn(x)
∣∣ ≤ 2u(1− u)n
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where u = |x|/2. Using (d), since the maximum is attained at u = 1
n+1 , we find

2u(1− u)n ≤ 2 · 1

n+ 1

(
1− 1

n+ 1

)n
<

2

n+ 1
.

It follows that ∣∣|x| − pn(x)
∣∣ ≤ 2u(1− u)n ≤ 2

n+ 1

which gives uniform convergence. For any ε > 0, there is n large enough, independent of
x ∈ [−1, 1], so that 2

n+1 < ε.
Alternative solution: one can also deduce uniform convergence from the fact that pn ≤ pn+1

using Theorem 7.13 from Rudin (formally, one should replace pn by −pn because the result
is stated for decreasing rather than increasing sequences). However, that theorem has several
hypotheses that need to be checked. One must prove first of all that pn(x) → |x| pointwise,
for instance by the same proof as above (which already shows the convergence is uniform, not
merely pointwise). One must also mention that the domain [−1, 1] is compact and that the
limit function x 7→ |x| is continuous.

(f) By uniform convergence

lim
n→∞

∫ 1

−1
pn(x)dx =

∫ 1

−1
lim
n→∞

pn(x)dx

as we know from Rudin (Theorem 7.16). We know the limit under the integral sign from (e).

lim
n→∞

∫ 1

−1
pn(x)dx =

∫ 1

−1
lim
n→∞

pn(x)dx =

∫ 1

−1
|x|dx = 2

∫ 1

0
xdx = 1.

4. Let φ(x) = x+ sin(x) for x ∈ R.

(a) Show that φ is a monotone function from R to R.
(b) Show that φ maps the interval [2π3 ,

4π
3 ] to itself.

(c) Show that φ is a contraction on the interval from (b).
(d) [2 points] Suppose |φ(x)− φ(y)| ≤ c|x− y| where 0 ≤ c < 1. Let xn be the sequence defined

inductively by
xn+1 = φ(xn)

starting from a given x0. Let
p = lim

n→∞
xn

(you do not need to show the limit exists).
Show that

|p− xn| ≤
cn

1− c
|x1 − x0|.

(e) If we start from x0 = 3 and want to make |xn − π| < 2−2025, how large should n be?

Solution to task 4

(a) The derivative is φ′(x) = 1 + cos(x) ≥ 0 so φ is monotone increasing (this uses elementary
properties of sine and cosine, which can be found in Rudin’s chapter 8, as well as a standard
consequence of the mean value theorem, which is Theorem 5.11 in Rudin).

(b) Since φ is monotone increasing, φ(2π/3) ≤ φ(x) ≤ φ(4π/3) for any x ∈ [2π3 ,
4π
3 ]. We have

sin(2π/3) > 0 and sin(4π/3) < 0, or more explicitly, these values are ±
√
3
2 . Therefore

φ(2π3 ) = 2π
3 + sin(2π/3) ≥ 2π

3 and φ(4π/3) = 4π
3 + sin(4π/3) ≤ 4π

3 . The result follows.
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(c) We must show |φ(x) − φ(y)| ≤ c|x − y| for some c < 1, where x and y are points from the
given interval. We claim c = 1/2 works, and prove it using the mean value theorem. For some
t between x and y

φ(x)− φ(y) = φ′(t)(x− y) =
(
1 + cos(t)

)
(x− y)

Since t lies in the same interval, and cos(2π/3) = cos(4π/3) = −1
2 , we have

|1 + cos(t)| ≤ 1− 1

2
=

1

2

which proves the claim.
(d) This follows Rudin’s proof of Theorem 9.23, page 220-221.

Fix n and compare xn to xn+k as follows. Applying the triangle inequality with a telescoping
sum, we have

|xn+k − xn| ≤
k−1∑
i=0

|xn+i+1 − xn+i|

Since xn+i+1 = φ(xn+i) and φ is a contraction by the factor c, it follows that

|xn+k − xn| ≤
k−1∑
i=0

|xn+i+1 − xn+i| ≤ |x1 − x0|
∑
i

cn+i ≤ cn

1− c
|x1 − x0|

where the last step uses a geometric series.
(e) We apply (d) with p = π since sin(π) = 0 gives φ(π) = π. We choose n so large that

cn

1− c
|x1 − x0| < 2−2025

With x0 = 3 we have x1 = φ(3) = 3 + sin(3) so |x1 − x0| = | sin(3)| ≤ 1. (In fact,
sin(3) ≈ 0.14112 but without doing any calculations we can always say | sin | ≤ 1.)
From (c), we have c = 1

2 . Therefore it is enough to take n so large that

2−n

1− 1/2
· 1 < 2−2025

in other words 22025+1 < 2n. One can take n = 2027.

If one has already computed π to high precision by other means, then one can see that n = 2027

is much larger than necessary. It appears that n = 6 is not enough but n = 7 works. The triangle
inequality |

∑
(xn+i+1 − xn+i)| ≤

∑
|xn+i+1 − xn+i| gives a worst-case estimate in (d). In practice,

if the summands xn+i+1 − xn+i have different signs, then the absolute value of the sum may be
much smaller than the sum of absolute values. As a result, xn converges to π even more rapidly
than promised by the proof.
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