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Please READ CAREFULLY the general instructions:

e During the exam you CANNOT use any textbook, class notes, or any other supporting material.

e Calculators are not allowed during the exam.

e In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
e Use clear and legible writing. Write preferably in black or dark blue ink.

e Do not write two exercises on the same page.

v" The exam comprises four tasks written on both sides of the paper.

v" The total is 24 points. Each lettered item is worth 1 point unless otherwise indicated.
(2a, 2b, and 4d are worth 2 points each.) Show your work as it may be worth partial credit.

v" You can use earlier items to answer later ones, even without answering the former.

1. True or false? Say which and justify your answer.
(An ideal justification: if true, outline a proof; if false, give a counterexample.)

(a) For any increasing function « : [a,b] — R, the Riemann—Stieltjes integral satisfies

/ab 1 da = a(b) — a(a).

X
{xeR; 1</ etzdt<2}
0

(c) If 3°0° yapx™ converges for x = —3, then it converges for x = 2 (where a sequence of real
numbers a,, is given).

(b) The set

is an open subset of R.

(d) If f : [0,1] — R is continuous, then there is a countable set E C [0,1] such that f is
differentiable at all x € [0,1] \ E.

(e) If f:]0,1] — R is monotone, then there is a countable set E' C [0, 1] such that f is continuous
at all z € [0,1] \ E.

(f) The function ¢ defined on ]0, 00| by ¥(z) = = +  is a contraction.
Solution to task 1

(a) True. The integral ffl da is a limit of Riemann sums Y, (a(z;) — a(zi—1)) where a =
rg < 21 < ... < zxy = b. This is a telescoping sum, where most terms cancel leaving
a(ry) — alze) = a(b) — a(a).

(b) True. This set is f~1(V) where V =|1,2[ and f(z) = [ e’’dt. Since V is open and f is
continuous, the pre-image f~!(V) is also open.

(c) True. Since the series converges for x = —3, the radius of convergence R for this power series
satisfies R > 3. The series converges for all x satisfying |z| < R, and in particular for x = 2.

(d) False. We know from Rudin that there is a nowhere-differentiable continuous function. See
Theorem 7.18 for a proof. O
Just knowing that there is a nowhere-differentiable continuous function was enough for this

true/false question. It is of course a good thing if you sketch how the construction goes. The
idea is to consider

f@) =Y a@pe) - "

n=0



where p and ¢ are numerical parameters one can play with, and « is a periodic version of the
absolute value function: «a(z) = |z| for —1 < x < 1 extended periodically by a(z + 2) = a(x).
We will see that choosing p = 4 and any ¢ in the range % < q¢ < 1 makes f continuous but
nowhere differentiable.

We claim f is continuous for any parameter in the range 0 < ¢ < 1. Since |a(z)| < 1 and
> q" converges, the Weierstrass M-test shows that the series converges uniformly (Theorem
7.10). Therefore, since o and its rescalings are continuous, the series f is also continuous.
However, given any point x, estimates of the difference quotients show that f is not
differentiable at x. There is a sequence of values h — 0 for which

flz+h) - f(x)
h

whereas these would converge to |f/(z)| if f were differentiable at x.

— 00

In more detail (much more than necessary to get the 1 point!), the proof of Theorem 7.18
uses two key properties of a. By periodicity, a(y) = 0 for all even integers y € 27Z, and from
properties of the absolute value, we also have

als) —at)] < |s — 1|

for any s,t € R. Let us now fix z and show f is not differentiable there. The difference
quotients are

fla+h) = f@) o o (ap"s +p"h) — a(p'z))
h - ;q h

The numerator vanishes by periodicity provided that p"h € 2Z. Let us therefore choose
p=4
and take a sequence of values
h = hy, :i%zr’f, k=1,2,3,...

The sign is chosen depending on k so that there are no integers between 4%z and 4%(x + h), in
other words, depending on whether 4z must be rounded up or rounded down to the nearest
integer. Then the terms in the series vanish for n > k, while the term for n = k is

g (a(Fz +pPh) —a(pz) R
a h =

because the choice of + means « is evaluated within the same period for both terms. For

— gkak

n < k, we can bound the remaining terms by

o (@ 4 p"h) — ptz|

o o'z +p"h) — a(p'z)

= (4q)".
- <q 7] (49)
By the triangle inequality,
k k—1
a(p"z +p"h) — ap"z)
an( p ) > (4q)k_2<4q)n
n=0 n=0

which leaves a geometric series. Let use choose g so that 4¢ > 1, that is, any parameter in the
range i < q < 1. We conclude from the formula for a geometric series that

fl@+h) - f(x) (49)" — 1 1 1
h 2(4q)k_ 4q —1 :(1_4q—1>(4q)k+4q—1'

This diverges as k — 0o, as long as 4¢ — 1 > 1. The simplest choice is Rudin’s ¢ = %, so that
4g—1 =2 > 1. Any choice in the range % < q < 1 works.



(e) True. This is Theorem 4.30 in the text by Rudin. We let E be the set of all points where f
is not continuous, and show E is countable. The proof uses two key facts: Q is a countable
dense subset of R, and monotone functions have limits from the left and from the right. We
may assume f is increasing rather than decreasing, and then

lim f(z) < lim f(z)

T—b~ z—bT

for each point b where f is not continuous. The fact that Q is dense means there is a rational
number ¢(b) such that

lim /(@) < qb) < lim_f(z)

r—b—
and although ¢(b) is not unique, we choose one such rational number for each discontinuity b.
Since f is increasing, ¢ is also increasing and in particular ¢(b) # q(b') for b # b'. Therefore E
can be mapped injectively into a subset of (9, which shows that F is countable.

(f) False. A contraction would satisfy [(x) — ¢ (y)| < c|z —y| for some ¢ < 1 and all z,y €]0, ool.
In this case

¢(x)—¢(y>=x—y+i_;:(x_y>(1_$1y)

which shows that 1 is not a contraction. For any ¢ < 1, there are z and y for which

|(z) —P(y)| > c|r — y|. Indeed
1 1
l-—>c<=xy>—ro
Ty 1—c

so for example the contraction property would fail for y =1 and z = % O
There is a tempting alternative that does not quite work but is worth commenting on. You
could try to argue that there are no solutions to ¢ (x) = x since 1/x # 0, whereas a contraction
mapping on a complete space must have a fixed point. However |0, co[ is not complete (a
Cauchy sequence might converge to 0, which is not in the space) so the contraction mapping
theorem would not apply even if ¢ were a contraction. You could argue this way for a function

defined by the same formula on [1, co[ instead of ]0, oo.
O
(a) [2 points] Suppose X is a metric space with distance d and let
d(z,y)
b(a,y) = —Y)
(z.9) 1+d(x,y)
Show that b is a metric on X.
(b) [2 points] Is the following function m a metric on R?
|z~ y|
m(x,y) = —————
)= e

(c) Show that [1,2]U[3,4] is a complete metric space, with respect to the usual distance function
|z —yl.
(You may use, without proof, the fact that R is complete.)

(d) Give an example of a metric space X with a subset £ C X that is both compact and open,
but F # @ and F # X.

Solution to task 2

(a) Since d is a distance, we have the symmetry property d(z,y) = d(y,z) and the inequality
d(z,y) > 0 with equality only for z = y. The same properties are inherited by b. It remains
to verify the triangle inequality

b(z,y) < b(z,2) + b(2,y)



where z,y, z are any points in X.

Since d is a distance on X, we have
d(z,y) < d(z,z) +d(2,y).
Let us abbreviate
p=d(z,y), q=d(z,z), r=d(zy)
which are all non-negative and satisfy p < q 4+ r because d is a metric. We must show

p < q I r
1+p =~ 1+q 1+7

This claim is equivalent to
p(L+q)(1+7) <1 +p) (a1 +7)+r(1+09))
that is
p+pqg+pr+pgr < q+ 1+ 2qr 4 pg + pr+ 2pgr
or most simply
p < q+r+2qr+pgr
This follows from p < q + r because 2qr + pgr > 0.

No, m is not a metric on R because it does not satisfy the triangle inequality. Suppose, for a
contradiction, that
m(z,y) < m(z,z) +m(z,y)

for all x, y, z in R. Fix any x # y. Then as z — oo the inequality gives

|z — yl |z — 2| 12—yl
I+|z—yl? " 14+|z—22 14|z—y?

=0

so |z — y| = 0, contrary to x # y. O
Alternatively, instead of a proof by contradiction, one can give specific values of x, y, z for
which the triangle inequality fails. One such example is

For those values,
lz—yl 1
1+]z—yl? 2

compared to
|z — 2| |z — vy 5 4 1
= _—+—-<:
I+|lz—2? 14+|z—y> 26 17 2

Indeed, after multiplying by 2, the final inequality holds if and only if

5 8
T3+T7<1<:>5><17—|—13><8<13x17(:>5><17<13><9

which follows from 85 < 117. We could also calculate in decimals that

5 4 189

— 4+ —=—=04276... .

2% + 7~ 12 0.4276... < 0.5
Choosing a larger value of z gives larger denominators but makes the result less than % by an
even wider margin. ]



(c) Let x, be a Cauchy sequence in [1,2]U[3,4]. The same sequence also has the Cauchy property
in R because we are using the same distance function. By the completeness of R, there is
some z € R so that x, — = as n — co. Since [1,2] U [3,4] is a finite union of closed intervals,
it is a closed subset of R. Therefore any sequence in [1,2] U [3,4] has its limit points also in
[1,2] U [3,4]. Thus the limit x shows x,, converges not only in R but also in the original space
[1,2] U[3,4].

We have shown all Cauchy sequences in [1,2] U [3, 4] are convergent, which is the definition of
completeness.

(d) For example take X = [1,2] U [3,4] and E = [1,2]. It’s clear enough that E is both open and
closed. Compactness follows from the Heine-Borel theorem since F is closed and bounded.

(d) Alternatively: let X be a discrete space and let F be any finite subset other than @ and (in
case X is finite) X itself.

(d) Pitfall: several answers incorrectly proposed to let E be the Cantor set in X = [0,1]. This is
a compact subset but not open. The Cantor set has empty interior. In that sense, it is as far
as possible from being open. An open set contains a neighbourhood of every one of its points,
whereas the Cantor set does not contain any.

O

3. Given —1 <z < 1, define

z? — 12
5
Define a sequence of functions on [—1, 1] inductively by po(z) = 0 and

p(t) =t+

1'2 _ pn(x)Z

Prr1(z) = @(pn(x)) = pn(x) + 5

where n > 0 is an integer.

(a) What are the fixed points of ¢? (Your answer should depend on z.)
(b) Show that

%] = pnt1(z) = (le —pn(a:)> (1 - W)

(c¢) Show that for all z € [—1,1] one has 0 < p,(z) < ppy1(x) < |z|.

(d) On the interval 0 < u < 1, where does u - (1 — )™ attain its maximum?
(e) Show that p,(z) — |z| uniformly on [—1,1] as n — co.

(f) Calculate lim, oo filpn(x)dx.

Solution to task 3

This is close to an exercise from Rudin (23 in chapter 7).

(a) The fixed points of ¢ are x and —x. Indeed ¢(t) = t if and only if 22 = ¢, that is, t = +u.
(b) On the right

(o)1 LB ) (=)l o
2% — pn(x)®

= |l = palw) - =2

where the remaining |z| cancels with the absolute value on the other side |z| — p,t1(x). The

claim is equivalent to

x? — )2
—pn+1(2) = —pn(z) — #ﬁ

which is the recurrence defining p,1, multiplied by —1.



()

Here is a proof by induction on n.

As a base case, clearly po = 0 satisfies 0 po(x) < |z|. The next polynomial is

xT

<
pi(z) = ‘%2 > 0 = po, which also satisfies 72 <

|z| for all x in the range |z| < 1, so we
have verified 0 < p,(z) < ppy1(x) < |z| for n = 0.

Suppose 0 < p,(z) < ppt1(x) < |z| as an induction hypothesis. We claim 0 < py,y1(z) <
Pnt2(x) < |z|. The first inequality p,+1(z) > 0 is part of the induction hypothesis. The
second inequality pn12 > pp+1 follows from the definition

z? — Pn+1 («T)2

Pnt2(T) = ppy1(z) + 9

because the induction hypothesis p,11(x) < |z| implies 22 — p,41(x)? > 0 in the second term.
Finally the inequality pp42(z) < |z| follows from the identity in (b). Indeed, one more appeal
to the induction hypothesis p,4+1(z) < |z| gives

_ e[+ prsa ()
2

1 >1—|z| >0

for || < 1. Then by (b) we conclude

|2 = pn2(z) = <\37| —Pn+1(3€)) (1 - W) >0

since both factors are greater than or equal to 0.

We have shown that all three inequalities in 0 < ppi1(z) < ppya(x) < |z| follow from the
previous case, completing the induction.

By calculus, the maximum is attained at

Indeed, setting the derivative equal to 0 gives
0=1—-w)"—u-nl—u)"'=1-u)"11-u—nu)

SO %—i—l is a critical point. The maximum is attained at this critical point rather than at the

endpoints, because at u = 0 and v = 1 the function u(1 — «)™ vanishes for any n > 1. For

%H‘ Thus in all cases —— is where the maximum

n = 0, the endpoint v = 1 coincides with 1

is attained.

Using the identity from (b) and the fact that p,(x) > 0 from (c), we deduce that

el = pma(@)] < [l - @] (1~ 21)

Substituting this into itself n times, we get

el = P @) < Jlal = pu(@)] (1~ 2 < [la] ~ ps(@)| (1 - ) <.

2
< Jlaf = pot)] (1 - 2™

Since po(z) = 0, the inequality says

or, the same for n instead of n + 1,

Hx! —pn(x)‘ <2u(l—uw)"



where u = |z|/2. Using (d), since the maximum is attained at u = n%_l, we find
1 1 \» 2
2u(l — u)" < 2- (1-—) < .
u(l—u)" < n+1 n+1 n+1
It follows that 9
— <2u(l—-—u)" <
lal = pu(e)] < 2u(t - )" < =

which gives uniform convergence. For any € > 0, there is n large enough, independent of
x € [—1,1], so that n%q <e. O

Alternative solution: one can also deduce uniform convergence from the fact that p, < ppa1
using Theorem 7.13 from Rudin (formally, one should replace p, by —p, because the result
is stated for decreasing rather than increasing sequences). However, that theorem has several
hypotheses that need to be checked. One must prove first of all that p,(z) — |z| pointwise,
for instance by the same proof as above (which already shows the convergence is uniform, not
merely pointwise). One must also mention that the domain [—1,1] is compact and that the
limit function z — |x| is continuous. O

(f) By uniform convergence

1 1
lim pn(a:)da::/ lim p,(z)dx

n—oo J_4 1 N—00

as we know from Rudin (Theorem 7.16). We know the limit under the integral sign from (e).

1 1 1 1
lim pn(z)de = / lim p,(x)dx = / |z|dz = 2/ xdx = 1.
n—oo |4 1 o0 -1 0

4. Let ¢(z) = z + sin(x) for z € R.

Show that ¢ is a monotone function from R to R.

(a
(b
(c
(d

Show that ¢ maps the interval [ZF, 47 to itself.

)
)
) Show that ¢ is a contraction on the interval from (b).

) [2 points] Suppose |p(x) — p(y)| < c|x — y| where 0 < ¢ < 1. Let z, be the sequence defined
inductively by

Tpy1 = o(2n)

starting from a given xg. Let

p= lim z,
n—oo

(you do not need to show the limit exists).
Show that

Cn

‘p_xn| < 1 ‘xl_xOI-

—C

(e) If we start from xp = 3 and want to make |z, — 7| < 2720?° how large should n be?
Solution to task 4

a e derivative is ¢'(x) = 1 + cos(xz) > 0 so ¢ is monotone increasing (this uses elementary

The derivative is ¢’ 1 >0s0 i t i i thi 1 t
properties of sine and cosine, which can be found in Rudin’s chapter 8, as well as a standard
consequence of the mean value theorem, which is Theorem 5.11 in Rudin).

(b) Since ¢ is monotone increasing, ¢(21/3) < ¢(z) < @(47/3) for any = € [ZF, 4%] We have
sin(27r/3) > 0 and sin(47/3) < 0, or more explicitly, these values are :I:@. Therefore

@(&) = 2% +sin(27/3) > 2F and ¢(47/3) = 4F + sin(47/3) < 4F. The result follows.



(¢) We must show |¢(x) — ¢(y)| < c|z — y| for some ¢ < 1, where x and y are points from the
given interval. We claim ¢ = 1/2 works, and prove it using the mean value theorem. For some
t between x and y

p(x) —o(y) = ' (t)(z —y) = (1 +cos(t)) (z —y)

Since ¢ lies in the same interval, and cos(2m/3) = cos(47/3) = —1, we have
1 1
14 cos(t)| <1—== 3

which proves the claim.

(d) This follows Rudin’s proof of Theorem 9.23, page 220-221.

Fix n and compare z, to z,; as follows. Applying the triangle inequality with a telescoping

sum, we have
k-1

|Zptk — x| < Z |Tntir1 — Tyl
=0

Since Ty 4i+1 = @(Tn+i) and @ is a contraction by the factor ¢, it follows that

k—1 n
. C
|Tptr — Tn| < E |Tntit1 — Tnyi| < |21 — 0] E A< T C|$1 — x|
=0 i

where the last step uses a geometric series.
(e) We apply (d) with p = 7 since sin(7) = 0 gives ¢(7) = m. We choose n so large that

C’Vl

1—c¢

|z — {/C()‘ < 2720

With zp = 3 we have z; = ¢(3) = 3 4+ sin(3) so |1 — x| = |sin(3)] < 1. (In fact,
sin(3) &~ 0.14112 but without doing any calculations we can always say |sin| < 1.)

From (c), we have ¢ = 3. Therefore it is enough to take n so large that

—n

] < 92025
1—-1/2

in other words 22025+1 < 27 QOne can take n = 2027.

O

If one has already computed 7 to high precision by other means, then one can see that n = 2027
is much larger than necessary. It appears that n = 6 is not enough but n = 7 works. The triangle
inequality | > (Zn+it1 — Tnti)| < D0 |Tntit1 — Tnri| gives a worst-case estimate in (d). In practice,
if the summands x,4i+1 — Tp4; have different signs, then the absolute value of the sum may be
much smaller than the sum of absolute values. As a result, x, converges to m even more rapidly
than promised by the proof.



