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(1) Put X = {n ∈ N : n ≥ 2} and, for each m ∈ X, put Sm = {n ∈ X :
n divides m}.
(a) [1 pt] Show that the sets Sm, for m ∈ X, form a basis of a topology

on X.
(b) [1 pt] For any n ∈ X, compute the closure of the set {n} in X.
(c) [1 pt] Show that the subspace topology on P ⊂ X, where P consists of

all prime numbers, is discrete.
(d) [1 pt] Show that a subset of X is compact if and only if it is finite.
(e) [2 pts] Show that X is path connected and locally path connected.

Hint: Find paths between points n ∈ X and points nk ∈ X for k ∈ N.
Solution:
(a) In N, n divides both m and m′ if and only if n divides d = gcd(m,m′). Thus
Sm∩Sm′ = Sd if d > 1 and ∅ if d = 1. Each m ∈ X belongs to Sm, so

⋃
m∈X Sm = X.

Therefore the collection {Sm | m ∈ X} is a basis for a topology on X.
(b) It will be more convenient to first compute the interior of {n}c, which is the union
of all open sets contained in {n}c. These open sets are exactly the unions of those
basic open sets Sm that are contained in {n}c, ie those Sm that do not contain n. In
other words,

Int({n}c) =
⋃

n does not divide m∈X
Sm.

But this union is exactly equal to {d ∈ X | n does not divide d}: if n does not divide
d then we can take m = d, and conversely if n divides d and d ∈ Sm then n divides m
so d cannot be in the above union. Thus

{n} = (Int({n}c))c = {d ∈ X | n divides d}.
(c) Since distinct primes cannot divide each other, Sp ∩P = {p} for each p ∈ P . Since
Sp is open in X by definition, it follows that {p} is open in the subspace topology on
P , which implies that this topology is discrete.
(d) Any topology on a finite set F makes it compact since choosing an element of the
open cover containing each point of F produces a finite subcover.
Conversely, suppose K ⊂ X is compact and consider the cover of K by {Sm | m ∈ K};
this is a cover since m ∈ Sm for m ∈ X. So K is covered by finitely many Sm, and
since each Sm is finite, K is a subset of a finite union of finite sets, in particular is
itself finite.
(e) Suppose k, n ∈ X are such that k divides n. Now any open set containing n must
contain some Sm such that n divides m and therefore must also contain k. It follows
that the function f : [0, 1]→ {k, n} ⊂ X given by

f(t) =
{
k if t < 1,
n if t = 1.

is continuous, ie there is a path in {k, n} from k to n: we have checked that {n} is not
open in {k, n} and the preimage of each of the other three subsets of {k, n} under f
is open in [0, 1] by construction.
Now each Sm is path connected: if n ∈ Sm then there is a path in {n,m} ⊂ Sm
connecting n andm. It follows thatX is locally path connected: any open set containing
n ∈ N contains some basic neighborhood Sm of n.



To see that all of X is path connected, consider any m,n ∈ X. By above, there are
paths between m and mn and between mn and n. Concatenating, we get a path
between m and n.

(2) Let X be a topological space and consider the following three statements:
(1) X is Hausdorff.
(2) If a sequence (xn)∞n=1 in X converges to a limit x ∈ X, then the limit is

unique.
(3) The set {x} is closed in X for every x ∈ X.
Show that:
(a) [1 pt] (1) implies (2)
(b) [1 pt] (2) implies (3)
(c) [2 pts] (3) does not imply (2)
(d) [2 pts] (2) does not imply (1).

Hint: Consider for instance the topology on a set X for which U ⊆ X is
open iff U = ∅ or X \ U is a countable set.

Solution:
(a) If x, y ∈ X are distinct then they have disjoint neighborhoods U and V respectively.
A sequence in X cannot eventually be in both U and V and therefore cannot converge
to both x and y. Therefore limits of sequences in X are unique, if they exist.
(b) Let x, y ∈ X be distinct. We want to show that there is a neighborhood of y that
does not contain x. Consider the constant sequence xn = x in X. Every neighborhood
of x contains every xn so it converges to x and, since limits are unique, does not
converge to y. So there must be a neighborhood U of y such that xn is not eventually
in U , but the only way this can happen is if x /∈ U .
(c) Consider the cofinite topology on an infinite set X, ie a subset U is open if and
only if X \ U is finite or U = ∅. Since {x} is finite, X \ {x} is open, ie {x} is closed.
Consider a sequence (xn) in X that takes any value at most once, ie an injection
N→ X (which exists since X is infinite). Now for any x ∈ X and any open set U 3 x,
since X \ U is finite there are only finitely many n such that xn is in X \ U . In other
words, xn is in U for all but finitely many n. Since x and U are arbitrary, it follows
that (xn) converges to every point of X, in particular does not have a unique limit.
(d) We will use countable so as to include finite. Consider the cocountable topology
on an uncountable set X, ie a subset U is open if and only if X \ U is countable or
U = ∅. Since the union of two countable sets is countable and therefore not all of X,
the intersection of any two non-empty open sets of X is non-empty and so X cannot
be Hausdorff. Consider any sequence (xn) in X and let A = {xn}, the collection of
all the values taken by (xn), which must be a countable set. Now for any x ∈ X, let
U = X \ (A \ {x}), which is an open neighborhood of {x}. The only value in U that
xn can take is x so if xn converges to x then we must have xn = x for large n. Thus
there can be at most one such x.

(3) (a) [3 pts] Let X be the union of S2 ⊂ R3 with Y1 = {(x, 0, 0) : x ∈ [−1, 1]}
and Y2 = {(0, y, 0) : y ∈ [−1, 1]}. Compute the fundamental group of X.

(b) [3 pts] Let Z be the union of S2 ⊂ R3 with the three coordinate planes.
Compute the fundamental group of Z.

For this exercise you are free to argue a bit more intuitively (e.g. using
pictures instead of formulas to define homotopies).

Solution:
(a) Let Γ be the subspace X ∩ (R2×0), which has fundamental group freely generated
by the four edges a, b, c, d considered as loops at x0 = (1, 0, 0) via paths in the tree T
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as in the following figure:

x0

ab

c d

T

Further, X is obtained by attaching two disks to Γ along the boundary circle, which
represents the element abcd in π1(Γ, x0) ∼= 〈a, b, c, d | ∅〉: since either hemisphere of
the sphere is a disk, there is a continuous bijection Γ ∪abcd D2 ∪abcd D2 → X which
must be a homeomorphism since the domain is compact and the target X is Hausdorff.
Therefore

π1(X,x0) ∼= 〈a, b, c, d | abcd〉 ∼= 〈a, b, c | ∅〉

where the second isomorphism is given by mapping d 7→ (abc)−1 (and a, b, c by “iden-
tity”). In words, the required fundamental group (observe that X is path connnected)
is a free group on three generators.
(b) Similar to above, Z is obtained by attaching eight disks (one for each orthant)
to the union of the coordinate planes, which we will denote by Z ′. To see this, note
that Z ∩B(0, 2) (here B denotes the closed ball) is obtained by gluing eight disks to
Z ′ ∩B(0, 2) by the same argument as part (a): there is a continuous bijection from
Z ′ ∩B(0, 2) ∪

⋃
8 D

2, which is compact, to Z ∩B(0, 2), which is Hausdorff. Further,
this homeomorphism can be chosen to be identity on Z ′∩B(0, 2) and therefore extends
by identity to all of Z. But Z ′ is contractible by the map (x, t) 7→ tx. Therefore π1(Z),
being a quotient of π1(Z ′), is a trivial group.

(4) Say that f : X → Y is a proper local homeomorphism, with X and Y locally
compact and connected, Hausdorff spaces. Say also that X is non-empty and
locally path connected.
(a) [2 pts] Show that f is an open and closed map, and therefore surjective.
(b) [1 pt] For each point y ∈ Y , show that f−1(y) consists of a finite set of

points.
(c) [2 pts] For each point y ∈ Y , show that there are disjoint open neighbor-

hoods Ux of each point of f−1(y) mapping homeomorphically onto their
image.

(d) [1 pt] Show that V =
⋂
x∈f−1(y) f(Ux) \ f(X \

⋃
x∈f−1(y) Ux) is evenly

covered, and use this to conclude that f is a covering map.
Solution:
(a) Since f is a local homeomorphism it is an open map: any open set U of X can be
written as

⋃
Uα such that f : Uα → Vα = f(Uα) is a homoemorphism with open sets

Vα ⊂ Y , so f(U) =
⋃
Vα is open. On the other hand it is also a closed map: suppose

C ⊂ X is closed and y ∈ Y \ f(C). Since Y is locally compact, there is a neighborhood
V of y contained in a compact subset K of Y . Then f−1(K) ∩ C is a closed subset of
the compact set f−1(K) and therefore it is compact. It follows that f(f−1(K) ∩ C)
is also compact, hence closed (since Y is Hausdorff). Therefore V \ f(f−1(K) ∩ C)
is an open neighborhood of y. It suffices to check that V \ f(f−1(K) ∩ C) is disjoint
from f(C). Pick an arbitrary y′ ∈ V ∩ f(C), so y′ = f(x) for some x ∈ C. Since
f(x) = y′ ∈ V ⊂ K, in fact x ∈ f−1(K) ∩ C and therefore y′ ∈ f(f−1(K) ∩ C).
Since X is non-empty, so is f(X). Since Y is connected and f(X) is a non-empty open
and closed subset, f(X) must equal Y .
(b) Since f is a local homeomorphism, it is in particular locally injective, so every
x ∈ f−1(y) has a neighborhood U such that f−1(y) ∩ U = {x}. It follows that f−1(y)
is discrete, but it is also compact since f is proper and {y} is compact. But a compact
discrete space must be finite, by considering the open cover by singletons.
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(c) Let f−1(y) = {x1, . . . , xn}, as per part (a). Since f is a local homeomorphism,
there are neighborhoods U ′i of xi such that f |U ′

i
: U ′i → f(U ′i) are homeomorphisms and

f(U ′i) are open in Y . Since X is Hausdorff, we can also find disjoint neighborhoods Uij
and Uji of xi and xj respectively, for each j 6= i. Let Uxi

= Ui := U ′i ∩
⋂
j 6=i Uij , which

is a finite intersection of neighborhoods of xi and therefore is itself a neighborhood
of xi. Since Ui ⊂ U ′i , the restriction f |Ui is also a homeomorphism onto its image.
Further, since Ui ⊂ Uij and Uj ⊂ Uji, it follows that Ui ∩ Uj = ∅ for i 6= j.
(d) By the above construction, Vi = f(Ui) are open neighborhoods of y and f |Ui

:
Ui → Vi are homeomorphisms. Let V = (

⋂
Vi) \ f(X \

⋃
Ui). From part (a), f is a

closed map, so f(X \
⋃
Ui) is closed. Since f is also an open map (also from part

(a)),
⋂
Vi is open and therefore so is V . Since xi ∈ Ui, we get y ∈

⋂
Vi and since

f−1(y) ⊂
⋃
Ui we get y ∈ V . In general, if x /∈

⋃
Ui then f(x) /∈ V so, by taking the

contrapositive, f−1(V ) ⊂
⋃
Ui and therefore f−1(V ) =

⋃
(f−1(V ) ∩ Ui). Since we’ve

constructed Ui to be pairwise disjoint, so are f−1(V ) ∩ Ui. Finally, since V ⊂ Vi and
f |Ui

: Ui → Vi is a homeomorphism, so is its restriction f |f−1(V )∩Ui
: f−1(V )∩Ui → V .

This is precisely what it means for V to be evenly covered.

(5) Prove the theorem of Existence of the Universal Covering Space. More precisely,
fix a point x0 in a locally simply connected topological space X, let X̃ be the
set of path classes starting at x0 and define a map q : X̃ → X by q([f ]) = f(1).
Then:
(a) [2 pts] Define a topology on X̃.

Assume it now to be known that X̃ is path connected.
(b) [2 pts] Show that q is a covering map.
(c) [2 pts] Show that X̃ is simply connected.

Solution: This is part of Theorem 11.43 from the book, and its proof can be found
there.
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