Tentamensskrivning i Topologi MM7052 7,5 hp 2025-02-05

(1) Let $\mathbb{Z}^+ = \{k \in \mathbb{Z} : k > 0\}$. An arithmetic progression is a set of integers of the form

$$a + b\mathbb{Z} = \{a + bk : k \in \mathbb{Z}\},\$$

where $a, b \in \mathbb{Z}^+$. Put $V_{a,b} = (a + b\mathbb{Z}) \cap \mathbb{Z}^+$.

- (a) [1 pt] Show that $V_{a,b} \cap V_{c,d} \neq \emptyset$ if and only if $a \equiv_{\gcd(b,d)} c$.
- (b) [2 pts] Show that the sets $V_{a,b}$ for all $a, b \in \mathbb{Z}^+$ with gcd(a, b) = 1 form a basis for a topology T on \mathbb{Z}^+ .
- (c) [1 pt] Show that kb is contained in the closure of $V_{a,b}$ for any $k \in \mathbb{Z}^+$.
- (d) [1 pt] Show that (\mathbb{Z}^+, T) is connected.
- (e) [1 pt] Show that (\mathbb{Z}^+, T) is not compact. Hint: Consider sets $V_{p-1,p}$ for p prime.
- (2) Let $X = \mathbb{R}^{\mathbb{N}}$ be the set of infinite sequences of real numbers. Consider the box topology T on X generated by $U_1 \times U_2 \times \ldots$ such that each U_i is open in \mathbb{R} . Recall that the product topology T' on X is generated by $U_1 \times U_2 \times \ldots$ such that each U_i is open and all but finitely many U_i are equal to \mathbb{R} .
 - (a) [1 pt] Show that $T' \subset T$ but $T \not\subset T'$.
 - (b) [1 pt] Show that the map $f : \mathbb{R} \to X$ defined by $x \mapsto (x_n)$, with $x_n = x$ for all n, is not continuous in the topology T.
 - (c) [2 pts] Show that (X, T') is path connected.
 - (d) [2 pts] Show that the set of bounded sequences is both open and closed and hence that (X, T) is not connected. *Hint: For any* (a_n) ∈ X, (a₁ − 1, a₁ + 1) × (a₂ − 1, a₂ + 1) × ... consists of either only bounded sequences or only unbounded sequences.
- (3) Consider $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$. For $m \ge 1$, let $f_m : \mathbb{S}^1 \to \mathbb{S}^1$ be defined by $z \mapsto z^m$. Let D be a closed 2-cell and consider f_m as a map from the boundary of D to \mathbb{S}^1 . Let X be the wedge sum $(\mathbb{S}^1 \cup_{f_2} D) \lor (\mathbb{S}^1 \cup_{f_2} D)$. (You can assume all base points appearing in this exercise to be nondegenerate.)
 - (a) [2 pts] Compute the fundamental group $G = \pi_1(X)$.
 - (b) [1 pt] Prove or disprove that G contains elements of infinite order.
 - (c) [2 pts] Compute the abelianization of the group G.
 - (d) [1 pt] Compute the fundamental group of $(\mathbb{S}^1 \cup_{f_2} D) \cup_{\tilde{f}_3} D$, where \tilde{f}_3 denotes the composition of $f_3 : \partial D \to \mathbb{S}^1$ with the natural map $\mathbb{S}^1 \to \mathbb{S}^1 \cup_{f_2} D$.
- (4) Consider $\mathbb{S}^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1\}.$
 - (a) [2 pts] For a positive integer $n \in \mathbb{Z}$, verify that the action of \mathbb{Z}/n on \mathbb{S}^3 by $[k] \cdot (z, w) = (e^{2\pi i k/n} z, e^{2\pi i k/n} w)$ is a covering space action.
 - (b) [1 pt] Let L_n be the quotient $\mathbb{S}^3/(\mathbb{Z}/n)$. Compute $\pi_1(L_n)$.
 - (c) [1 pt] If m divides n, find a covering map $\psi_{m,n}: L_m \to L_n$.
 - (d) [2 pts] Show that every continuous map $f: L_n \to \mathbb{T}^2$ (where \mathbb{T}^2 is the torus), is homotopic to a constant map.

Hint: Use a lifting to the universal cover \mathbb{R}^2 *of* \mathbb{T}^2 *.*

Please turn the page...

 $(5)\ \ [6\ {\rm pts}]$ Prove the following theorems:

Theorem 1. Every closed subset of a compact space is compact.

Theorem 2. Every compact subset of a Hausdorff space is closed.

Theorem 3. If F is a continuous map from a compact space to a Hausdorff space then F is a closed map.