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(1) Let Z+ = {k ∈ Z : k > 0}. An arithmetic progression is a set of integers of
the form

a+ bZ = {a+ bk : k ∈ Z},
where a, b ∈ Z+. Put Va,b = (a+ bZ) ∩ Z+.
(a) [1 pt] Show that Va,b ∩ Vc,d 6= ∅ if and only if a ≡gcd(b,d) c.
(b) [2 pts] Show that the sets Va,b for all a, b ∈ Z+ with gcd(a, b) = 1 form

a basis for a topology T on Z+.
(c) [1 pt] Show that kb is contained in the closure of Va,b for any k ∈ Z+.
(d) [1 pt] Show that (Z+, T ) is connected.
(e) [1 pt] Show that (Z+, T ) is not compact.

Hint: Consider sets Vp−1,p for p prime.
Solution:
(a) For brevity of notation, let g = gcd(b, d).
Suppose n ∈ Va,b ∩ Vc,d. Then g | b | n− a, so n ≡g a. Similarly n ≡g c. Combining,
we get a ≡g c.
Conversely, let a ≡g c. Since g is the gcd of b and d, there exist x, y ∈ Z such that
bx+dy = g. Multiplying by the integer a−cg , we get ba−cg x+da−cg y = a−c. Rearranging,
a− ba−cg x = c+ da−cg y. Call this integer n′ ∈ (a+ bZ)∩ (c+ dZ). A priori n′ may not
be > 0, but for any k ∈ Z, the translate n = n′ + kbd is in the same intersection, and
for k large enough n > 0, so n ∈ Va,b ∩ Vc,d.
(b) First, for any n ∈ Z+, we have n + 1 > 1, so there is some prime p|n + 1, and
therefore p|n− (p− 1). In other words, every n ∈ Vp−1,p for some prime p (note that
gcd(p− 1, p) = 1). Therefore the collection of all Va,b (with gcd(a, b) = 1) all covers
Z+.
Now, by part (a), Va,b ∩ Vc,d is either empty or a ≡gcd(b,d) c. In the latter case, let
n ∈ Va,b ∩ Vc,d. Note that Va,b = Vn,b and Vc,d = Vn,d, so assume a = c = n. We claim
that Vn,b ∩ Vn,d = Vn,lcm(b,d), which finishes the check that the collection of Va,b form
a basis for a topology. It suffices to verify that (n+ bZ) ∩ (n+ dZ) = n+ lcm(b, d)Z.
But this is equivalent to b, d | m− n if and only if lcm(b, d) | m− n, which is a basic
property (or perhaps the definition) of the lcm.
(c) We want to show that any neighborhood of kb intersects Va,b. It suffices to check
this for basic neighborhoods, so consider c, d with gcd(c, d) = 1 such that kb ∈ Vc,d.
Since kb ≡d c, it follows that gcd(kb, d) = gcd(c, d) = 1 and therefore gcd(b, d) = 1.
Now a ≡1 c is automatic so, by part (a), Vc,d indeed intersects Va,b.
(d) Consider any two non-empty sets A,B ⊂ Z+ which are both open and closed.
Therefore there is some Vm,a ⊂ A and some Vn,b ⊂ B with gcd(m, a) = gcd(n, b) = 1.
By part (c), ab is in the closure of both of these and therefore in A ∩B. In particular
A ∩B 6= ∅, so they cannot form a disconnection.
(e) As in the hint, consider the collection of basic open sets Vp−1,p for p prime. We
already showed in part (b) that these cover Z+ so it suffices to show that no finite
subcollection covers. Note that a positive integer n belongs to Vp−1,p iff p | n+ 1. So
for any finite set of primes S, if we take n = q − 1 for some prime q /∈ S, then n is not
in any Vp−1,p for p ∈ S.

(2) Let X = RN be the set of infinite sequences of real numbers. Consider the box
topology T on X generated by U1 × U2 × . . . such that each Ui is open in R.



Recall that the product topology T ′ on X is generated by U1 × U2 × . . . such
that each Ui is open and all but finitely many Ui are equal to R.
(a) [1 pt] Show that T ′ ⊂ T but T 6⊂ T ′.
(b) [1 pt] Show that the map f : R→ X defined by x 7→ (xn), with xn = x

for all n, is not continuous in the topology T .
(c) [2 pts] Show that (X,T ′) is path connected.
(d) [2 pts] Show that the set of bounded sequences is both open and closed

and hence that (X,T ) is not connected.
Hint: For any (an) ∈ X, (a1 − 1, a1 + 1)× (a2 − 1, a2 + 1)× ... consists
of either only bounded sequences or only unbounded sequences.

Solution:
(a) Since the given basis of T ′ is contained in that of T , it follows that T ′ ⊂ T .
Any ∅ 6= V ∈ T ′ contains some non-empty basic open set U = U1 × U2 × · · · with
Ui = R for all but finitely many i. Denoting by πi the ith projection X → R, we get
πi(V ) ⊃ πi(U) = Ui = R for all but finitely many i. Therefore W = (0, 1)× (0, 1)×· · ·
cannot be in T ′ since πi(W ) = (0, 1) for each i. This is a basic open set of T , so
W ∈ T \ T ′.
(b) Let Un = (−1/n, 1/n) and consider the open neighborhood U = U1 × U2 × · · · of
0 ∈ X. Then f−1(U) =

⋂
n≥1 Un = {0} is not open in R, so f is not continuous.

(c) Let (an), (bn) be any two points of X. Let f(t) = (tan + (1 − t)bn)n≥1 define a
function f : [0, 1]→ X. Evidently f(0) = b, f(1) = a and each fi := πi ◦ f : [0, 1]→ R
is continuous. Therefore by the characteristic property of the product topology, f is a
path from (bn) to (an) in the topology T ′. Since these points were arbitrary, (X,T ′)
is path connected.
(d) Following the hint, note that Ua = (a1 − 1, a1 + 1) × (a2 − 1, a2 + 1) × · · · is a
neighborhood of the sequence a = (an)n≥1 ∈ X. Further, if a is bounded, ie there is
some C > 0 such that each |an| < C, then for any b = (bn) ∈ Ua, each |bn| < C + 1,
so b is bounded as well. Conversely if a is unbounded, then for any b ∈ Ua and C > 0
there is some n such that |an| > C + 1 and hence |bn| > C, so b is unbounded as
well. In other words, writing B ⊂ X for the set of bounded sequences, if a ∈ B then
Ua ⊂ B and if a /∈ B then Ua ⊂ X \ B. It follows that both B and X \ B are open,
thereby providing a disconnection.

(3) Consider S1 = {z ∈ C : |z| = 1}. For m ≥ 1, let fm : S1 → S1 be defined by
z 7→ zm. Let D be a closed 2-cell and consider fm as a map from the boundary
of D to S1. Let X be the wedge sum (S1 ∪f2 D)∨ (S1 ∪f2 D). (You can assume
all base points appearing in this exercise to be nondegenerate.)
(a) [2 pts] Compute the fundamental group G = π1(X).
(b) [1 pt] Prove or disprove that G contains elements of infinite order.
(c) [2 pts] Compute the abelianization of the group G.
(d) [1 pt] Compute the fundamental group of (S1 ∪f2 D) ∪f̃3

D, where f̃3
denotes the composition of f3 : ∂D → S1 with the natural map S1 →
S1 ∪f2 D.

Solution:
(a) Since S1 is path connected, so is S1 ∪f2 D and hence X. Now, if a is the the
generator of π1(S1) ∼= Z then π1(S1 ∪f2 D) ∼=

〈
a
∣∣ a2〉 ∼= Z/2. In anticipation of part

(d), let us also note that the map π1(S1)→ π1(S1 ∪f2 D) induced by the natural map
S1 → S1 ∪f2 D can be taken to be the quotient 〈a〉 → 〈a | a2〉 = 〈a〉/〈a2〉.
Now since any basepoint in (S1 ∪f2 D) is nondegenerate, it follows that π1(X) ∼=
Z/2 ∗ Z/2.
(b) By above, write π1(X) = 〈a〉/〈a2〉 ∗ 〈b〉/〈b2〉. Then for each n ≥ 1, the word
(ab)n = abab · · · ab is reduced in the free product, and therefore non-trivial. In other
words, the element ab has infinite order.
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(c) By part (a), we have G = π1(X) =
〈
a, b

∣∣ a2, b2〉. Consider the homomorphism
φ̃ : G → Z/2 × Z/2 =: H defined by φ̃(a) = (1, 0) and φ̃(b) = (0, 1). Then φ̃ is
well-defined since 2 · (1, 0) = (0, 0) and 2 · (0, 1) = (0, 0) in H and also surjective since
{φ(a), φ(b)} generates H. Since H is abelian, φ̃ descends to a surjective homomorphism
φ : Gab → H.
By slight abuse of notation use a and b to also denote their respective images in Gab. It
suffices to show that there is a homomorphism ψ : H → Gab such that ψ(1, 0) = a and
ψ(0, 1) = b, which will then be the inverse of φ. In Gab, we have a2 = b2 = (ab)2 = 1,
a(ab) = a2b = b and b(ab) = ab2 = a. Then defining ψ(0, 0) = 1 and ψ(1, 1) = ab, and
using the commutativity in Gab, this verifies directly from the definition that ψ is a
homomorphism (note that there are only six products of non-trivial elements of H up
to commutativity).
(d) If ω is the generator of π1(∂D) ∼= Z and a is the generator of π1(S1) then (up to
a choice of signs) we have (f3)∗(ω) = a3. Therefore, by what we explained in part (a),
we have that (f̃3)∗(ω) = a3 = a ∈ 〈a〉/〈a2〉. Therefore

π1((S1 ∪f2 D) ∪f̃3
D) ∼=

〈
a
∣∣ a2, a

〉
= 〈a | a〉 ∼= {1},

the trivial group.

(4) Consider S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}.
(a) [2 pts] For a positive integer n ∈ Z, verify that the action of Z/n on S3

by [k] · (z, w) = (e2πik/nz, e2πik/nw) is a covering space action.
(b) [1 pt] Let Ln be the quotient S3/(Z/n). Compute π1(Ln).
(c) [1 pt] If m divides n, find a covering map ψm,n : Lm → Ln.
(d) [2 pts] Show that every continuous map f : Ln → T2 (where T2 is the

torus), is homotopic to a constant map.
Hint: Use a lifting to the universal cover R2 of T2.

Solution: We use the notation ζn = e2π/n for positive integers n. Note that ζn has
(multiplicative) order n.
(a) For each (z, w) ∈ S3, at least one of z and w is non-zero, so [k] · (z, w) determines
ζkn = e2πk/n and therefore [k] ∈ Z/n. In other words the action is free.
For each [k] ∈ Z/n, the map (z, w) 7→ ζkn · (z, w) is a linear map C2 → C2, in
particular continuous. Therefore its restriction to S3 is continuous as well. Note that
|ζknz|2 + |ζknw|2 = |z|2 + |w|2, so this map indeed takes S3 to itself.
It remains to note that any continuous free action of a finite group G on a Hausdorff
space X is a covering space action: for any x ∈ X, and g 6= 1, if Ug 3 x and Vg 3 g · x
are disjoint open sets then U =

⋂
g 6=1 Ug ∩ g−1Vg has the property that gU ∩ U = ∅

for g 6= 1. Explicitly, f y, z ∈ U and g 6= 1 then y ∈ g−1Vg so g · y ∈ Vg cannot equal
z ∈ Ug.
(b) Since S3 is simply-connected and the action of Z/n is a covering space action,
π1(Ln) = π1(S3/Z/n) ∼= Z/n.
(c) Since S3 → Ln is a universal covering map of the connected space Ln, other
connected covers of Ln correspond (up to isomorphism) to normal subgroups of
π1(Ln) = Z/n (ie to subgroups, since this group is abelian). Now, under the assumption
that m divides n, the subgroup (n/m)(Z/n) is isomorphic to Z/m and the action
of [k] ∈ Z/m on S3 is by that of [kn/m] ∈ Z/n, ie [k] · (z, w) = ζ

kn/m
n · (z, w) =

ζkm(z, w). Therefore by the classification of covering spaces, we get a covering map
Lm := S3/(Z/m)→ Ln.
(d) Let f : Ln → T2 be continuous and choose p ∈ Ln. Then the induced map
f∗ : π1(Ln, p)→ π1(T2, f(p)) is a group homomorphism Z/n→ Z and therefore must
be trivial (the only element of finite order in Z is the identity). It follows that f has a
lift f̃ : Ln → R2 along the universal cover π : R2 → T2.
But R2 is contractible, so f̃ must be nullhomotopic, ie f̃ ' c for some constant map c.
Therefore f = π ◦ f̃ ' π ◦ c, which is also a constant map.
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(5) [6 pts] Prove the following theorems:

Theorem 1. Every closed subset of a compact space is compact.

Theorem 2. Every compact subset of a Hausdorff space is closed.

Theorem 3. If F is a continuous map from a compact space to a Hausdorff
space then F is a closed map.

Solution: These theorems are Propositions 4.36(a), 4.36(b) and Lemma 4.50, respecti-
vely, from the book, and their proofs can be found there.
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