- No use of textbook, notes, or calculators is allowed.
- Unless told otherwise, you may quote results that were proved in class. When you do, state precisely the result that you are using.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts
- 1. Let \mathbb{R} be the field of real numbers and consider the affine line \mathbb{A}^1 over \mathbb{R} .
 - (a) (3 points) Let $f(x) = x^4 1 \in \mathbb{R}[x]$. Find $\mathcal{Z}(f)$ and $\mathcal{I}(\mathcal{Z}(f))$.
 - (b) (2 points) Let $\mathbb{N} \subset \mathbb{A}^1$ be the set of non-negative integers. Find $\mathcal{I}(\mathbb{N})$ and $\mathcal{Z}(\mathcal{I}(\mathbb{N}))$.
- 2. A field extension E/F is called normal if it is algebraic, and for every $\alpha \in E$ the minimal polynomial of α in F[x] splits completely over E.
 - (a) (2 points) Prove that every extension of degree 2 is normal.
 - (b) (1 point) Give an example of a degree 3 extension of \mathbb{Q} that is not normal.
 - (c) (2 points) Prove that every algebraic extension of a finite field is normal.
- 3. (5 points) Let B be an abelian group and $A \subset B$ a subgroup. We say that A is a *pure* subgroup if the following holds:

For all $a \in A$ and all integers n > 1, if there exists an element $b \in B$ satisfying nb = athen there exists an element $a_0 \in A$ satisfying $na_0 = a$.

Prove that A is a pure subgroup of B if and only if for every finitely generated abelian group M, the induced homomorphism $A \otimes M \to B \otimes M$ is injective.

- 4. Let R be a commutative ring with identity such that $x^2 = x$ for all $x \in R$.
 - (a) (2 points) Show that every prime ideal is maximal.
 - (b) (3 points) Show that the local ring R_P is a field for every prime ideal P.
- 5. (5 points) Let $R = \mathbb{F}_2[x]$ and let M be an R-module that satisfies
 - (a) $M \simeq (\mathbb{F}_2)^9$ as \mathbb{F}_2 -modules.
 - (b) $M_{x^2+x+1} = R/(x^2) \oplus R/((x-1)^3)$ as *R*-modules.

Describe all such *R*-modules *M* up to isomorphism. As usual, $M_f := S^{-1}M$ denotes the localization in $S = \{1, f, f^2, ...\}$.

- 6. Let R be the ring $\mathbb{Q}[x]/(x^3-1)$.
 - (a) (3 points) Show that every ideal of R is projective as an R-module.
 - (b) (2 points) Show that every *R*-module is injective. Hint: By Baer's criterion, to show that an *R*-module *M* is injective, it is enough to verify that for every ideal *J*, the induced homomorphism $\operatorname{Hom}_R(R, M) \to \operatorname{Hom}_R(J, M)$ is surjective.