Solutions to Re-exam in MM7033, 2024-01-30, 8:00-13:00
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(a) The polynomial f(z) = z* —1 = (22 + 1)(z + 1)(z — 1) has two roots in R, z = 1 and
x = —1. Thus Z(f) = {1,—1}. The polynomials vanishing at both x = 1 and =z = —1
are those divisible by 2% — 1 so Z(Z(f)) = (2* — 1). Note that Z(Z(f)) is not the radical
of (f), which equals (f) — the Nullstellensatz does not apply since R is not algebraically
closed.

(b) The subset N is infinite. A non-zero polynomial p(x) has at most as many roots as its
degree. We thus conclude that Z(N) = (0). It follows that Z(Z(N)) = A'.

(a) Suppose [E : F| = 2. Then for every a € E, the elements 1, a, a? are linearly dependent
over F. It follows that the minimal polynomial of « in F[x] has degree at most 2, and
since it has a root in E it splits completely over E.

(b) The extension Q(¥/2) of Q. The polynomial p(z) = 2 — 2 is irreducible over Q and /2 is
a root of p(x) in Q(+/2). It follows that p(z) is the minimal polynomial of v/2. But it does
not split completely over Q(/2) since the other roots of this polynomial are complex.

(c) Let F be a finite field and L/F an algebraic extension. Let o € L, and p(x) € F[z] the
minimal polynomial of a. Let F(«) C L be the subfield generated by F' and «. Then
F(a) is a finite extension of F', and therefore is itself a finite field. It is enough to prove
that p(x) splits completely in F'(«). This means that we may assume that L itself is a
finite field.

Let p be the characteristic of F. We may assume that F' has p* elements and L has p”
elements, for some k < n. The elements of L are all roots of the polynomial 2P" — 2, which
splits completely in L. It follows that the minimal polynomial of « over F' is a factor of
xP" — z, and therefore it splits completely in L.

Suppose first that for every finitely generated M, the homomorphism A @ M — B ® M is
injective. Taking M = Z/n, we obtain that the homomorphism ¢: A ® Z/n — B ® Z/n is
injective. We saw in class that B®Z/n = B/nB, where nB is the image of the homomorphism
B % B, i.e., the group of all elements of B that are divisible by n. We can thus identify the
homomorphism ¢ with the homomorphism A/nA — B/nB, taking a + nA to a + nB. That
this homomorphism is injective means that an element of A is divisible by n if and only if its
image in B is divisible by n. This is equivalent to saying that A is a pure subgroup of B.

Now suppose that A is a pure subgroup of B. By classification of finitely generated abelian
groups and the fact that A@ (M & M') = (A M)& (A® M’), it is enough to prove that the
homomorphism A ® M — B ® M is injective when M = Z or M = Z/n. The case M =7 is
obvious, and the case M = Z/n is proved by reversing the logic of the first part. Indeed, since
A C B is pure, an element a € A is divisible by n if and only if its image in B is divisible by
n. Thus A/nA — B/nB is injective.

(a) R/P is an integral domain such that 22 = z for every x € R/P. Indeed, this follows from
2? = x for every € R since R — R/P is surjective. Since R/P is a domain, 22 = z
implies that either z = 0 or x = 1. Thus, R/P has exactly two elements and is thus

isomorphic to the finite field with two elements Fy. Since R/P is a field, P is maximal.

(b) Rp is a local ring such that 22 = x since (r/f)? =r%/f?> =r/f forallr € R and f ¢ P.
Since (z,z — 1) = (1), the elements x and 2 — 1 cannot both be in the unique maximal
ideal PRp. Since Rp ~ PRp = (Rp)*, it follows that either x or z — 1 is a unit. From
x(x — 1) = 0 it follows that either z = 0 or x = 1 and again that Rp = Fs.
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5. Since M is finite, it is necessarily a finitely generated torsion module. Thus, since R is a PID,
by the structure theorem of finitely generated modules over PIDs, we have that

M = R/(p{") & R/(p5?) ® --- & R/ (p§")

for some positive integer n, some irreducible polynomials p; € R = Fs[z] and some positive
integers e;. The factors are unique up to permutation. The irreducible polynomials p; are
unique up to units, hence unique: the units in Fo[z] are F = {1}.

Note that 22 4+ 2 +1 is irreducible. If p # 22 +x + 1, then (p®, 22+ 2+1) = (1) so 2% +x + 1 is
invertible in R/(p®) and so R/(p°) = (R/(9°))s21as1- Hp = 2?+2+1, then (R/(9%))z24041 = 0
since (22 +x +1)¢-1=01in (R/(p°))s24041- We thus have that

M=R/(z*+z+ 1)) & - & R/((z> +z+ 1)) & R/(z°) & R/((x — 1)%).

Since the dimension of M as a vector space is 9, it follows that e; + --- + e, = 2 which gives
exactly two possible modules up to isomorphism:

M=R/((z* +z+1)*) @ R/(2*) ® R/((z — 1)*)
M=R/@*+z+1)®R/(x* +z+ 1)@ R/(2*) ® R/((x — 1)%).

6. (a) The ideals of R = Q[z]/(23 — 1) are in bijection with ideals of Q[x] that contains (z® —1).
This gives the trivial ideal (0), which is free of rank 0 hence projective, the improper ideal
(1) = R, which is free of rank 1 hence projective, and the two ideals (x—1) and (z?+x+1).
To see that the latter two ideals are projective, consider the sequence

0— (-1 —R-—R/(x—1) —0. (1)

The surjection 7: R — R/(x — 1) has a splitting s: R/(z — 1) — R given by sending 1 to
ri=21(z*+2+1). Indeed (z —1)r =0 so s is well-defined and 7(r) = 1 so s is a section.
Thus, R = (z — 1)@ R/(z — 1). Since (2? +z + 1) is principal and annihilated by (z — 1),
we also see that R/(z — 1) = (22 + z + 1). Thus both (z — 1) and (2% + x + 1) are direct
summands of R, hence projective.

(b) We saw in (a) that the sequence (1) was split. It follows that the inclusion (x —1) — R has
a retraction. If we choose the isomorphism (2% +z +1) — R/(z — 1) which takes 22 +z 41
to 3 then the section s that we constructed in (a) becomes the inclusion (22 42+ 1) — R
which thus also has a retraction. This means that for every ideal J (there are four of these),
the inclusion J C R has a retraction r: R — J (or equivalently the quotient R — R/J
has a section R/J — R) so that

0—J—R-—R/J—0
is split exact. It follows that the sequence
0 — Hompg(R/J, M) — Hompg(R, M) — Hompg(J, M) — 0

is split exact for all R-modules M. In particular Hompg(R, M) — Hompg(J, M) is surjective
so M is injective by Baer’s criterion.



