
Solutions to Re-exam in MM7033, 2024-01-30, 8:00–13:00

1. (a) The polynomial f(x) = x4 − 1 = (x2 + 1)(x + 1)(x − 1) has two roots in R, x = 1 and
x = −1. Thus Z(f) = {1,−1}. The polynomials vanishing at both x = 1 and x = −1
are those divisible by x2 − 1 so I

(
Z(f)

)
= (x2 − 1). Note that I

(
Z(f)

)
is not the radical

of (f), which equals (f) — the Nullstellensatz does not apply since R is not algebraically
closed.

(b) The subset N is infinite. A non-zero polynomial p(x) has at most as many roots as its
degree. We thus conclude that I(N) = (0). It follows that Z

(
I(N)

)
= A1.

2. (a) Suppose [E : F ] = 2. Then for every α ∈ E, the elements 1, α, α2 are linearly dependent
over F . It follows that the minimal polynomial of α in F [x] has degree at most 2, and
since it has a root in E it splits completely over E.

(b) The extension Q( 3
√

2) of Q. The polynomial p(x) = x3− 2 is irreducible over Q and 3
√

2 is
a root of p(x) in Q( 3

√
2). It follows that p(x) is the minimal polynomial of 3

√
2. But it does

not split completely over Q( 3
√

2) since the other roots of this polynomial are complex.

(c) Let F be a finite field and L/F an algebraic extension. Let α ∈ L, and p(x) ∈ F [x] the
minimal polynomial of α. Let F (α) ⊂ L be the subfield generated by F and α. Then
F (α) is a finite extension of F , and therefore is itself a finite field. It is enough to prove
that p(x) splits completely in F (α). This means that we may assume that L itself is a
finite field.

Let p be the characteristic of F . We may assume that F has pk elements and L has pn

elements, for some k < n. The elements of L are all roots of the polynomial xp
n−x, which

splits completely in L. It follows that the minimal polynomial of α over F is a factor of
xp

n − x, and therefore it splits completely in L.

3. Suppose first that for every finitely generated M , the homomorphism A ⊗M → B ⊗M is
injective. Taking M = Z/n, we obtain that the homomorphism ϕ : A ⊗ Z/n → B ⊗ Z/n is
injective. We saw in class that B⊗Z/n ∼= B/nB, where nB is the image of the homomorphism

B
·n−→ B, i.e., the group of all elements of B that are divisible by n. We can thus identify the

homomorphism ϕ with the homomorphism A/nA → B/nB, taking a + nA to a + nB. That
this homomorphism is injective means that an element of A is divisible by n if and only if its
image in B is divisible by n. This is equivalent to saying that A is a pure subgroup of B.

Now suppose that A is a pure subgroup of B. By classification of finitely generated abelian
groups and the fact that A⊗ (M ⊕M ′) ∼= (A⊗M)⊕ (A⊗M ′), it is enough to prove that the
homomorphism A ⊗M → B ⊗M is injective when M = Z or M = Z/n. The case M = Z is
obvious, and the case M = Z/n is proved by reversing the logic of the first part. Indeed, since
A ⊂ B is pure, an element a ∈ A is divisible by n if and only if its image in B is divisible by
n. Thus A/nA→ B/nB is injective.

4. (a) R/P is an integral domain such that x2 = x for every x ∈ R/P . Indeed, this follows from
x2 = x for every x ∈ R since R → R/P is surjective. Since R/P is a domain, x2 = x
implies that either x = 0 or x = 1. Thus, R/P has exactly two elements and is thus
isomorphic to the finite field with two elements F2. Since R/P is a field, P is maximal.

(b) RP is a local ring such that x2 = x since (r/f)2 = r2/f2 = r/f for all r ∈ R and f /∈ P .
Since (x, x − 1) = (1), the elements x and x − 1 cannot both be in the unique maximal
ideal PRP . Since RP r PRP = (RP )×, it follows that either x or x − 1 is a unit. From
x(x− 1) = 0 it follows that either x = 0 or x = 1 and again that RP = F2.
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5. Since M is finite, it is necessarily a finitely generated torsion module. Thus, since R is a PID,
by the structure theorem of finitely generated modules over PIDs, we have that

M = R/(pe11 )⊕R/(pe22 )⊕ · · · ⊕R/(penn )

for some positive integer n, some irreducible polynomials pi ∈ R = F2[x] and some positive
integers ei. The factors are unique up to permutation. The irreducible polynomials pi are
unique up to units, hence unique: the units in F2[x] are F×2 = {1}.
Note that x2 +x+ 1 is irreducible. If p 6= x2 +x+ 1, then (pe, x2 +x+ 1) = (1) so x2 +x+ 1 is
invertible in R/(pe) and so R/(pe) = (R/(pe))x2+x+1. If p = x2+x+1, then (R/(pe))x2+x+1 = 0
since (x2 + x+ 1)e · 1 = 0 in (R/(pe))x2+x+1. We thus have that

M = R/((x2 + x+ 1)e1)⊕ · · · ⊕R/((x2 + x+ 1)er)⊕R/(x2)⊕R/((x− 1)3).

Since the dimension of M as a vector space is 9, it follows that e1 + · · · + er = 2 which gives
exactly two possible modules up to isomorphism:

M = R/((x2 + x+ 1)2)⊕R/(x2)⊕R/((x− 1)3)

M = R/(x2 + x+ 1)⊕R/(x2 + x+ 1)⊕R/(x2)⊕R/((x− 1)3).

6. (a) The ideals of R = Q[x]/(x3− 1) are in bijection with ideals of Q[x] that contains (x3− 1).
This gives the trivial ideal (0), which is free of rank 0 hence projective, the improper ideal
(1) = R, which is free of rank 1 hence projective, and the two ideals (x−1) and (x2+x+1).
To see that the latter two ideals are projective, consider the sequence

0 −→ (x− 1) −→ R −→ R/(x− 1) −→ 0. (1)

The surjection π : R→ R/(x− 1) has a splitting s : R/(x− 1)→ R given by sending 1 to
r := 1

3(x2 + x+ 1). Indeed (x− 1)r = 0 so s is well-defined and π(r) = 1 so s is a section.
Thus, R = (x− 1)⊕R/(x− 1). Since (x2 + x+ 1) is principal and annihilated by (x− 1),
we also see that R/(x− 1) ∼= (x2 + x+ 1). Thus both (x− 1) and (x2 + x+ 1) are direct
summands of R, hence projective.

(b) We saw in (a) that the sequence (1) was split. It follows that the inclusion (x−1)→ R has
a retraction. If we choose the isomorphism (x2 +x+1)→ R/(x−1) which takes x2 +x+1
to 3 then the section s that we constructed in (a) becomes the inclusion (x2 + x+ 1)→ R
which thus also has a retraction. This means that for every ideal J (there are four of these),
the inclusion J ⊆ R has a retraction r : R → J (or equivalently the quotient R → R/J
has a section R/J → R) so that

0 −→ J −→ R −→ R/J −→ 0

is split exact. It follows that the sequence

0 −→ HomR(R/J,M) −→ HomR(R,M) −→ HomR(J,M) −→ 0

is split exact for all R-modules M . In particular HomR(R,M)→ HomR(J,M) is surjective
so M is injective by Baer’s criterion.


