
Solutions to Final exam in MM7033, 2025-01-14, 14:00–19:00

1. (a) Let P be projective and let q : F � P be a surjection from a free R-module. Then since
P is projective, the identity map idP : P −→ P lifts to a map s : P −→ F such that
q ◦ s = idP . That is, s is a section of q. It follows that F is the internal direct sum of
P ∼= im s and K = ker q.

(b) Let F = P ⊕K as in (a) and let M −→ N be injective. Since F =
⊕

I R and direct sums
commute with tensor products and M ⊗R R = M , we have that M ⊗R F −→ N ⊗R F is
the direct sum of the maps M −→ N

M ⊗R F =
⊕
I

M −→
⊕
I

N = N ⊗R F

which is injective. Using once more that tensor products commutes with direct sums, we
have that M ⊗R F = (M ⊗R P ) ⊕ (M ⊗R K) and similarly for N and the injective map
M ⊗R F −→ N ⊗R F becomes the direct sum of the maps

M ⊗R P −→ N ⊗R P

M ⊗R K −→ N ⊗R K.

In particular, the first map is injective so P is flat.

2. Recall that F is perfect if and only if F p = F . If α1, α2, . . . , αn is a basis for E as an F -vector
space, then αp

1, α
p
2, . . . , α

p
n is a basis for Ep as an F p-vector space. Indeed, every element in Ep

is of the form xp for x ∈ E. If x =
∑

i λiαi with λi ∈ F , then xp =
∑

i λ
p
iα

p
i so αp

1, α
p
2, . . . , α

p
n

spans Ep. If
∑

i λ
p
iα

p
i = 0, then

∑
i λiαi = 0 so λi = 0. This shows that αp

1, α
p
2, . . . , α

p
n is a

basis. Thus, [E : F ] = [Ep : F p].

Now consider E/F/F p and E/Ep/F p. Since degrees are multiplicative it follows that [F :
F p] = [E : Ep]. Thus, F is perfect if and only if E is perfect.

3. (a) Let R = Z and M = Q. Then M is torsion-free. There are several ways to prove that Q
is not free. For example, Q ⊗Z Z/2Z = 0 whereas (

⊕
I Z) ⊗Z Z/2Z =

⊕
I Z/2Z 6= 0. Or

observe that Q is divisible: for every x ∈ Q and n ∈ Zr {0}, there exists y ∈ Q such that
ny = x. This is clearly not the case for a free Z-module.

(b) Let R = k[x, y] for some field k and M = (x, y) ⊂ R. Then M is a submodule of the
free module R, hence torsion-free. But M is not free. Again this has many proofs. For
example, since M is not principal, the rank would have to be at least 2 but there are no
injective maps f : R2 −→ M : if f(e1) = a and f(e2) = b then f(be1 − ae2) = 0. Or, note
that M ⊗R Frac(R) is free of rank 1 so M would have to be principal.

(c) No, if R is a principal ideal domain and M is a finitely generated torsion-free module,
then by the structure theorem M = Rn is free.

4. (a) We claim that X1 is a variety. To prove this, it is enough to show that C[x, y, z]/(xyz− 1)
is a domain. But C[x, y, z]/(xyz − 1) ∼= C[x, y]xy ⊆ Frac(C[x, y]) so is a domain.

On X2, we have that x2y = 0 so either x = 0 or y = 0. If x = 0, then xy − x2z = 0. If
y = 0, then xy − x2z = x2z = 0 so either x = 0 or z = 0. This gives

X2 = Z(x) ∪ Z(y, z) = X21 ∪X22.
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The coordinate rings are C[x, y, z]/(x) ∼= C[y, z] and C[x, y, z]/(y, z) ∼= C[x] which proves
that X21 and X22 are varieties.

On X3, we have that x2 − x = 0 so either x = 0 or x = 1. Then also y = z. This gives

X3 = Z(x, y − z) ∪ Z(x− 1, y − z) = X31 ∪X32.

The coordinate rings are C[x, y, z]/(x, y − z) ∼= C[z] and C[x, y, z]/(x − 1, y − z) ∼= C[z].
As these are integral domains, X31 and X32 are varieties.

(b) We have that X21
∼= A2 and that X22

∼= X31
∼= X32

∼= A1. Finally, X1 is not isomorphic to
the other varieties because the coordinate ring C[X1] = C[x, y, z]/(xyz − 1) is generated
by x, y, z and xyz = 1. In particular, x, y, z are all units. This cannot be a polynomial
ring since the only units in a polynomial ring is C×.

(All the calculations are valid over any field.)

5. (a) As an abelian group M`,m is Z`×m. If we write M`,m as the direct sum of its columns, it
is also a direct sum as M`,`-modules since

A
[
v1 v2 . . . vm

]
=
[
Av1 Av2 . . . Avm

]
for every A ∈M`,`.

(b) Let A ∈M`,`, let B,B′ ∈Mk,` and let C,C ′ ∈M`,m. Then

(B +B′)C = BC +B′C

B(C + C ′) = BC +BC ′

(BA)C = B(AC)

which shows that Mk,` ×M`,m −→Mk,m is M`,`-balanced.

(c) As in (a), we also have that Mk,` =
⊕k

i=1M1,` where we have taken the direct sum of the
rows. If Bi denotes the ith row of B and Cj denotes the jth column of C, then BiACj is
the (i, j)th entry of BAC. This gives

Mk,` ⊗M`,`
M`,m

∼=
⊕
i,j

(
M1,` ⊗M`,`

M`,1

)
−→

⊕
i,j

Z ∼= Mk,m.

It is thus enough to prove that

ϕ : M1,` ⊗M`,`
M`,1 −→M1,1 = Z

is an isomorphism. It is surjective because ϕ(eTi ⊗ ei) = 1.

If x, y ∈ Z`, then xT ⊗ y = xT ⊗ Ae1 = xTA ⊗ e1 = (x · y)(eT1 ⊗ e1) where A =[
y 0 0 . . . 0

]
. This shows that every element of M1,` ⊗M`,`

M`,1 is a multiple of

eT1 ⊗ e1 so ϕ is also injective.

6. (a) Let A be a ring and g1, g2 : S−1R −→ A be ring homomorphisms such that h := g1 ◦ f =
g2 ◦ f : R −→ A. Then h(s) is invertible for every s ∈ S, since h(s)g1(1/s) = 1, so by
the universal property of localization, there is a unique map g : S−1R −→ A such that
g ◦ f = h. In particular, g = g1 = g2.
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(b) Let M be an abelian group, that is, a Z-module. There is a canonical ring homomorphism
h : Z −→ EndZ(M) which takes n to multiplication by n. Giving M the structure of a
Q-module is the same as giving a ring homomorphism g : Q −→ EndZ(M) extending h.
Note that EndZ(M) is typically non-commutative but h and g must both land in the center
A of EndZ(M). We thus have Z −→ A and the question is whether there can be multiple
extensions Q −→ A. Since Z −→ Q is a localization, it is an epimorphism so there is at
most one extension Q −→ A.


