Tentamensskrivning i MM7043 2025-01-11

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- To solve a bullet point in the given exercise you can use all the preceeding points, even if you have not provided a solution for them.
- Start every problem on a new page, and write at the top of the page which problem it belongs to. (But in multiple part problems it is not necessary to start every part on a new page)
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for unclear and wrong argument, even if the final answer is correct.
- Write clearly and legibly.

Note: There are six problems, some with multiple parts. The problems are not ordered according to difficulty

- (1) Field extensions Consider the polynomial $f(x) = x^{13} 10 \in \mathbb{Z}[x]$.
 - (a) (1 pt) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) (2 pts) Give an explicit description of L, the splitting field of f(x) over \mathbb{Q} , as a subfield of \mathbb{C} .
 - (c) (1 pt) Compute $[L : \mathbb{Q}]$. Justify your answer.
 - (d) (1 pt) Show that L/\mathbb{Q} is Galois.
- (2) Generators and relations Let f(x) and L be as in the previous problem:
 - (a) (2 pts) Show that Gal(L/Q) has a unique normal subgroup N of index
 12. Describe explicitly the fixed field L^N.
 - (b) (2 pts) Give generators and relations for $\operatorname{Gal}(L/\mathbf{Q})$.
 - (c) (2 pts) Show that $\operatorname{Gal}(L/\mathbf{Q})$ is solvable.
- (3) Cyclotomic extensions Let $\Phi_{36}(x) \in \mathbb{Z}[x]$ denote cyclotomic polynomial of primitive 36 roots of unity and let ξ a root of $\Phi_{36}(x)$ in some field extension of \mathbb{Q} .
 - (a) (2 pts) Show that Q(ξ)/Q is Galois and compute Gal(Q(ξ)/Q). Is Gal(Q(ξ)/Q) isomorphic to a cyclic group?
 - (b) (2 pts) Show that $\Phi_{36}(x) \in \mathbb{F}_p[x]$ is reducible for every prime p.
 - (c) (2 pts) Determine wether the regular 36-gon is constructible with straight edge and compass.
 - (d) (3 pts) Determine how many quadratic extensions of \mathbb{Q} are contained in $\mathbb{Q}(\xi)$, and give them explicitly as $\mathbb{Q}(\sqrt{D})$ for an integer D.
- (4) Galois group of polynomials Consider the $g(x) = x^4 + 4x^3 + 4x^2 + x 2$ in $\mathbb{Z}[x]$.
 - (a) (2 pt) Let $g_2(x)$ and $g_3(x)$ denote the reductions of $g(x) \mod 2$ and mod 3, respectively. Show that they are separable.
 - (b) (2 pts) Show that $Gal(g_3)$ is cyclic of order k such that k|4.
 - (c) (3 pts) Show that $g_3(x)$ is irreducible over $\mathbb{F}_3[x]$.

(d) (2 pt) Determine the image of Gal(g) in S_4 . You can use, without proof, that the transitive subgroups of S_4 are

 $V_4, C_4, D_8, A_4, \text{ and } S_4.$

(e) (1 pt) Assume that g(x) admits a real root (in fact it admits 2 of them). Decide whether this is constructible with straight edge and compass.

GOOD LUCK!!!