MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Sofia Tirabassi

Tentamensskrivning i MM7043 2025-02-11

Instructions:

- During the exam you MAY NOT use textbooks, class notes, or any other supporting material.
- To solve a bullet point in the given exercise, you can use all the preceding points, even if you have not provided a solution for them.
- Start every problem on a new page and write at the top of the page to which problem it belongs.(But in multiple part problems it is not necessary to start every part on a new page)
- In all of your solutions, give explanations to clearly show your reasoning. Points may be deducted for an unclear or wrong argument, even if the final answer is correct.
- Write clearly and legibly.
- (1) Field extensions Consider the polynomial $f(x) = x^{11} 98 \in \mathbb{Z}[x]$.
 - (a) (1 pt) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) (2 pts) Give an explicit description of L, the splitting field of f(x) over \mathbb{Q} , as a subfield of \mathbb{C} .
 - (c) (1 pt) Compute $[L:\mathbb{Q}]$. Justify your answer.
 - (d) (1 pt) Show that L/\mathbb{Q} is Galois.

V

- (2) Generators and relations Let f(x) and L be as in the previous problem:
 (a) (2 pts) Show that Gal(L/Q) has a unique normal subgroup N of index 10. Describe explicitly the fixed field L^N.
 - (b) (2 pts) Give generators and relations for $\operatorname{Gal}(L/\mathbf{Q})$.
 - (c) (2 pts) Show that $\operatorname{Gal}(L/\mathbf{Q})$ is solvable.
- (3) Cyclotomic extensions $\Phi_{10}(x) \in \mathbb{Z}[x]$ denote cyclotomic polynomial of primitive 10-th roots of unity and let ξ a root of $\Phi_{10}(x)$ in some field extension of \mathbb{Q} .
 - (a) (2 pts) Show that Q(ξ)/Q is Galois and compute Gal(Q(ξ)/Q). Is Gal(Q(ξ)/Q) isomorphic to a cyclic group?
 - (b) (2 pts) Let $p \neq 2, 5$ be a prime. Show that $\Phi_{10}(x) \in \mathbb{F}_p[x]$ is irreducible in \mathbb{F}_p if and only if $p \equiv 3$ or $p \equiv 7 \mod 10$.
 - (c) (1 pts) Show that $\Phi_{10}(x)$ is reducible modulo 5 but irreducible modulo 2.
 - (d) (2 pts) Determine whether the regular 10-gon is constructible with straight edge and compass.
 - (e) (2 pts) Show that $\mathbb{Q}(\xi)$ contains a unique subextension that is quadratic over \mathbb{Q} and give it explicitly as $\mathbb{Q}(\sqrt{D})$ for an integer D.
- (4) Geometric constructions (5 pts) Let f(x) an irreducible polynomial of degree 4 with at least a real root. Then the Galois group can be isomorphic to any of the following subgroup of S_4 :

$$V_4$$
, C_4 , D_8 , A_4 , and S_4 .

Determine in each of the 5 cases above whether a real root of α can be constructed with a straight edge and a compass.

- (5) Galois group of polynomials Let p be a prime and consider the polynomial $f(x) = x^4 + px + p$ in $\mathbb{Q}[x]$
 - (a) (2 pts) Recall that the resolvent of f(x) is given by $r(x) = x^3 4px p^2$. Show that r(x) is irreducible when $p \neq 3, 5$
 - (b) (2 pts) Show that the polynomial $x^4 + x + 1$ is separable and does not divide $x^4 x$ over $\mathbb{F}_2[x]$
 - (c) (1 pt) Deduce that $Gal(f) \simeq S_4$ when p is odd and $\neq 3, 5$.

GOOD LUCK!!!

 $\mathbf{2}$