
STOCKHOLM UNIVERSITY MT 7050
DEPT. OF MATHEMATICS EXAMINATION
Div. of Mathematical statistics 20 Feb 2024

Re-Exam in Unsupervised Learning
20 Feb 2024, time 08:00-13:00

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the exam, you may use any literature. Electronic
devices are NOT allowed

NOTE: The exam consists of 4 problems with 100 points in total. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks.

NOTE: Your answers and explanations must be to the point, redundant wri-
ting irrelevant to the solution will result in point deduction.

Problem 1 (Basics of unsupervised learning, total 29p)
a) Consider the Gaussian mixture model (GMM) in the book “Pattern recog-

nition and machine leanring”, and suppose that the covariance matrices of
all mixture components are given by εI such that the probability distribu-
tion function of the k-th Gaussian component is given by Eq. 9.41 in the
book (Note: Eq. 9.41 has a small typo!). Under this setting, show that, in
the limit ε → 0, maximizing the GMM log-likelihood Eq. 9.14 equals to
minimizing the K-means objective function Eq. 9.1. (18p)

b) Show that the principal coordinates X̂MDS = Ip×NΛ1/2
MDSU

> is centered.
(5p)

c) PCA and classical metric MDS are equivalent when the Euclidean distan-
ces are used. State explicitly where in PCA (3p) and in classical metric
MDS (3p) the assumption of Euclidean distance is imposed. Note: Please
state ONLY the relevant parts in PCA and classical metric MDS.

Problem 2 (Graph based methods, total 30p)
For graphs with a single connected componet, the commute time distances
(CTD), cij , expressed in terms of the eigen-values λα and -vectors vαi of the

normalized graph Laplacian Lsym, cij = vol(G)
∑N
α=2

1
λα

(
vαi√
di
− vαj√

dj

)2
, has

the form of squared Euclidean distance, where vol(G) is volume of the graph,
di is the degree of the i-th node, with i = 1, · · · , N and α = 2, · · · , N . This
suggests that one can embed the data points in a Euclidean space with the Car-
tesian coordinates xαi = vαi

√
vol(G)
λαdi

, called the CTD embedding. Here α labels
the directions and i labels the data point.
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a) Show that E(xα) = 0 for α > 1 with the weight of each data given by
P (i) = di/vol(G). (10p)

b) With the same weights in part a, find the covariance matrix E(xαxα′) for
α, α′ > 1. (10p)

c) Since CTD depends on the volume of the graph vol(G), bigger graphs with
more nodes and connections have larger values of CTD. This may be a
problem if one wants to compare two graphs with the same statistical pro-
perties (e.g. both of them are random graphs) but with different number
of nodes and connections. Propose a way to modify the graph distance
in terms of CTD that is not sensitive to the graph and at the same time
keeping the graph distance invariant under rescaling of graph weights as
in Past c. Justify your answer. (5p).

d) Draw one example where the mutual kNN graph construction with single
connected component may end up with very large k (2p), then propose a
solution for it (3p).

Problem 3 (Local linear embedding, total 27p)
This problem follows the notation in the paper “Nonlinear dimensionality re-
duction by locally linear embedding”.

a) Show that the weights Wmin
ij that minimize the cost function ε(W ) =∑

i

∣∣∣−→X i −
∑
jWij

−→
X j

∣∣∣2 (i.e., Eq. 1 in the paper) subject to the constraints∑
jWij = 1 are invariant under orthogonal transformation (3p) and re-

scaling (3p) of the data coordinates −→X i, i = 1, · · · , N .

b) Consider the constrained least squares problem in solving the weights for
a given data point −→X , one minimizes ε(W ) =

∣∣∣−→X −∑jWj
−→η j
∣∣∣2 subject

to
∑
jWj = 1 where −→η j are neighbors of −→X . Show that the cost function

ε(W ) can be written as the quadratic form ε(W ) =
∑
j,kWjCjkWk, where

the scalar product matrix is defined by Cjk = (−→X −−→η j) · (
−→
X −−→η k). (5p)

c) Discuss in what situation that the matrix C−1 in part b does not exist
(i.e., when C is a singular matrix) and what are the implications in terms
of the intrinsic dimension of the data structure locally around −→X . (6p)

d) Consider the eigenvector problem where the N × N weight matrix W

is given, one minimizes φ(Y ) =
∑
i

∣∣∣−→Y i −
∑
jWij

−→
Y j

∣∣∣2 subject to the

constraints
∑
i
~Yi = 0 and

∑
i
~Yi ~Yi

T
= NI. Show that the cost function

φ(Y ) can be written as φ(Y ) = Tr(Y TMY ) where M = (I−W )T (I−W )
and Y is the N × d data matrix in the lower dimensional space. (10p)

Problem 4 (Validation Methods, total 14p)
This problem refers to the lecture note on validation methods

2



a) Name TWO limitations of the Silhouette plot and coefficent to validate
clustering results and propose solutions for each of them. (6p)

b) Consider the following scenario: There are N data points. One assumes
that the number of clusters equal 2 and exactly N/2 data points are ran-
domly picked and assigned to cluster 1, the rest of the N/2 data points are
then assigned to cluster 2. What is the value of the Silhouette coefficient
for this assignment? Please show your argument clearly. (5p)

c) Draw a figure to show an example when the Silhouette coefficient of a data
point s(i) can approach −1. (3p)

Good Luck!
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