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Problem 1

a. The null hypothesis H, that hands-free mobile usage and accident proneness are
independent, corresponds to m;; = ;74 ;, where w4 = mo+m;, and 7 ; = w4715

b. Fisher’s exact test uses a hypergeometric distribution
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for the number Nj; of mobile users with accidents, and ny; = 0,1,...,12. This

distribution is based on drawing n,, persons with accidents from a sample of size
nyy that consists of nyy persons who do not use the mobile while driving, and n,
who do. It is also possible to reverse the role of columns and rows, and draw nq,
mobile users from a sample that consists of n g persons without accidents and n

with accidents. This gives
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for ni1 :O,l,...,12.

c. A one sided alternative where mobile usage increases accident risk corresponds to
an alternative hypothesis H, : 0 > 1, where 6 = (m11700)/(m01710) is the odds ratio.

d. Since Hj is rejected for large values of Ni; for the one-sided alternative hypothesis
in ¢, and ny; = 9, we get

P-value = Py, (N3 >9)

0.0804 + 0.0175 + 0.0019 + 0.0001 = 0.100, (1)
0.5Py, (N11 = 9) + Py, (N1 > 10)

= 0.5-0.0804 + 0.0175 4 0.0019 4 0.0001 = 0.060.

mid P-value



e. It follows from 1d and
Py, (N7 > 10) = 0.0175 + 0.0019 + 0.0001 < 0.05

that both the P-value and the mid P-value are smaller than 0.05 when ny; > 10.
Since both the P-value and the mid P-value are larger than 0.05 when ny; = 9 (cf.
(1)) we deduce that the actual significance level of a test with nominal significance
level o = 0.05, is

Py, (P-value < 0.05) = Ppy,(N; > 10) < 0.05,
Py, (mid-P-value < 0.05) = Py, (N3 > 10) < 0.05.

This implies that both tests are conservative (that is, the actual significance levels
are smaller than the nominal significance level 0.05). On the other hand, when
ni1 = 9, it follows from (1) that the P-value is larger than 0.07, whereas the mid
P-value is smaller than 0.07. Consequently, when the nominal significance level is
a = 0.07, then the actual significance levels are

Py, (P-value < 0.07) = Py,(Ny; > 10) < 0.07,
Py (mid-P-value < 0.07) = Py, (Ny1 > 9) > 0.07.

This implies that the P-value based test is conservative when o = 0.07, whereas the
other test based on the mid P-value is anti conservative when o = 0.07.

Problem 2

a. Since 0;; is the odds ratio of a table with rows ¢ and 7 + 1, and columns j and j + 1,

it follows that il
iji+1,5+1
Hij - LT (2)

i 5+1 5415

for four different combinations of i and j (1 <i,75 < 2).

b. Estimates éij are obtained by replacing all y;; in (2) with n;;, so that

911 =

(n11na2)/(n1gnay) = (34 - 174) /(80 - 53)—1.395,
015 = (n1angs)/(noanys) = (53 -304)/(174 - 88) = 1.052,
01 = (nainss)/(ngings) = (80-175)/(29 - 174) = 1.189,
Oy = (nagnss)/(nosnss) = (174 - 172)/(75 - 304) = 1.313,

c. We have that

Var [log(f11/01a)] = Var [log { (Ru52)/(232)}
= Var [log(N11) — log(Na1) — 21log(Niz).
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where in the third step we used independence of the six terms (since NN;; are inde-
pendent), and computed the variance of a Taylor expansion for each one of them,
according to

Nij — Mij _ Var(Nij) . @ . i

i M?j a N?j Hij '

Var [log(N;;)] = Var [log(uij) +

The corresponding estimate of the variance is obtained by replacing all j;; with n;;,
i.e.

Var 0. 19 _ 1 1 4 4 1 1

Var [log(f11/012)] = R
= aTs T Tt st 0
= 0.1550.

d. We first compute a one-sided confidence interval for log(611/60:2) as

(log(%)—1.645\/0.1550,oo) = (log(12%3) — 1.645/0.1550, o0
= (—0.3654, 00).

The corresponding one-sided confidence interval for 6y, /65 is
(exp(—0.3654), 00) = (0.694, c0).

Since 1 is included in the interval, we cannot reject the null hypothesis at level 5%.

Problem 3

a. The cell probabilities 7;; are proportional to p;; with sum 1, i.e. m;; = pij/pey =
pij/m. In the last step we used that n = py; for multinomial sampling, since

Hij = N5
b. The number of concordant and discordant pairs are

C = 34(174 + 304 + 75 + 172) + 53(304 + 172) + 80(75 + 172) + 174 - 172 = 99566,
D = 53(80 4 29) + 88(80 + 174 4 29 + 75) + 174 - 29 + 304(29 + 75) = 73943

respectively. Therefore, an estimator of ~ is

~ 99566 — 73943

= = 0.148.
99566 + 73943 0.148

2>

This indicates a positive association between age and job satisfaction.

c. A pair (X,Y) = (i,7) and (X', Y’) = (h, k) of cells is concordant if i < h,j < k or
i > h,j > k. For a large population (not the sample with n individuals!), we may
regard (X,Y) and (X', Y”’) as drawn independently with replacement, so that

PIX,Y) = (i,5), (X", Y') = (b, k)] = P[X,Y) = (i,5)] P[(X",Y") = (h, k)]

= Wijﬂhk'



Therefore, the probability of a concordant pair is

He = 30 Mij Xhkehsik>j Thi T 2onk Thi i jish.j>k Tij
= 2325 Tij 2Zohksh>ik>j Thk-

Since a cell pair is discordant if i < h,j > k or¢ > h, j < k, an analogous calculation

gives
Hd =2 Z Uryi Z Thi

1,5 h,ksh>i,k<j

for the probability of such a pair.

d. Since m;; = m;my; under the null hypothesis that age and job satisfaction are
independent, it follows that

He = 235 Tt Xohksh>ik>j Tht T4k
2 (Zi Tit 2ohih>i The (Zj T4 D kik>j 7T+k> :

A similar calculation gives
g = 230 Mt Xhnsi The ) (205 Tog Dokskej Tk
= 2(X;miy Zh;h>i Tha ) ( 22k Trk Zj;j>k Tyj) -

By interchanging the role of indeces j and k in the last sum, we conclude that
[T, = II, and hence v = 0.

Problem 4

a. The expected cell counts of the My = (XY, ZY") loglinear model are
pij = pi (Mo, B) = exp (A+ XS+ XY + M+ AJ A7), 0<ij k<1 (3)

If : = 7 = k = 0 are baseline levels, then all parameters with at least one 0 index
are put to zero. This gives a parameter vector

8= (/\7 /\{(7/\%/’/\127)‘{(1}/’)‘%/12)7 (4)
with p = 6 components.

b. It follows from (3) that
tijr = Bi;Cir, (5)
where, for instance, Bj; = exp(A+AX + A} +A%Y) and Cjj, = exp(A7 +A}7). Then,
summing over one of i or k, or over both indeces simultaneously in (5), we find that

pij+ = BiiCiy,
Ptk = BiiCi,
prjr = By;Cjt.



Consequently,
. , B;;Ciy - B.;C:
Hij+ H+5k _ JY i+ +izik _ Bijojk: = Liji
Pt By;Ciy
Alternatively, we may work directly with the cell probabilities m;x = i/ fbs++.
Since X and Z are conditionally independent given Y for model (XYY 7)), it follows

that

_ _ _ Tig+  T4jk _ Tig+T4jk
Tijk = Mgt Tkl = Tj+Tit|j T4kl = Tj+ ‘ - ,

Trj+  Tj+ i+
and hence
Hij+ | Mk .
_ _ Ptt  patt _ Hig+H4gk
Mijke = M4 Tk = Hpqq Pjt+ - -
H o+ Pt

. The maximum likelihood estimates
fiijr = b
Ny jt
of the expected cell counts are obtained by replacing fu;j4, pi4j1 and p4j4 by es-
timates n;j4, n4j and nyj;. From the two partial tables we can compute row
sums 7,54, columns sums n4 i, and total number of observations n,o; = 283 and
ny14+ = 137. This gives
Noo+"T 100 (93 + 39) : (93 + 101)

Lo00 = = = 90.49.
Hooo Tiaos 533

Continuing in this way for the other cells (i, j, k), we get the following predicted
expected cell counts fi;;:

No cancer Y = 0: Cancer Y = 1:
Exposure || Smoking Z =k Exposure || Smoking Z = k
X=i ||[k=0]k=1] Sum X=i |k=0] k=1 | Sum
i=0 90.49 | 41.51 || 132 1=0 10.67 | 23.33 34
i=1 103.51 | 47.49 || 151 i=1 32.33 | 70.67 103
| Sum | 194 | 8 [ 283 | | Sum [ 43 [ 94 | 137 |

. The log likelihood ratio statistic for testing (XY,Y Z) against the saturated model
(XY Z), is
G* = 2 Zijk Nijk log ij:

= 2(93-log 5235 + ... +72-log 72 )

= 0.733

< x3(0.05) = 5.99,
where in the last step we used that df = 8 — 6 = 2, since the saturated model
has 2 x 2 x 2 = 8 parameters, and the conditional independence model (XYY Z)
has 6 parameters according to (4). We thus cannot reject conditional independence
between X and Z given Y at level 5%, indicating that smoking and exposure don’t
have a joint effect on lung cancer.



e. For any model M, the maximum likelihood is

Iunijk Ianijk
Ve P 1
(M) = max | [ e Hor—= = [ [ e Hr —=
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where fi;;, = flijr(M, B(M)) are the fitted cell counts for model M, based on plug-
ging the ML estimate 3(M) of that model into (3). This gives a log likelihood

L(M) = log(l(M)) = constant + Z [nijk log(ﬂijk) — /jngk] s (6)
ijk
with a constant (= — 3, n;%!) that is the same for any M. Since the saturated

~

model has the same fitted and observed counts, f;;,(Mi, B(M;1)) = nijk, it follows
that the deviance equals

G*(M) = 2[L(M) — L(M)]
= 23k [nz‘jk 10%(2;2) — (ngjk — ﬂz’jk)} ;

= 23k Nijk log(%;t).

In the last step we used that the baseline parameter X\ is part of M. Indeed,
differentiating (6) with respect to A we find that

AL(M)
B

= Z (niji — i) = 0,

B=B  ijk

since, by equation (3), dlog(sjr)/dX = 1 and dpjr/dN\ = pisj-

Problem 5

a. Let m;, = piju/ 44+ refer to the multinomial cell probabilities of the contingency
table. We have that
logitP(V = 1|X =i,Z =k) = log(Zmet) —Jog (Zux)

7ri0k/7ri+k

= log (uilk/u+++> = log (Nz‘lk) (7)

Wik /B4

= a+ B+ 5,

where in the last step we used (3), with a = A\ — A}, 85 = A\3Y — AXY and

BE =7 — A2, Since i = j = k = 0 are baseline levels for the loglinear model, it
follows that the three nonzero parameters of the logistic regression model are

a = A\,
X _ \XY
RN
51 = )‘11 .

b. The log conditional odds ratio between X and Y is

XYy _ P(Y=1|X=1,Z=k)/P(Y=0|X=1,Z=Fk)
IOg(e(k)) = log P(Y=1|X=0,Z=k)/P(Y =0|X=0,Z=F)

= logitP(Y =1 X =1,Z=k) —logitP(Y =1|X =0,Z = k) (8)
(gﬁﬁﬁﬁ%)—(wﬁ?wf)
= 61 )



where in the third step we used (7). Hence
0 = exp(BY).

The association between exposure and lung cancer is homogeneous, since 9(),3/ does
not depend on the level k£ of the confounding variable Z.

. The marginal odds ratio
oXY — Hoo+H11+

Ho1+H10+
between X and Y can expressed in terms of the expected cell counts p;;4 of the XY
marginal table. It follows from (3) that u;;+ = B;;C;. After some simplifications,
this gives .
0% = 55 = o) = exp(BT) = 6

where in the second step we used that Bj; = exp(A + AY + XX + AY), and that
X =0and Y = 0 are baseline levels. This proves that the marginal and conditional
odds ratios are the same.

Alternatively, we express conditional and marginal odds ratios in terms of proba-
bilities. We can use Bayes’ Theorem to rewrite the conditional odds ratio in (8)

as
PX=1Y=1,2Z=k/P(X=0Y =1,2=k)

. 9
PX=1Y=0,Z=k)/P(X=0]Y =0,Z =k) )
The marginal odds ratio between X and Y can similarly be written as
pxXY _ PX=1Y =1)/P(X =0]Y =1)
P(X=1Y =0)/P(X =0]Y =0)
But since X and Z are conditionally independent given Y for loglinear model M,,
it follows that

XY _
Oy =

(10)

P(X =1Y=45,Z=k) =P(X =ilY =)
for all 4, j, k. Comparing (9) and (10), we conclude that the conditional and marginal
odds ratios are the same.

. We can use parts 5b and 5¢ to deduce that ;¥ = log(6*Y). The ML estimator of
the marginal odds ratio is obtained from the marginal table n;;; of cell counts, as

éXY _ Noo+T 11+ _ 132 - 103 — 9648,
No1+110+ 34 - 151

Since the ML estimator of a function of XY is the same function of éXY, it follows

that the ML estimator of 3% is
BY = 1og(0X) = log(2.648) = 0.974.
We may also take the logarithm of any of the two estimated conditional odds ratios

0%y = (93-31)/(101-12) = 2.379,
0% = (39-72)/(50 - 22) = 2.553,

in order to estimate 3;X, but they are both different from the ML estimator.



