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Read first through the whole exam. Exercises need not to be ordered from simpler to
harder.

Problem 1

Two chess players 0 and 1 competed in a championship. There were 15 games (excluding
those that resulted in a draw), and each game went on for a day. In the morning before
a new game started, a well known psychological expert tried to predict the outcome. He
did not know the results of previous games, but made each new prediction based the
competitors’ action and appearance. For each day without a draw, let X be the number
of the player that the expert guessed would win that day, whereas Y is the number of the
player that actually did win the same day. The result of the 15 predictions is summarized
in the 2× 2 contingency table below.

a. Let Nij be the number of observations of cell i, j. Define the joint distribution of
(N00, N01, N10, N11) under multinomial sampling. (1p)

b. Now condition on row sums and define the odds ratio θ that player 1 wins, where the
ratio is taken between the two scenarios that the expert predicts as winner player
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Y = 0 Y = 1 Total
X = 0 4 3 7
X = 1 2 6 8
Total 6 9 15

1 and 0 respectively. Formulate the null hypothesis H0 that the outcome of each
game is independent of the expert’s guess, and the alternative hypothesis Ha that
the outcome of the game is such that the expert is more successful than random
guessing. (2p)

c. Now condition on the row and column sums, so that the contingency table is solely
determined by N11. Write down the distribution of N11 under H0. Then use Fisher’s
exact test for computing the mid P -value when testing H0 against Ha. (Hint: You

may use that
(
7
3

)
= 35,

(
8
6

)
= 28 and

(
15
9

)
= 5005.) (4p)

d. What is the distribution of N11 in c) for a general odds ratio θ? (Hint: Start by
conditioning on the two row sums and consider the joint distribution of N01 and
N11. Then condition on the column sum N01 +N11 as well.) (3p)

Problem 2

The table below shows the outcome of car accidents for drivers and passengers with or
without safety belt. Data was collected in Florida during 2008, and for each person it
was registered whether their accident was fatal or not. Denote by {nij; 1 ≤ i, j ≤ 2} the
cell counts of the table, where i is the row number and j the column number. Regard
this as Poisson sampling, so that nij are observations of independent Poisson variables
Nij ∼ Po(µij).

Injury
Safety belt use 1: Fatal 2: Nonfatal
1: No 1085 55 623
2: Yes 703 444 239

a. Let π1 (π2) be the probability that a person who did not (did) use safety belt had
a fatal injury. Express these probabilities in terms of the expected cell counts µij.
(2p)

b. What is the joint distribution of N11 and N21 when one conditions on the two row
sums N1+ = n1 = n1+ and N2+ = n2 = n2+? (Hint: Start by defining the marginal
distributions of N11 and N21, given their respective row sums n1 and n2.) (2p)

c. Introduce an appropriate estimator r̂ = π̂1/π̂2 of the relative risk r = π1/π2. Use b)
and a first order Taylor expansion of the function f(π̂1, π̂2) = log(r̂) around (π1, π2)
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to prove that

Var [log(r̂)] ≈ 1− π1

n1π1

+
1− π2

n2π2

.

(3p)

d. Use c) to find an approximate 95% two-sided confidence interval for r. Conclude
from this whether or not safety belt use has a significant effect at level 5% on the
probability of a fatal injury. (3p)

Problem 3

An investigation of mortality in leukemia was conducted among survivors of the atom
bomb 1945 in Hiroshima. Individuals were categorized according to their age group Z,
their radiation dose X and whether they died in leukemia or not (Y ) within a certain
number of years, as summarized in the following threeway contingency table:

Did not die in leukemia Died in leukemia
(j = 1) (j = 2)

Age Low dose High dose Low dose High dose
(i = 1) (i = 2) (i = 1) (i = 2)

0-20 years (k = 1) 39 160 3 882 25 26
20-50 years (k = 2) 41 664 4 291 39 26
50- years (k = 3) 15 163 1 337 13 10

M G2(M)
(XY,XZ, Y Z) 1.67

(XY, Y Z) 24.44
(XY,XZ) 2.69
(XZ, Y Z) 123.28
(XZ, Y ) 124.27
(X, Y Z) 146.02
(XY,Z) 25.42
(X, Y, Z) 147.00

a. It is assumed that all cell counts are independent Poisson distributed random vari-
ables. The second table above gives the deviance G2(M) for a number of loglinear
models M . Compute the number of parameters p(M) of all these models, and give
the general principles for how you obtained these numbers. (2p)

b. Select the best model according to Akaike’s model selection criterion AIC. (2p)
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c. Let nijk and µijk be the observed and expected count of a cell with X = i, Y = j
and Z = k, so that, for instance, n221 = 26 is the number of individuals of age 0-20
years with a high radiation dose who died of leukemia. Find the fitted expected cell
count µ̂221 for model M0 = (XY,Z). (Hint: For this model M0, µijk is a function of
µij+, µ++k and µ+++.) (2p)

d. Find µ̂221 for model M1 = (XY,XZ). (2p)

e. Perform a likelihood ratio test between M0 and M1 at level 5%. (2p)

Problem 4

We continue studying the dataset of Problem 3. But now we are primarily interested in
the effect that radiation dose has on leukemia mortality. Thus we treat death in leukemia
Y as an outcome variable, radiation dose X as a predictor and age Z as a confounder.
We restrict ourselves to the loglinear model (XY,XZ).

a. Define the loglinear parameters of (XY,XZ). In particular, specify which of them
you put to zero in order to avoid overparametrization. (2p)

b. Show that P (Y = 2|X = i, Z = k), the conditional probability of death in leukemia
given radiation dose and age, defines a logistic regression model. Express its para-
meters as functions of the loglinear parameters from a). (2p)

c. Define the conditional odds ratio θXY (k) of death in leukemia, where the ratio is
between individuals with a high and low radiation dose. Write θXY (k) in terms
of the logistic regression parameters from b). Is there homogeneous association
between X and Y ? (2p)

d. Define the corresponding marginal odds ratio θXY , and prove that it equals the
conditional odds ratio in c). (2p)

e. Compute the maximum likelihood estimator θ̂XY (k) of the conditional odds ratio.
(2p)

Good luck!
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Appendix A - Table for chi-square distribution

Table 1: Quantiles of the chi-square distribution with df = 1, 2, . . . , 12 degrees of freedom

degrees of freedom

prob 1 2 3 4 5 6 7 8 9 10 11 12

0.8000 1.64 3.22 4.64 5.99 7.29 8.56 9.80 11.03 12.24 13.44 14.63 15.81

0.9000 2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99 17.28 18.55

0.9500 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 19.68 21.03

0.9750 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48 21.92 23.34

0.9800 5.41 7.82 9.84 11.67 13.39 15.03 16.62 18.17 19.68 21.16 22.62 24.05

0.9850 5.92 8.40 10.47 12.34 14.10 15.78 17.40 18.97 20.51 22.02 23.50 24.96

0.9900 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21 24.72 26.22

0.9910 6.82 9.42 11.57 13.52 15.34 17.08 18.75 20.38 21.96 23.51 25.04 26.54

0.9920 7.03 9.66 11.83 13.79 15.63 17.37 19.06 20.70 22.29 23.85 25.39 26.90

0.9930 7.27 9.92 12.11 14.09 15.95 17.71 19.41 21.06 22.66 24.24 25.78 27.30

0.9940 7.55 10.23 12.45 14.45 16.31 18.09 19.81 21.47 23.09 24.67 26.23 27.76

0.9950 7.88 10.60 12.84 14.86 16.75 18.55 20.28 21.95 23.59 25.19 26.76 28.30

0.9960 8.28 11.04 13.32 15.37 17.28 19.10 20.85 22.55 24.20 25.81 27.40 28.96

0.9970 8.81 11.62 13.93 16.01 17.96 19.80 21.58 23.30 24.97 26.61 28.22 29.79

0.9980 9.55 12.43 14.80 16.92 18.91 20.79 22.60 24.35 26.06 27.72 29.35 30.96

0.9990 10.83 13.82 16.27 18.47 20.52 22.46 24.32 26.12 27.88 29.59 31.26 32.91

0.9991 11.02 14.03 16.49 18.70 20.76 22.71 24.58 26.39 28.15 29.87 31.55 33.20

0.9992 11.24 14.26 16.74 18.96 21.03 22.99 24.87 26.69 28.46 30.18 31.87 33.53

0.9993 11.49 14.53 17.02 19.26 21.34 23.31 25.20 27.02 28.80 30.53 32.23 33.90

0.9994 11.78 14.84 17.35 19.60 21.69 23.67 25.57 27.41 29.20 30.94 32.65 34.32

0.9995 12.12 15.20 17.73 20.00 22.11 24.10 26.02 27.87 29.67 31.42 33.14 34.82

0.9996 12.53 15.65 18.20 20.49 22.61 24.63 26.56 28.42 30.24 32.00 33.73 35.43

0.9997 13.07 16.22 18.80 21.12 23.27 25.30 27.25 29.14 30.97 32.75 34.50 36.21

0.9998 13.83 17.03 19.66 22.00 24.19 26.25 28.23 30.14 31.99 33.80 35.56 37.30

0.9999 15.14 18.42 21.11 23.51 25.74 27.86 29.88 31.83 33.72 35.56 37.37 39.13
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