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Problem 1

a. The joint distribution of the cell counts is multinomial

(N00, N01, N10, N11) ∼ Mult(15;π00, π01, π10, π11),

where πij = P (X = i, Y = j) for each new game without a draw.

b. Introduce the conditional probabilities

πj|i = P (Y = j|X = i) =
πij

πi+

of the outcome of a game, given that the expert has guessed player i as a winner,
for i = 0, 1. The null hypothesis can be formulated as

H0 : πj|0 = πj|1 for j = 0, 1 ⇐⇒ θ = 1 ⇐⇒ πij = πi+π+j for 0 ≤ i, j ≤ 1,

where

θ =
π1|1/(1− π1|1)

π1|0/(1− π1|0)
=

π0|0π1|1

π0|1π1|0
=

π00π11

π01π10

(1)

is the odds ratio. The alternative hypothesis

Ha : π1|1 > π1|0 ⇐⇒
π1|1

1− π1|1
>

π1|0

1− π1|0
⇐⇒ θ > 1

is one-sided.

c. Let nij be the observed cell counts. If we condition on the two row sums ni+ and
the two column sums n+j, then N11 has a hypergeometric distribution under the
null hypothesis, i.e.

P (N11 = k|H0, N0+ = 7, N1+ = 8, N+0 = 6, N+1 = 9)
= P (N11 = k|H0, N1+ = 8, N+1 = 9)

=
(

7
9−k

)(
8
k

)
/
(
15
9

)
for 2 ≤ k ≤ 8. Notice that we only need to include one row sum (say n1+) and one
column sum (say n+1) in the conditioning, since n++ = 15 is fixed.

1



The null hypothesis is rejected for large values of N11, since these are more likely to
occur when the alternative hypothesis is true. Since n11 = 6, this gives a

mid P -value = 0.5P (N11 = 6|H0, N1+ = 8, N+1 = 9)
+ P (N11 = 7|H0, N1+ = 8, N+1 = 9)
+ P (N11 = 8|H0, N1+ = 8, N+1 = 9)

= 0.5 ·
(
7
3

)(
8
6

)
/
(
15
9

)
+
(
7
2

)(
8
7

)
/
(
15
9

)
+
(
7
1

)(
8
8

)
/
(
15
9

)
= (0.5 · 35 · 28 + 21 · 8 + 7 · 1) /

(
15
9

)
= 665/5005
= 0.1329.

Hence we cannot reject the null hypothesis at nominal level 5% if we use mid P -value ≤
0.05 as criterion for rejecting H0.

d. When one only conditions on row sums, we have that

N01 ∼ Bin(7, π1|0),
N11 ∼ Bin(8, π1|1)

are independent and binomially distributed. Therefore the joint distribution of N01

and N11 is

P (N01 = n01, N11 = n11|N0+ = 7, N1+ = 8)
= P (N01 = n01|N0+ = 7) · P (N11 = n11|N1+ = 8)

=
(

7
n01

)
πn01

1|0 (1− π1|0)
7−n01 ·

(
8

n11

)
πn11

1|1 (1− π1|1)
8−n11 .

(2)

Then we condition on the columns sums as well, although we only write out N+1 in
the conditioning. In order to treat the two rows symmetrically, it is convenient to
write out both row sums in the conditioning. This gives

P (N11 = k|N0+ = 7, N1+ = 8, N+1 = 9)
= P (N01 = 9− k,N11 = k|N0+ = 7, N1+ = 8, N+1 = 9)
= P (N01 = 9− k,N11 = k|N0+ = 7, N1+ = 8)/P (N+1 = 9|N0+ = 7, N1+ = 8),
∝ P (N01 = 9− k,N11 = k|N0+ = 7, N1+ = 8)
= P (N01 = 9− k|N0+ = 7) · P (N11 = k|, N1+ = 8)

=
(

7
9−k

)
π9−k
1|0 (1− π1|0)

7−(9−k) ·
(
8
k

)
πk
1|1(1− π1|1)

8−k

∝
(

7
9−k

)(
8
k

) [
π0|0π1|1/(π0|1π1|0)

]k
=
(

7
9−k

)(
8
k

)
θk,

where in the fourth and fifth steps we used (2) and in last step we inserted the
definition (1) of the odds ratio. The two expressions to the right and left of a
proportionality sign ∝ differ by a multiplicative constant, not depending on k. The
proportionality constant of the last step is chosen so that all probabilities sum to
one. This gives a non-central hypergeometric distribution

P (N11 = k|N0+, N1+ = 8, N+1 = 9) =

(
7

9−k

)(
8
k

)
θk∑8

j=2

(
7

9−j

)(
8
j

)
θj
,

for 2 ≤ k ≤ 8. The special case θ = 1 was used in c) to find the mid P -value.
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Problem 2

a. LetX refer to seat belt use, Y to the fatality of the accident and let πij = µij/µ++ be
the probability that each new observed accident belongs to cell i, j. The probability
of a fatal accident for persons without seat belt is

π1 = P (Y = 1|X = 1) =
π11

π11 + π12

=
µ11/µ++

µ11/µ++ + µ12/µ++

=
µ11

µ11 + µ12

.

The corresponding probability for those that use seat belt, is

π2 = P (Y = 1|X = 2) =
µ21

µ21 + µ22

.

b. When one conditions on row sums, the two cell counts N11 and N12 are indepen-
dent random variables with binomial distributions N11 ∼ Bin(n1+, π1) and N21 ∼
Bin(n2+, π2) respectively. It follows that their joint distribution is

P (N11 = n11, N21 = n21) =

(
n1+

n11

)
πn11
1 (1− π1)

n12 ·
(
n2+

n21

)
πn21
2 (1− π2)

n22 . (3)

c. As an estimator of the relative risk r = π1/π2 we use

r̂ =
π̂1

π̂2

=
N11/n1+

N21/n2+

. (4)

We approximate log(r̂) = f(π̂1, π̂2) by the first order Taylor expansion

log(r̂) ≈ log(r)+
∂ log(r)

∂π1

(π̂1−π1)+
∂ log(r)

∂π2

(π̂2−π2) = log(r)+
π̂1 − π1

π1

− π̂2 − π2

π2

of the logarithm of the relative risk. It follows from (3) that N11 and N21 are inde-
pendent binomial random variables. Therefore, π̂1 and π̂2 are independent binomial
proportions with Var(π̂i) = πi(1− πi)/ni+ and

Var [log(r̂)] ≈ Var
[
π̂1−π1

π1
− π̂2−π2

π2

]
= Var(π̂1−π1)

π2
1

+ Var(π̂2−π2)
π2
2

= π1(1−π1)/n1+

π2
1

+ π2(1−π2)/n2+

π2
2

= 1−π1

n1+π1
+ 1−π2

n2+π2
.

d. The point estimates of the two fatal accident probabilities are

π̂1 = 1085/(1085 + 55623) = 0.0191,
π̂2 = 703/(703 + 444239) = 0.00158.

This gives a point estimate

r̂ =
0.0191

0.00158
= 12.11
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of the relative risk (4). The standard error of the estimator log(r̂) of log(r) is

SE =
√
V̂ar[log(r̂)]

=
√

1−π̂1

n1+π̂1
+ 1−π̂2

n2+π̂2

=
√

1−π̂1

n11
+ 1−π̂2

n21

=
√

1−0.0191
1085

+ 1−0.00158
703

= 0.0482,

and the associated approximate 95% confidence interval for log(r) is

(log(12.11)− 1.96 · SE, log(12.11) + 1.96 · SE) = (2.400, 2.588).

If we transform this interval back to the original relative risk scale, we finally get
an approximate 95% confidence interval

I = (e2.400, e2.588) = (11.02, 13.31)

for r. Since 1 /∈ I, we conclude that seat belt use has a significant effect on the
fatality of an accident at level 5%.

Problem 3

a. This data set is a threeway contingency table, with I = 2 levels for X, J = 2
levels for Y and K = 3 levels for Z. The saturated model (XY Z) has IJK = 12
parameters. All the eight submodels M of the table below share one intercept
parameter λ, and (I−1)+(J −1)+(K−1) = 4 marginal parameters. The number
of parameters for the three types of second order interaction is

XY : (I − 1)(J − 1) = 1,
XZ : (I − 1)(K − 1) = 2,
Y Z : (J − 1)(K − 1) = 2.

By adding the relevant number of parameters for the different models we fill in the
second column of the following table:

M p(M) G2(M) + 2p(M)
(XY,XZ, Y Z) 1+4+1+2+2=10 21.67

(XY, Y Z) 1+4+1+2=8 40.44
(XY,XZ) 1+4+1+2=8 18.69
(XZ, Y Z) 1+4+2+2=9 141.28
(XZ, Y ) 1+4+2=7 138.27
(X, Y Z) 1+4+2=7 160.02
(XY,Z) 1+4+1=6 37.42
(X, Y, Z) 1+4=5 157.00
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b. Akaike’s Information Criterion for submodel M is

AIC(M) = −2L(M) + 2p(M)
= −2L(XY Z) + 2 [L(XY Z)− L(M)] + 2p(M)
= −2L(XY Z) +G2(M) + 2p(M).

(5)

Since the first term −2L(XY Z) on the right hand side of (5) only involves the
saturated model XY Z it does not depend on M . Therefore, minimizing AIC(M) is
equivalent to minimizing G2(M) + 2p(M). By adding twice the values p(M) of the
middle column in the above table to the known deviance values, we obtain the values
of the right column. We find that G2(M)+2p(M) is minimized by M = (XY,XZ),
which is the best model according to the AIC criterion.

c. For model M0 = (XY,Z) we have that

µijk =
µij+µ++k

µ+++

=⇒ µ̂ijk =
nij+n++k

n+++

.

In particular,

µ̂221 =
n22+n++1

n+++

=
(26 + 26 + 10)(39160 + 3882 + 25 + 26)

39160 + 3882 + . . .+ 13 + 10
=

62 · 43093
105636

= 25.29.

d. For model M1 = (XY,XZ) we have that

µijk =
µij+µi+k

µi++

=⇒ µ̂ijk =
nij+ni+k

ni++

.

In particular,

µ̂221 =
n22+n2+1

n2++

=
(26 + 26 + 10)(3882 + 26)

3882 + 4291 + 1337 + 26 + 26 + 10
=

62 · 3908
9572

= 25.31.

e. The log likelihood ratio statistic between H0 : M0 and Ha : M1 \M0 is

G2(M0|M1) = 2 [L(M1)− L(M0)]
= G2(M0)−G2(M1)
= 25.42− 2.69
= 22.73
> χ2

2(0.05) = 5.99,

where in the last step we used that there are 8 − 6 = 2 degrees of freedom, the
number of additional parameters in M1 compared to M0. Hence we reject the null
hypothesis H0 at level 5%.

Problem 4

a. The expected cell counts µijk of the loglinear model (XY,XZ) satisfy

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik , 1 ≤ i, j ≤ 2, 1 ≤ k ≤ 3.
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If we choose the lowest level (i = j = k = 1) of each variable as baseline, any
parameter with at least one index at its lowest level is put to zero in order to avoid
overparametrization. The remaining eight free parameters are

(λ, λX
2 , λ

Y
2 , λ

Z
2 , λ

Z
3 , λ

XY
22 , λXZ

22 , λXZ
23 ).

b. Write πijk = µijk/µ+++ for the cell probabilities under multinomial sampling. Then

logitP (Y = 2|X = i, Z = k)
= logP (Y = 2|X = i, Z = k)− logP (Y = 1|X = i, Z = k)
= log(πi2k/πi+k)− log(πi1k/πi+k)
= log(πi2k)− log(πi1k)
= log(µi2k/µ+++)− log(µi1k/µ+++)
= log(µi2k)− log(µi1k)
= (λ+ λX

i + λY
2 + λZ

k + λXY
i2 + λXZ

ik )
−(λ+ λX

i + λY
1 + λZ

k + λXY
i1 + λXZ

ik )
= (λY

2 − λY
1 ) + (λXY

i2 − λXY
i1 )

= λY
2 + λXY

i2

=: α + βX
i ,

(6)

if we use the parameter constraints of the loglinear model from a). It follows from
(6) that Y |X,Z is a logistic regression model with two nonzero parameters α = λY

2

and βX
2 = λXY

22 , since βX
1 = λXY

12 = 0.

c. We have that

θXY (k) =
P (Y = 2|X = 2, Z = k)/P (Y = 1|X = 2, Z = k)

P (Y = 2|X = 1, Z = k)/P (Y = 1|X = 1, Z = k)
. (7)

Taking the logarithm and using (6), it follows that

log θXY (k) = logitP (Y = 2|X = 2, Z = k)− logitP (Y = 2|X = 1, Z = k)
= (α + βX

2 )− α
= βX

2 ,

so that
θXY (k) = exp(βX

2 ). (8)

Since θXY (k) does not depend on the level k of Z, there is homogeneous association
between X and Y . This also follows from the fact that there is no third order
association between X, Y and Z in model (XY,XZ).

d. The marginal odds ratio between X and Y is given by

θXY =
P (Y = 2|X = 2)/P (Y = 1|X = 2)

P (Y = 2|X = 1)/P (Y = 1|X = 1)
=

µ22+µ11+

µ12+µ21+

, (9)

where the last step follows after some computations, similarly as in the first steps of
(6). But since Y and Z are conditionally independent given X for model (XY,XZ),
it follows that

P (Y = j|X = i, Z = k) = P (Y = j|X = i). (10)

Comparing (7) and (9), we find because of (10) that

θXY (k) = θXY . (11)
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e. Equation (10) implies that the likelihoods of Y |X,Z and Y |X are the same. The
maximum likelihood estimator θ̂XY (k) of the conditional odds ratio θXY (k) is therefore
a function of the twoway marginal table of X and Y . In particular, we find from
(8) and (11) that

θ̂XY (k) = exp(β̂X
2 ) = θ̂XY =

n22+n11+

n12+n21+

=
62 · 95987
77 · 9510

= 8.13

for k = 1, 2, 3.
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