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Problem 1

a. The linear logistic regression model has

π(x) =
exp(α + βx)

1 + exp(α + βx)
.

b. We want to find a 95% confidence interval for π(1). In order to do so we first
consider logit [π(1)] = α + β, whose point estimate is

logit [π̂(1)] = α̂ + β̂ = −1.5− 1.2 = −2.7. (1)

Since
Var {logit[π̂(1)]} = Var(α̂) + Var(β̂) + 2Cov(α̂, β̂),

the standard error of the estimate in (1) is

SE =
√
V̂ar {logit[π̂(1)]}

=
√
V̂ar(α̂) + V̂ar(β̂) + 2Ĉov(α̂, β̂)

=
√
0.05 + 0.02 + 2 · (−0.01)

=
√
0.05.

This gives a confidence interval

(−2.7− 1.96 · SE,−2.7 + 1.96 · SE) = (−3.1383,−2.2617)

for logit[π(1)] with approximate coverage probability 95%, since z0.025 = 1.96 is the
97.5% quantile of a standard normal distribution. The corresponding confidence
interval for π(1), with approximate coverage probability 95%, is(

e−3.1383

1 + e−3.1383
,

e−2.2617

1 + e−2.2617

)
= (0.0416, 0.0943).
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c. The probability of a new heart attack within five years is π(1) for Ben and π(2.5)
for Josh. This gives an odds ratio

OR =
π(1)/(1− π(1))

π(2.5)/(1− π(2.5))
=

exp(α + β)

exp(α + 2.5β)
= exp(−1.5β),

and the accompanying maximum likelihood estimate is

ÔR = exp(−1.5β̂) = exp [−1.5(−1.2)] = 6.05.

An approximate 95% confidence interval for β is(
β̂ − 1.96 ·

√
V̂ar(β̂), β̂ + 1.96 ·

√
V̂ar(β̂)

)
= (−1.2− 1.96 ·

√
0.02,−1.2 + 1.96 ·

√
0.02)

= (−1.4772,−0.9228),

(2)

and the corresponding interval for the odds ratio is

I = (e−1.5(−0.9228), e−1.5(−1.4772)) = (3.99, 9.17).

In the last step we used that x → e−1.5x is a monotone decreasing function, so that
the end points of the transformed interval I are switched compared to (2).

Problem 2

a. This is a loglinear model with ni as an offset. We let λ = (λ0, λ1)
T refer to the

parameter vector. The likelihood function is

l(λ) =
3∏

i=0

e−µi
µyi
i

yi!
,

and the log likelihood

L(λ) = log l(λ)
=

∑3
i=0 [yi log(µi)− µi − log(yi!)]

= constant +
∑3

i=0 [yi(λ0 + λ1i)− ni exp(λ0 + λ1i)] ,
(3)

where

constant =
3∑

i=0

[yi log(ni)− log(yi!)]

does not depend on the parameters λ0 and λ1.

b. Since
µi = ni exp(λ0 + λ1i), (4)

we find that
dµi

dλ
=

(
∂µi/∂λ0

∂µi/∂λ1

)
= µi

(
1
i

)
.
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From this and (3) it follows that the likelihood score vector equals

u(λ) =

(
u0(λ)
u1(λ)

)
=

(
∂L(λ)/∂λ0

∂L(λ)/∂λ1

)
=

3∑
i=0

(yi − µi)

(
1
i

)
. (5)

The likelihood equations are obtained by solving

u(λ)λ=(λ̂0,λ̂1)
=

(
0
0

)

with respect to λ̂0 and λ̂1, which is equivalent to solving

3∑
i=0

yi

(
1
i

)
=

3∑
i=0

ni exp(λ̂0 + λ̂1i)

(
1
i

)
.

c. We first find the Hessian matrix

H(λ) =
d2L(λ)

d2λ
=

(
∂2L(λ)/∂2λ0 ∂2L(λ)/(∂λ0∂λ1)

∂2L(λ)/(∂λ0∂λ1) ∂2L(λ)/∂2λ1

)
=

(
∂u0(λ)/∂λ0 ∂u0(λ)/∂λ1

∂u1(λ)/∂λ0 ∂u1(λ)/∂λ1

)

of the log likelihood by differentiating the score function components u0(λ) and
u1(λ) in (5) with respect to λ0 and λ1. This gives

H(λ) = −
3∑

i=0

µi

(
1 i
i i2

)
.

Since H(λ) does not depend on data it is non-stochastic. Therefore the Fisher
information matrix equals

J(λ) = −E [H(λ)] = −H(λ) =
3∑

i=0

µi

(
1 i
i i2

)
. (6)

d. By taking the logarithm of (4) for i = 0, 1, 2, 3, it follows that

X =


1 0
1 1
1 2
1 3

 , c =


log(n0)
log(n1)
log(n2)
log(n3)

 .

Combining this with (6), we find after some computations that

J(λ) = XT


µ1 0 0 0
0 µ2 0 0
0 0 µ3 0
0 0 0 µ4

X.
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Problem 3

a. The loglinear model M = (XY, Y Z) has expected cell counts

µijk = exp(λ+ λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk ), 0 ≤ i, j, k ≤ 1.

Some of its parameters must be put to zero in order for the others to be identifiable.
If the lowest level 0 of each variableX, Y, Z is taken as a baseline, all parameters with
a least one index at its lowest level are put to zero. The remaining six parameters
are

λ = (λ, λX
1 , λ

Y
1 , λ

Z
1 , λ

XY
11 , λY Z

11 ).

b. Let
πijk = µijk/µ+++ (7)

be the cell probabilities of the multinomial model obtained when conditioning on
the total number of observations N+++ = n+++ for model M = (XY, Y Z). Then
introduce the conditional probabilities πi|j = P (X = i|Y = j) and πk|j = P (Z =
k|Y = j). Since X and Z are conditionally independent given Y , it follows that

πijk = π+j+πi|jπk|j = π+j+ · πij+

π+j+

· π+jk

π+j+

=
πij+π+jk

π+j+

. (8)

Inserting (8) into (7), we obtain the desired formula, since

µijk = µ+++πijk

= µ+++
πij+π+jk

π+j+

= µ+++
(µij+/µ+++)(µ+jk/µ+++)

µ+j+/µ+++

=
µij+µ+jk

µ+j+
.

(9)

c. The fitted cell counts µ̂ijk for model M are obtained by replacing the expected cell
counts on the right hand side of (9) by the observed ones, i.e.

µ̂ijk =
nij+n+jk

n+j+

. (10)

Starting with cell (0, 0, 0), we read off the values from the full and marginal tables
and find that

µ̂000 =
n00+n+00

n+0+

=
(154 + 20) · 215

250
= 149.64.

A similar calculation for the other cells gives

µ̂010 = 108.04,
µ̂100 = 65.36,
µ̂110 = 76.97,
µ̂001 = 24.36,
µ̂011 = 37.96,
µ̂101 = 10.64,
µ̂111 = 27.04.
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d. Inserting the observed cell counts nijk from the contingency table and the fitted cell
counts µ̂ijk from c) into the given formula for the deviance, we find that

G2(M) = 2
∑

ijk nijk log
nijk

µ̂ijk

= 2
[
154 log 154

149.64
+ 116 log 116

108.04
+ 61 log 61

65.36
+ 69 log 69

76.97

+20 log 20
24.36

+ 30 log 30
37.96

+ 15 log 15
10.64

+ 35 log 35
27.04

]
= 8.19.

Since the deviance exceeds χ2
2(0.05) = 5.99, we reject model M = (XY, Y Z) at level

5%. In the last step we used that the saturated model has 2 · 2 · 2 = 8 parameters,
whereas in a) we found that M has 6 parameters. Therefore the number of degrees
of freedom is 8− 6 = 2.

Problem 4

a. It follows that Y |X,Z is a logistic type regression model, since

logitP (Y = 1|X = i, Z = k)
= logP (Y = 1|X = i, Z = k)− logP (Y = 0|X = i, Z = k)
= log(πi1k/πi+k)− log(πi0k/πi+k)
= log πi1k − log πi0k

= log(µi1k/µ+++)− log(µi0k/µ+++)
= log µi1k − log µi0k

= (λ+ λX
i + λY

1 + λZ
k + λXY

i1 + λY Z
1k )

= (λ+ λX
i + λY

0 + λZ
k + λXY

i0 + λY Z
0k )

= (λY
1 − λY

0 ) + (λXY
i1 − λXY

i0 ) + (λY Z
1k − λY Z

0k )
= λY

1 + λXY
i1 + λY Z

1k

=: α + βX
i + βZ

k ,

(11)

where in the second last step we assumed that i = k = 0 are chosen as baseline
levels. Because of this, the nonzero parameters of the model are θ = (α, βX

1 , βZ
1 ).

b. We deduce from equation (11) that

log θik = logitP (Y = 1|X = i, Z = k)− logitP (Y = 1|X = 0, Z = 0)
= (α + βX

i + βZ
k )− α

= βX
i + βZ

k .
(12)

This implies
θ01 = exp(βZ

1 ),
θ10 = exp(βX

1 ),
θ11 = exp(βX

1 + βZ
1 ).

(13)

c. We first rewrite the odds ratios as

θik =
P (Y = 1|X = i, Z = k)/P (Y = 0|X = i, Z = k)

P (Y = 1|X = 0, Z = 0)/P (Y = 0|X = 0, Z = 0)
(14)
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for (i, k) ∈ {(0, 1), (1, 0), (1, 1)}. It follows from Bayes’ Theorem that

P (Y = j|X = i, Z = k) =
P (X = i, Z = k|Y = j)P (Y = j)

P (X = i, Z = k)
. (15)

Insert (15) into (14). We find after some simplifications that

θik =
P (X = i, Z = k|Y = 1)/P (X = i, Z = k|Y = 0)

P (X = 0, Z = 0|Y = 1)/P (X = 0, Z = 0|Y = 0)
, (16)

since all the terms that involve the marginal distributions of Y and X,Z cancel out.
It therefore follows from (16) that θ01, θ10 and θ11 can all be expressed in terms of
the X,Z|Y - distribution.

We know from a) that θ = (α, βX
1 , βZ

1 ). Write θ̂ = (α̂, β̂X
1 , β̂Z

1 ) and let

θ̂ik = exp(β̂X
i + β̂Z

k ) → θ∗ik (17)

be the estimate of θik obtained from the maximum likelihood estimate, with asymp-
totic limit θ∗ik as the number of cases and controls grows. Because of (16), this limit
will only depend on the X,Z|Y -distribution that the sample is drawn from, which
by the definition of a case-control study is identical to the population distribution
of X,Z|Y . The odds ratios are therefore consistently estimated, i.e.

θ∗ik = θik, (i, k) ∈ {(0, 1), (1, 0), (1, 1)}. (18)

We deduce from (13), (17) and (18) that the two effect parameters βX
1 and βZ

1 will
be estimated consistently as well (whereas α will not).
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