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Problem 1

a. The linear logistic regression model has

π(x) =
exp(α + βx)

1 + exp(α + βx)
. (1)

b. We want to find a confidence interval for π(1.5). We first look at logit [π(1.5)] =
α + 1.5β, whose point estimate is

logit [π̂(1.5)] = α̂ + 1.5β̂ = −2.2 + 1.5 · 0.8 = −1. (2)

Since

Var [logit(π̂(1.5))] = Var(α̂) + 2 · 1.5 · Cov(α̂, β̂) + 1.52 · Var(β̂)
= Var(α̂) + 3 · Cov(α̂, β̂) + 2.25 · Var(β̂),

this gives a standard error for the estimate in (2) that equals

SE =
√
V̂ar(α̂) + 3 · Ĉov(α̂, β̂) + 2.25 · V̂ar(β̂)

=
√
0.02 + 3 · (−0.005) + 2.25 · 0.01

= 0.1658

and a Wald type confidence interval

(−1− 1.96 · SE,−1 + 1.96 · SE) = (−1.3250,−0.6750)

for logit[π(1.5)] with approximate coverage probability 95%, since z0.025 = 1.96 is
the 97.5% quantile of a standard normal distribution. The corresponding confidence
interval for π(1.5), with approximate coverage probability 95%, is(

exp(−1.3250)

1 + exp(−1.3250)
,

exp(−0.6750)

1 + exp(−0.6750)

)
= (0.210, 0.337).
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c. Suppose Ben’s smoking consumption is x pack years. Then Adam’s is x+ 10/20 =
x + 0.5 pack years, since 10 cigarettes corresponds to half a pack. The odds ratio
asked for is

OR =
π(x+ 0.5)/(1− π(x+ 0.5))

π(x)/(1− π(x))
=

exp(α + β(x+ 0.5))

exp(α + βx)
= exp(0.5β).

By a similar argument as in a), we first compute a confidence interval(
β̂ − 1.96

√
V̂ar(β̂), β̂ + 1.96

√
V̂ar(β̂)

)
= (0.8− 1.96 ·

√
0.01, 0.8 + 1.96 ·

√
0.01)

= (0.6040, 0.9960)

for β with approximate coverage probability 95%. The corresponding confidence
interval for the odds ratio is

(exp(0.5 · 0.6040), exp(0.5 · 0.9960)) = (1.353, 1.645).

Problem 2

a. Let π(x) be the probability in (1) of having lung cancer for a randomly drawn
person with cumulative exposure x to smoking. For a sampled person with the
same cumulative exposure x, the corresponding probability is

π∗(x) = ρπ(x)/ [(1− π(x)) + ρπ(x)]
= ρ exp(α + βx)/ [1 + ρ exp(α + βx)]
= exp(α∗ + β∗x)/ [1 + exp(α∗ + β∗x)] ,

(3)

with
α∗ = α + log(ρ),
β∗ = β.

(4)

We used that 1−π(x) = 1/ [1 + exp(α + βx)], and therefore 1+exp(α+βx) cancelled
out in the second step of (3). We recognize the right hand side of (3) as a logistic
regression model, with a different intercept α∗ ̸= α but the same slope β∗ = β as in
Problem 1.

b. Viewing α̂ and β̂ of Problem 1 as estimates of α∗ and β∗ in (4), we obtain the
corresponding estimates

α̃ = α̂− log(ρ) = −2.2− log(10) = −4.5026,

β̃ = β̂ = 0.8
(5)

of α and β. Inserting (5) into the formula for π(1.5), we obtain a corrected estimate

π̃(1.5) =
exp(α̃ + 1.5β̃)

1 + exp(α̂ + 1.5β̃)
=

exp(−4.5026 + 1.5 · 0.8)
1 + exp(−4.5026 + 1.5 · 0.8)

= 0.0355 (6)

of the probability of developing lung cancer for a person with a cumulative amount
of smoking 1.5 pack years. Since this corrected estimate 0.0355 is almost six times
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smaller than the lower end point 0.21 of the confidence interval for π(1.5) in Problem
1b, this shows that this interval is severely biased upwards.

Alternatively, we can compute the corrected estimate π̃(1.5) of π(1.5) directly from
the estimates α̂ and β̂ of Problem 1. Since lung cancer cases are oversampled by a
factor ρ = 10 among persons with cumulative exposure 1.5, the odds of π̂(1.5) is 10
times too large. Therefore,

π̃(1.5) =
0.1 · exp(α̂ + 1.5β̂)

1 + 0.1 · exp(α̂ + 1.5β̂)
=

0.1 · exp(−2.2 + 1.5 · 0.8)
1 + 0.1 · exp(−2.2 + 1.5 · 0.8)

= 0.0355.

c. Replacing ρ by ρ̂ in (5), we find that

α̃ = α̂− log(ρ̂)
= α∗ − log(ρ) + (α̂− α∗)− [log(ρ̂)− log(ρ)]
= α + (α̂− α∗)− [log(ρ̂)− log(ρ)]

≈ α + (α̂− α∗)− ρ̂−ρ
ρ
,

(7)

where in the fourth step we used a first order Taylor expansion of the logarithmic
function around ρ. Since α, α∗ and ρ are constants, it follows from (7) that

Var(α̃) ≈ Var(α̂)− 2

ρ
Cov(α̂, ρ̂) +

1

ρ2
Var(ρ̂).

The corresponding estimate of this variance is

V̂ar(α̃) = V̂ar(α̂)− 2
ρ̂
Ĉov(α̂, ρ̂) + 1

ρ̂2
V̂ar(ρ̂)

= 0.02− 2
10

· 0.005 + 1
102

0.5
= 0.02− 0.001 + 0.005
= 0.024.

Problem 3

a. The loglinear parametrization of (XY,Z) is

µijk = exp(λ+ λX
i + λY

j + λZ
k + λXY

ij ) (8)

for 0 ≤ i, j, k ≤ 1. Assume that X = 0, Y = 0 and Z = 0 are chosen as baseline
levels. Then all loglinear parameters are put to zero for which at least one index i,
j or k equals 0. The remaining parameters are

β = (λ, λX
1 , λ

Y
1 , λ

Z
1 , λ

XY
11 ). (9)

b. It follows from (8) that
µijk = AijBk,

with Aij = exp(λ+ λX
i + λY

j + λXY
ij ) and Bk = exp(λZ

k ). Then

µij+ = AijB+,
µ++k = A++Bk,
µ+++ = A++B+.
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Consequently,
µij+µ++k

µ+++

=
AijB+ · A++Bk

A++B+

= AijBk = µijk.

An alternative solution, which does not require the loglinear parametrization from
a), uses cell probabilities

πijk =
µijk

µ+++

of the multinomial model, obtained by conditioning the Poisson model on the total
cell count n+++. Since Z is independent of X, Y , we have that

µijk = µ+++ · πijk = µ+++ · πij+π++k = µ+++ · µij+

µ+++

· µ++k

µ+++

=
µij+µ++k

µ+++

,

as was to be proved.

c. The ML-estimates
µ̂ijk =

nij+n++k

n
of all expected cell counts of model (XY,Z) are found by replacing µij+, µ++k and
µ+++ in the definition of µijk by their corresponding observed values nij+, n++k

and n = n+++. Since the total number of observations of the two partial tables are
n++0 = 148 and n++1 = 154, and the total number of observations is n = 302, we
get

µ̂000 =
n00+n++0

n
=

115 · 148
302

= 56.36

for cell (0, 0, 0). A similar calculation of all other µ̂ijk gives the following result:

Values of µ̂ij0:

j = 0 j = 1

i = 0 56.36 19.11
i = 1 41.66 30.87

Values of µ̂ij1:

j = 0 j = 1

i = 0 58.64 19.89
i = 1 43.34 32.13

d. The chisquare statistic for testing the null hypothesis H0 : (XY,Z) against the
alternative hypothesis Ha : (XY Z) but not (XY,Z), is

X2(XY,Z) =
∑

ijk
(nijk−µ̂ijk)

2

µ̂ijk

= (60−56.36)2

56.36
+ . . .+ (35−32.13)2

32.13

= 3.248
< χ2

3(0.05) = 7.81.

(10)

Hence we cannot reject H0, that gene B has no effect on Alzheimer’s disease, at
level 5%. Let p(M) be the number of parameters of model M . In the last step of
(10) we used that the number of degrees of freedom och the chisquare distribution
is

df = p(XY Z)− p(XY,Z) = 8− 5 = 3,

since the saturated model has one parameter for each cell, and there are 2×2×2 = 8
cells in the table. From (9) we also know that the parameter vector β of (XY,Z)
contains 5 parameters.
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Problem 4

a. Submodel (A ∗Z +A ∗W ) has one intercept, three types of main effects (A, Z and
W ) and two types of second order interactions (AZ and AW ). It follows that

P (Y = 1|A = i, Z = k,W = h) =
exp(α + βA

i + βZ
k + βW

h + βAZ
ik + βAW

ih )

1 + exp(α + βA
i + βZ

k + βW
h + βAZ

ik + βAW
ih )

.

b. The number of parameters of (A ∗W + A ∗W ) is

p = 1 + (4− 1) + (4− 1) + (4− 1) + (4− 1)(4− 1) + (4− 1)(4− 1) = 28,

where the first term corresponds to an intercept, each main effect contributes with
4− 1 = 3 parameters (one per level; excluding the baseline level), and each second
order interaction adds (4 − 1)(4 − 1) = 9 parameters (one for each pair of levels,
none of which is a baseline level).

c. Reasoning as in b), each main effect and second order interaction adds 4 − 1 = 3
and (4 − 1)2 = 9 parameters respectively. Since each model is balanced, we know
how many main effects and second order interactions it includes. This gives the
following completion of the third column of the given table:

M L(M) p(M) −2L(M) + 2p(M)

(A ∗ Z +A ∗W ) -5000.0 1 + 3 · 3 + 2 · 9 = 28 10056
(Z +A ∗W ) -5005.5 1 + 3 · 3 + 9 = 19 10049
(W +A ∗ Z) -5008.0 1 + 3 · 3 + 9 = 19 10054
(A+ Z +W ) -5025.0 1 + 3 · 3 = 10 10070
None -5200.0 1 10402

d. Akaike’s information criterion is

AIC(M) = −2L(M) + 2p(M).

It has been evaluated in the fourth column of the above table. The chosen model,
with lowest AIC(M), is therefore (Z + A ∗W ).

e. In backward elimination (BE), we first select the largest model (A ∗ Z + A ∗ W )
among those that are being tested. Then we test each one of (Z + A ∗ W ) and
(W +A ∗ Z), in which one type of second order interaction has been removed from
(A ∗ Z +A ∗W ), against (A ∗ Z +A ∗W ). The corresponding two likelihood ratio
statistics are

G2(Z + A ∗W |A ∗ Z + A ∗W ) = 2 [L(A ∗ Z + A ∗W )− L(Z + A ∗W )]
= 2 [−5000− (−5005.5)] = 11
< χ2

28−19(0.05) = 16.62,

and

G2(W + A ∗ Z|A ∗ Z + A ∗W ) = 2 [L(A ∗ Z + A ∗W )− L(W + A ∗ Z)]
= 2 [−5000− (−5008)] = 16
< χ2

28−19(0.05) = 16.62,

5



respectively. We notice that the null hypothesis (the smaller model) is not rejected
at level 5% in any of these two tests, but since the LR statistic is smaller when
Z +A ∗W is being tested against A ∗Z +A ∗W , we select Z +A ∗W after the first
step.

Then, in the second step of the BE procedure, we check whether removal of in-
teraction A ∗ W degrades model fit significantly. That is, we only test one model
A+ Z +W against Z + A ∗W . This gives an LR statistic

G2(A+ Z +W |Z + A ∗W ) = 2 [L(Z + A ∗W )− L(A+ Z +W )]
= 2 [−5005.5− (−5025)] = 39
> χ2

19−10(0.05) = 16.62.

Since the null hypothesis A + Z +W is rejected at level 5%, the BE scheme stops
and model Z + A ∗ W is selected. Therefore, backward elimination and Akaike’s
criterion in d) give the same result.

6


