
STOCKHOLM UNIVERSITY MT 7042
DEPT. OF MATHEMATICS EXAMINATION
Div. of Mathematical statistics 13 Mar 2023

Exam in Statistical Deep Learning
13 Mar 2023, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the exam, you may use any literature. However,
Electronic devices are NOT allowed

NOTE: The exam consists of 4 problems with 100 points in total. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks.

NOTE: Your answers and explanations must be to the point, redundant wri-
ting irrelevant to the solution will result in point deduction.

Problem 1 (Feedforward neural networks, total 25p)
a) Consider a feedforward neural network for a K class outcome with the

cross entropy cost function. Show that if no nonlinear hidden layers are
added, this is the same as a multinomal logistic regression model. (6p)
Show that the decision boundary of the logistic regression is linear. (4p)

b) Compute expressions for the gradient of the weights and biases of the
feedforward neural network used in the XOR example introduced in Sec
6.1 of the course book, with respect to the MSE cost function. (8p) When
training the network using full-batch gradient descent, describe the com-
putations of the forward pass and backward pass parts of the training.
(2p)

d) Suppose a feedforward neural network is trained to infer the parameters
of a one-dimensional conditional mixture model

p(y | x) =
N∑
i=1

p(i)(x)λ(i)(x)e−λ
(i)(x)y, (1)

where the number of components N is known, λ(i)(x) > 0 is the rate
parameter of the ith exponential component at point x and p(i)(x) is the
mixture probability of component i given x. Design a suitable output layer
of the network and motivate the choice. (5p)

Problem 2 (Regularization, total 19p)
a) State one advantage and disadvantage for each of the early stopping and

L2 regularization techniques, and justify your answers. (5p)
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b) Under what assumptions on the cost function J(θ) and under what con-
dition on the learning rate ε, number of epochs τ and norm penalty para-
meter α is early stopping equivalent to L2 regularization? (4p)

c) In Eq. 7.54-55 of the course book, it was proposed that the geometric mean
can be used to compute the ensemble prediction pensemble(y|x). Show that
pensemble(y|x) = softmax

(
1
N

∑N
i=1 ln p(i)(y|x)

)
, where N is the number

of models and p(i)(y|x) is the prediction from the ith model. (6p) Discuss
the advantages and disadvantages of using the geometric mean compared
to the arithmetic mean for ensemble prediction. (4p)

Problem 3 (Optimization, RNN and back propagation thru
time, total 31p)

a) In the Adam algorithm (Algorithm 8.7 in course book), the accumulated
1st and 2nd moments are normalized (ŝ← s/(1−ρt1) and r̂ ← r/(1−ρt2)).
Explain concisely what is the purpose of these normalizations. (8p)

b) Referring to Fig. 10.13 in the course book, draw the unfolding graphs for
the RNNs in the panels (b) and (c). (2p) Explain what are the benefits
to introduce the additional hidden states and links that are absent in the
“Vanilla” RNN in panel (a). (4p)

c) Consider the recurrent neural network in the figure above where the ma-
trices W , U and V are defined in Eq. 2, and gy(·) and gh(·) represent the
activation functions. Write down with CLEAR STEPS the back propaga-
tion through time derivative ∂Lt/∂V . (12p)

Outputs ŷt = gy(Wht + b)
Hidden units ht = gh(V xt + Uht−1 + b′)

Loss function L =
∑
t

Lt(ŷt)
(2)
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d) From the expression in part c, discuss if the problems of vanishing/exploding
gradient and learning long time dependence exist for ∂Lt/∂V . (5p)

Problem 4 (Attentions and transformers, total 25p)
Let X ∈ Rn×d be the input to a multi-head self attention with h heads and
with the scaled dot product attention score function, where n is the number of
tokens in the sequence and d is the dimension of the embedding vector.

a) Write down the explicit expression for the output Y ∈ Rn×d of the multi-
head self attention in terms of the input and the appropriate trainable
weight matrices. (7p) NOTE: Please clearly define your weight matrices.

b) What is the total number of trainable weights? (4p)

c) Based on the results in part a and b, discuss if these trainable weights are
independent and propose a way to reduce the number of trainable weights.
Justify your answers (6p)

d) Referring to Eq. 11.6.3 in the “Dive into deep learning” book, show that
the matrix relating the vectors (pi,2j , pi,2j+1) and (pi+δ,2j , pi+δ,2j+1) is an
orthogonal matrix. (5p) What does Eq. 11.6.3 tell us about the relative
positional information by using the positional encoding in Eq. 11.6.2? (3p)

Good Luck!
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