
STOCKHOLM UNIVERSITY MT 7038
DEPT. OF MATHEMATICS EXAMINATION
Div. of Mathematical statistics 13 Jan 2021

Exam in Statistical Learning
13 Jan 2021, time 9-14:30

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the home exam, you may use any literature.
Return of the exam: To be announced later.

NOTE: The exam consists of 5 problems and each with 10 points. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks. Minimum points to receive a given grade are as follows:

A B C D E
45 40 35 30 25

NOTE: The mathematical notations in this exam are the same as those in the
course book.

NOTE: For those parts require explanation in words, your writing must be to
the point, redundant writing irrelevant to the solution will result in
point deduction.

Problem 1
a) Give a clear definition of the Bayes decision boundary. (2p)

b) Consider the case of an orthonormal N × p input matrix X. Let β̂j (j =
1, · · · , p) be the least square estimators of the parameters. Derive the
estimators in Table 3.4 in the course book for the best subset with size M
(3p), ridge regression (2p), and Lasso (3p).

Problem 2
a) Section 4.4.5 of the course book discussed that the logistic regression is

less restrictive than LDA, although both methods have the same degrees
of freedom. Argue concisely in words which method could be more biased
and which method could have bigger variance when applying to the same
dataset. (2p)

b) Explain at what situation does the resulting decision boundaries of LDA
and logistic regression coincide? (2p)

c) In the Rosenblatt’s perception learning algorithm, one minimizes the cost
function D(β, β0) = −

∑
i∈M yi(x>i β + β0), where yi = −1 or 1, and M is

the set of misclassified points. One problem of this cost function is that
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there is no unique separation hyperplane when the data is separable. Con-
sider minimizing another cost function, D1(β, β0) = −

∑N
i=1 yi(x>i β + β0)

subject to the constraint ‖β‖ = 1, where N is the number of observations.
Describe this criterion clearly in words in terms of the signed distance
and explain if this new cost function solves the uniqueness problem in the
separable case. (3p)

d) Discuss one drawback of using the cost function D1(β, β0) with constraint
‖β‖ = 1 in part c), then propose a possible solution to it and justify your
answers. Hint: You may consider drawing a figure to help your explanation.
(3p)

Problem 3
a) Consider the basis expansion of a function f(X) using the cubic splines

with K interior knots: f(X) =
∑3
j=0 βjX

j +
∑K
k=1 αk(X−ξk)3

+, where ξk
are the positions of the knots. Show that f(X) has continuous first and
second derivatives at the knots. (2p)

b) Now taking into account the additional boundary conditions imposed by
the natural cubic spline, show that this implies β2 = 0, β3 = 0,

∑K
k=1 αk =

0,
∑K
k=1 αkξk = 0. (2p)

c) Now show that the results in b) lead to the basis functions of the natural
cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)

d) Derive the Reinsch form Sλ = (I + λK)−1 for the smoothing spline (see
Eq. 5.17 in the course book). (3p)

Problem 4
a) Consider the local linear regression at a target point x0 as a weighted least

square estimation: minα(x0),β(x0)
∑N
i=1 Kλ(x0, xi) [yi − α(x0)− β(x0)xi]2,

with kernel Kλ(x0, xi). Show that the estimate is given by

f̂(x0) = b(x0)>
(
B>W(x0)B

)−1 B>W(x0)y,
where b(x)> = (1, x), B is the N × 2 matrix with the i-th row given by
b(x0)>, and W(x0) is the N ×N diagonal matrix with the i-th diagonal
element given by Kλ(x0, xi). (4p)

b) Now let f̂(x0) =
∑N
i=1 li(x0)yi, show that

∑N
i=1 xili(x0) = x0. (3p)

c) Suppose one performs smoothing using local linear regression for the da-
taset (xi, yi), with i = 1, · · · , N and the predictor x (0 ≤ x ≤ 2π) being an
angular variable. This means that the estimated function f̂(x) should be
periodic, i.e., f̂(x) = f̂(x+ 2π) for any x. Propose a simple way to apply
local linear regression to enforce the periodicity of f̂(x). Hint: The trick to
enforce periodicity is quite simple and can be described in just a few sen-
tences. You may also consider drawing a figure to help your explanation.
(3p)
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Problem 5
For parts a) to c) below, suppose that the data is generated from the model
Y = f(X) + ε, with E(ε) = 0 and V ar(ε) = σ2.

a) If f̂k(x0) is the k-nearest neighbor regression fit and assume that the values
of xi in the sample are fixed (i.e., non-random), show that the expected
prediction error at x0 is given by

E

[(
Y − f̂k(x0)

)2
|X = x0

]
= σ2+

[
f(x0)− 1

k

∑k
l=1 f(x(l))

]2
+σ2/k,

where the subscript (l) indicates the l-th nearest neighbor to x0. (4p)

b) Discuss the bias-variance tradeoff in part a) as k changes. (2p)

c) Now consider the ridge regression fit f̂λ(x), where λ is the parameter
controlling the shrinkage, show that the variance in the expected predic-

tion error at x0, E
[(
Y − f̂λ(x0)

)2
|X = x0

]
, is given by V ar[f̂λ(x0)] =

‖X(X>X + λI)−1x0‖2σ2. (4p)

Good Luck!
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