
Examination for Statistical Learning (MT7038 - VT19)


Date: 9:00am - 14:00pm, May 16, 2019


Examiner: Chun-Biu Li (cbli@math.su.se)


_________________________


• Permitted aids: Course textbook (Elements of statistical learning) and your own 

lecture notes. Electronic devices and e-books are not allowed.


• The exam consists of 5 problems and each with 10 credit points. Logical 

explanation and steps leading to the final solution must be clearly shown in order 

to receive full marks.


• The mathematical notations in this exam are the same as those in the course book.


_________________________


Problem 1 (Linear Methods for Regression)


a) For the ridge regression problem, one has to solve


  .


Find the relations between the parameters ’s and ’s such that the above 

optimization problem can be stated equivalently as


	(3 pts)


b) Consider the case of an orthonormal input matrix  and let 

 be the least square estimators of the parameters. Derive the 

estimators in Table 3.4 in the course book:
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for the best subset with size  (2 pts), ridge regression (2 pts), and Lasso (3 pts). 

Hint: Part a) and part b) are unrelated.


Problem 2 (Linear Methods for Classification)


a) Show that the degree-of-freedom of quadratic discriminant analysis equals to 

, where  is the number of classes and  is the 

dimension of the predictor variables.	(4 pts)


b) Consider Fig. 4.6 in the course book:
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Both decision boundaries in the left and right panel are quadratic but they look 

slightly different. Explain what cause(s) them to be different. Discuss which one 

(LDA in the 5-dimensional space or QDA) is more appropriate to use and justify your 

answer.	 (3 pts)  


c) In finding the separation hyperplane using Rosenblatt’s perceptron learning 

algorithm, the cost function, , is minimized, 

where  = -1 or 1, and M is the set of misclassified points. One problem of this cost 

function is that there is no unique solution (i.e., separation hyperplane) when the data 

are separable. Consider minimizing another cost function, 

 subject to the constraint , where 

all observations are summed. Describe this criterion clearly in words in terms of the 

signed distance and explain if this new cost function solves the uniqueness problem in 

the separable case.	 (3 pts) 


Problem 3 (Basis Expansion & Regularization)


a) Consider the basis expansion of a function  using the cubic splines with  

interior knots: , where  are the positions of 

the knots. Show that  has continuous first and second derivatives at the knots.   

(3 pts)


b) Now taking into account the additional boundary conditions imposed by the natural 

cubic splines, show that this implies 

.


(3 pts)
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c) Finally, show that the results in b) lead to the basis functions of the natural cubic 

spline (i.e., Eq. 5.4 and 5.5 in the course book).	 (2 pts)


d) Denote by  the N-vector fitted values  at the training predictors  in the 

smoothing spline, one has the relation , where  is the smoother matrix 

with regularization parameter . The effective degree-of-freedom (dof) is given by 

trace . Explain in words why rank  is not a good choice for the dof. You can 

cite the corresponding equations and properties in the course book to support your 

answer. Hint: Part d) is unrelated to parts a) to c).	 (2 pts) 


Problem 4 (Kernel Smoothing Methods) 


a) Consider the local linear regression at a target point  as a weighted least square 

problem: , with kernel 

. Show that the estimate  is given by 

, where  is the 

 matrix with the i-th row equal to , and  is a  diagonal 

matrix with the i-th diagonal element equal to .	 	 (4 pts)


b) Let , show 

that  and .	(4 pts)


c) In part a) and b), suppose that  is a Gaussian kernel with  the standard 

deviation. Discuss clearly in words the bias-variance tradeoff when  varies from 

small to big values.   (2 pts)


Problem 5 (Model Assessment & Selection)


f̂ f̂(xi) xi

f̂ = Sλ y Sλ

λ
(Sλ) (Sλ)

x0

min
α(x0),β(x0) ∑

N

i=1
Kλ(x0, xi)[yi − α(x0) − β(x0)xi]

2

Kλ(x0, xi) f̂(x0)
f̂(x0) = b(x0)T(BTW(x0)B)

−1
BTW(x0)y b(x)T = (1,x),  B

N × 2 b(xi)T W(x0) N × N

Kλ(x0, xi)

f̂(x0) = b(x0)T(BTW(x0)B)
−1

BTW(x0)y = ∑
N

i=1
li(x0)yi

∑
N

i=1
li(x0) = 1 ∑

N

i=1
(xi − x0)li(x0) = 0

Kλ(x0, xi) λ
λ


4



Consider data generated from the model , with 

. Further assume that the values of  in the sample are fixed 

(i.e., nonrandom). 


a) If  is the k-nearest neighbor regression fit, show that the expected prediction 

error at : 

, where 

the subscript  indicates the l-th nearest neighbor to .	 	 (4 pts)


b) Discuss the meaning of each of the three terms in the expected prediction error in 

part a) and discuss the bias-variance tradeoff as a function of k.	 (2 pts)


c) For the same setup as in part a) but now  is the ridge regression fit with 

 the complexity parameter controlling the amount of shrinkage, show that the 

expected prediction error at  equals to 

, 

where  is the N-vector linear weights.	 (4 pts)


_________________________


~ Good Luck ~
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