Facit och kommentarer till tenta 2024-03-07 1 DA2004 och DA2005

Del A

1. A, B, C. After realizing that xor exists in the module “operator”, I am also accepting E as correct

answer, even though it is meant as a bitwise operator.

®® N S ok ® N
> Q O "o =3 a =

Del B: kodfragor

9. e The return value is a list, not a string.

e The i variable is global. Python will actually signal an error because a global variable is
assigned without having a global i statement. But even if one got that right, the function

will not function correctly in subsequent calls.

10. def rev (string_to_reverse) :

e

Return the input string, but reversed.
e
if s == "':
raise ValueError ('Empty string given to rev')
reversed_s = "'
for char in string_to_reverse:
reversed_s = char + reversed_s
return reversed_s

11. First suggestion, a compact function using list comprehension:

def monotonic(lst):
lstl = 1st[:-1]
1st2 = 1st[1l:]
diffs = [ el - e2 for (el, e2) in zip(lstl, 1lst2)]

return all (diff >= 0 for diff in diffs) or all(diff <=

Second suggestion, using a function in the standard library:

def monotonic2 (lst) :
if 1st == sorted(lst):
return True
elif 1st == sorted(lst, reverse=True):
return True
else:
return False

And a third suggestion, simpler and perhaps more straightforward:

def increasing(lst):
for i in range(len(lst)-1):
if 1st[i] > 1st[i+1]:
return False
return True

def decreasing(lst) :
for i in range(len(lst)-1):

0 for diff in diffs)



if 1st[i] < 1lst[i+l]:
return False
return True

def monotonic3(lst) :
if increasing(lst) or decreasing(lst):
return True
else:
return False

To make this solution more "self containing”, one can make the increasing and decreasing functions
internal to monotonic3.

12. def loan_analysis(initial_loan, monthly_ payment, yearly_interest):
loan = initial_loan
month = 0
while loan > monthly_payment:
month += 1
interest = round(loan * yearly_interest / 12, 2)
loan = round(loan + interest - monthly_ payment, 2)
print (month, loan, interest)

13. class Table:
def _ init_ (self):
self._ldict = {}
self._rdict = {}

def add(self, key, val):
self._ldict[key] = val
self._rdict[val] = key

def items (self):
return self._ldict.items ()

def get (self, key):
if key in self._ldict:
return self._ldict [key]
elif key in self._rdict:
return self._rdict[key]
else:
raise KeyError (f"'{key}' is not found in the table")

def _ repr_ (self):
return str(self)
def _ str_ (self):
return f'<Table {str([(a, b) for a, b in self._ldict.items()]) }>"'



