Lecture 11: Stochastic Calculus

1. Definition and Properties of Stochastic Integrals
 1.1 Model assumptions
 1.2 Definition of stochastic integral
 1.3 Properties of stochastic integral

2. Stochastic differential
 2.1 Definition of stochastic differential
 2.2 Simple stochastic calculus
 2.3 Product and chain rules
 2.4 Examples

3. Itô’s formula
 3.1 Variants of Itô’s formulas
 3.2 Examples

4. LN Problems
1. Definition and Properties of Stochastic Integrals

1.1. Model assumptions

Our goal is to define so-called stochastic integrals of the following form,

\[I(t) = \int_0^t g(s)ds + \int_0^t h(s)dW(s) \]

Riemann integral \hspace{1cm} Stochastic integral
for stochastic \hspace{1cm} for stochastic function \(h \)
function \(g \) \hspace{1cm} with respect to BM

Let \(\{W(t), t \geq 0\} \) be a standard Brownian Motion (Wiener process) defined on a probability space \(<\Omega, \mathcal{F}, \mathcal{P}> \).

Let also \(\{\mathcal{F}_t, t \geq 0\} \) be a filtration for the same probability space, i.e., a family of \(\sigma \)-algebras satisfying the following conditions:

A: \(\mathcal{F}_t \subseteq \mathcal{F}, t \geq 0 \).

B: \(\mathcal{F}_t \subseteq \mathcal{F}_s \) if \(t \leq s \).

We also assume that the following additional conditions hold:

C: \(W(t) \) is \(\mathcal{F}_t \)-measurable for every \(t \geq 0 \), i.e. process \(W(t) \) is adopted to the filtration \(\{\mathcal{F}_t\} \).

D: \(W(t + s) - W(t) \) is independent of \(\mathcal{F}_t \), for every \(t, s \geq 0 \).
The simplest filtration that satisfies conditions A - D is

$$\mathcal{F}_t = \sigma(W(s), 0 \leq s \leq t), \; t \geq 0$$

Let also $H_2[0, T]$ be a space of stochastic functions $\{f(t), \; t \geq 0\}$ defined on the same probability space $<\Omega, \mathcal{F}, \mathcal{P}>$ and satisfying the following conditions:

E: $f(t)$ is \mathcal{F}_t - measurable for every $t \geq 0$ ($f(t)$ is adopted to the filtration $\{\mathcal{F}_t\}$).

F: $\int_0^T E f^2(t) dt < \infty$.

1.2 Definition of stochastic integral

We define stochastic integral,

$$I = \int_0^T f(t) dW(t)$$

in two steps, first for stochastic step functions (integral sums), and then for functions $\{f(t)\} \in H_2[0, T]$ using the corresponding limit transition.

Let $f(t)$ be a stochastic step function, i.e., a stochastic function from the space $H_2[0, T]$ (in this case, condition E holds if $f(t_k)$ is \mathcal{F}_{t_k}-measurable for every $k = 0, 1, \ldots, m$) satisfying the following condition:

$$f(t) = f(t_k) \text{ for } t_k \leq t < t_{k+1}, \; k = 0, \ldots, m \quad (1)$$

where $0 = t_0 < t_1 < \ldots < t_m = T$.

3
Definition 11.1. The stochastic integral for a step function \(f(t) \) from the space \(H_2[0, T] \) is defined by the formula,

\[
I_T(f) = \int_0^T f(t) dW(t) = \sum_{k=0}^{m-1} f(t_k) \left(W(t_{k+1}) - W(t_k) \right). \quad (2)
\]

Henceforth, use notation \(E_t X = E\{X / \mathcal{F}_t\} \).

\[(1) \quad E I_T(f) = 0. \]

(a) Using conditions D and E, we get,

\[
E \int_0^T f(t) dW(t) = E \left[\sum_{k=0}^{m-1} f(t_k) \left(W(t_{k+1}) - W(t_k) \right) \right]
\]

\[
= \sum_{k=0}^{m-1} E \left\{ E_{t_k} \left\{ f(t_k) \left(W(t_{k+1}) - W(t_k) \right) \right\} \right\}
\]

\[
= \sum_{k=0}^{m-1} E \left\{ f(t_k) E_{t_k} \left(W(t_{k+1}) - W(t_k) \right) \right\}
\]

\[
= \sum_{k=0}^{m-1} E \left\{ f(t_k) E \left\{ W(t_{k+1}) - W(t_k) \right\} \right\} =
\]

\[
= \sum_{k=0}^{m-1} E \left\{ f(t_k) \times 0 \right\} = 0.
\]

\[(2) \quad E(I_T(f))^2 = \int_0^T E f(t)^2 dt. \]
(a) Using conditions D and E, we get,
\[
E\left(\int_0^T f(t) dW(t)\right)^2 = E\left(\sum_{k=1}^{m-1} f(t_k) (W(t_{k+1}) - W(t_k))\right)^2
\]
\[
= E\sum_{k=1}^{m-1} f(t_k)^2 (W(t_{k+1}) - W(t_k))^2
\]
\[
+ 2E\sum_{k<r} f(t_k)f(t_r) (W(t_{k+1}) - W(t_k))(W(t_{r+1}) - W(t_r)) =
\]
\[
= \sum_{k=1}^{m-1} E\left\{f(t_k)^2 E_{t_k}\left\{(W(t_{k+1}) - W(t_k))^2\right\}\right\} +
\]
\[
+ 2\sum_{k<r} E\left\{f(t_k)f(t_r) (W(t_{k+1}) - W(t_k))E_{t}\left\{(W(t_{r+1}) - W(t_r))\right\}\right\}
\]
\[
= \sum_{k=1}^{m-1} Ef(t_k)^2(t_{k+1} - t_k) + 0 = \int_0^T Ef(t)^2 dt.
\]

Let \(f(t) \) be a stochastic function from the space \(H_2[0,T] \).

Theorem 11.1. If conditions A – F holds, then:

I. There exist step functions \(f_n(t) \) from the space \(H_2[0,T] \) such that
\[
\lim_{n \to \infty} \int_0^T E|f(t) - f_n(t)|^2 dt = 0. \tag{3}
\]

II. Random variables \(I_T(f_n) = \int_0^T f_n(t) dW(t) \) converge in mean-square sense to some random variable \(I \), i.e.,
\[
E(I - \int_0^T f_n(t) dW(t))^2 \to 0 \text{ as } n \to \infty. \tag{4}
\]
III. The limit \(I \) does not depend on the choice of approximating sequence \(f_n(t) \), for which relation (3) holds, i.e., any two such limits a.s. coincide.

Definition 11.2. The stochastic integral for a function \(f(t) \) from the space \(H_2[0, T] \) is defined as a random variable \(I \) that penetrates Theorem 11.1, i.e.,

\[
I = I_T(f) = \int_0^T f(t)dW(t). \tag{5}
\]

(a) \(H_2[0, T] \) is a linear space with a norm squared \(\|f\|^2 = \int_0^T \mathbb{E}f(t)^2dt \). Proposition I follows from the corresponding general property of this space.

(b) Relation (3) implies that

\[
\lim_{n,m \to \infty} \int_0^T \mathbb{E}|f_n(t) - f_m(t)|^2dt = 0. \tag{6}
\]

(c) Thus, by property (2) for stochastic integrals for step functions,

\[
\lim_{n,m \to \infty} \mathbb{E}\left(I_T(f_n(t)) - I_T(f_m(t)) \right)^2 = \lim_{n,m \to \infty} \mathbb{E}\left(I_T(f_n(t) - f_m(t)) \right)^2 \\
= \lim_{n,m \to \infty} \int_0^T \mathbb{E}|f_n(t) - f_m(t)|^2dt = 0. \tag{7}
\]

(d) Thus, the sequence \(I_T(f_n(t)) \) is fundamental, and, therefore, exists a random variable \(I \) such that \(\mathbb{E}(I_T(f_n(t)) - I)^2 \to 0 \) as \(n \to \infty \).
(e) If also $E(I_T(f_n'(t)) - I')^2 \to 0$ as $n \to \infty$ then $E(I - I')^2 = E\left((I - I_T(f_n(t)) + (I_T(f'_n(t)) - I) + I_T(f_n(t) - f'_n(t))\right)^2 \leq 3(E(I_T(f_n(t)) - I)^2 + E(I_T(f'_n(t)) - I')^2 + E(\int_0^T (f_n(t) - f'_n(t))dt)^2) \to 0$ as $n \to \infty$ since $E(\int_0^T (f_n(t) - f'_n(t))dt)^2 = \int_0^T E(f_n(t) - f'_n(t))^2dt \leq 2(\int_0^T E(f_n(t) - f(t))^2dt + \int_0^T E(f'_n(t) - f(t))^2dt \to 0$ as $n \to \infty$. Thus, $P\{I = I'\} = 1$.

\[\text{(1)} \] The condition F can be weaken to the assumption that $\int_0^T f^2(t)dt < \infty \text{ a.s.}$ in the definition of stochastic integrals $\int_0^T f(t)dW(t)$. See SK: Chapter 30.

1.3 Properties of stochastic integral

The properties listed below can be first by checking them for step stochastic functions from the space $H_2[0, T]$ and then by translating them to any stochastic function from the space $H_2[0, T]$ with the use of limiting transition based on approximation relations given in Theorem 11.1.

\[\text{(1)} \] If $f_1, f_2 \in H_2[0, T]$ and α_1, α_2 are random variables such that $\alpha_1 f_1(t), \alpha_2 f_2(t) \in H_2[0, T]$, then $\alpha_1 f_1(t) + \alpha_2 f_2(t) \in H_2[0, T]$ and,

\[
\int_0^T (\alpha_1 f_1(t) + \alpha_2 f_2(t))dW(t) = \alpha_1 \int_0^T f_1(t)dW(t) + \alpha_2 \int_0^T f_2(t)dW(t). \tag{8}
\]
(2) The following formula takes place for any \([a, b] \subseteq [0, T]\),
\[
\int_0^T I_{[a,b]}(t)dW(t) = W(b) - W(a).
\]

(3) If \(f \in H_2[0, T]\), then,
\[
\mathbb{E}I_T(f) = 0,
\] \(E(I_T(f))^2 = \int_0^T \mathbb{E}f(t)^2 dt.\)

(4) Stochastic integral \(I_t(f) = \int_0^t f(s)dW(s)\), as function of the upper limit \(t\), is a continuous stochastic process.

(5) Stochastic process \(I_t(f)\) is a martingale.

2. Stochastic differential

2.1. Definition of stochastic differential

Definition 11.3 Let a stochastic process \(X(t), t \geq 0\) satisfy the following relation
\[
X(t_2) - X(t_1) = \int_{t_1}^{t_2} a(t)dt + \int_{t_1}^{t_2} b(t)dW(t), 0 \leq t_1 \leq t_2 \leq T,
\] \(\sqrt{|a(t)|}\) and \(b(t)\) are stochastic functions from \(H_2[0, T]\).

Then we say that the process \(X(t)\) has Itô differential,
\[
dX(t) = a(t)dt + b(t)dW(t).
\]
\[F(t) = \int_0^t f(x)dg(x) = \]
\[= \lim_{n \to \infty} \sum_k f(t_{nk})(g(t_{nk+1}) - g(t_{nk})) \]
\[F(t_2) - F(t_1) = \int_{t_1}^{t_2} f(x)dg(x) \]
\[dF(x) = f(x)dg(x) \]

If \(g(x) = x \) then
\[F(t) = \int_0^t f(x)dx \]
\[F(t_2) - F(t_1) = \int_{t_1}^{t_2} f(x)dx \]
\[dF(x) = f(x)dx \] that means \(F'(x) = f(x) \).

2.2 Simple stochastic calculus

Simple calculus

\[dx = 1 \cdot dx \ (f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}, \ x' = 1) \]
\[df(x)g(x) = f(x)dg(x) + g(x)df(x) \]
\[dx^2 = d(x \cdot x) = dx + dx = 2xdx \]
\[\ldots \]
\[\left\{ \begin{array}{l}
 dx^m = mx^{m-1}dx \\
 \int_{x_1}^{x_2} mx^{m-1}dx = x^m
\end{array} \right. \]
Lemma 11.1. The following formula takes place,
\[dW^2(t) = dt + 2W(t)dW(t) \] \hspace{1cm} (14)

Lemma 11.2. The following formula takes place,
\[d(tW(t)) = W(t)dt + tdW(t) \] \hspace{1cm} (15)

(a) Let \(t_1 = t_{n0} < t_{n1} < \ldots < t_{nn} = t_2 \) and \(\Delta_n = \max_k (t_{nk+1} - t_{nk}) \to 0 \) as \(n \to \infty \).

(b) By the definition of stochastic integral,
\[
\int_{t_1}^{t_2} W(t)dW(t) = \lim_{n \to \infty} (m.s.) \sum_{k=0}^{n-1} W(t_{nk})(W(t_{nk+1}) - W(t_{nk})). \hspace{1cm} (16)
\]

(c) The following formulas take place,
\[
\sum_{k=0}^{n-1} W(t_{nk})(W(t_{nk+1}) - W(t_{nk})) = \frac{1}{2} \sum_{k} \left((W(t_{nk+1})^2 - W(t_{nk})^2) - (W(t_{nk+1}) - W(t_{nk}))^2 \right)
\]
\[
= \frac{1}{2} (W(t_2)^2 - Z(t_1)^2) - \frac{1}{2} \sum_{k=p}^{n-1} (W(t_{nk+1}) - W(t_{nk}))^2
\]
\[
= \frac{1}{2} (W(t_2)^2 - W(t_1)^2) - \frac{1}{2} \sum_{k=p}^{n-1} (W(t_{nk+1}) - W(t_{nk}))^2. \hspace{1cm} (17)
\]
(d) We also should prove that the so-called quadratic variation for BM,

\[[W, W]_{t_2} = \lim_{n \to \infty} (m.s.) \sum_{k=0}^{n-1} (W(t_{nk+1}) - W(t_{nk}))^2 = t_2 - t_1. \]

(18)

(e) Relations (16) – (18) imply that

\[W(t_2)^2 - W(t_1)^2 = \int_{t_1}^{t_2} 1 \cdot dt + \int_{t_1}^{t_2} 2W(t)dW(t) \]

(19)

(f) This is equivalent to \(dW^2(t) = dt + 2W(t)dW(t) \).

(g) Indeed,

\[\mathbb{E}\left(\sum_k (W(t_{nk+1}) - W(t_{nk}))^2\right) = \sum_k (t_{nk+1} - t_{nk}) = t_2 - t_1. \]

(20)

and

\[
\text{Var}\left(\sum_k (W(t_{nk+1}) - W(t_{nk}))^2\right)
= \sum_k \text{Var}\left((W(t_{nk+1}) - W(t_{nk}))^2\right)
\leq \sum_k \mathbb{E}\left((W(t_{nk+1}) - W(t_{nk}))^4\right)
= \sum_k 3(t_{nk+1} - t_{nk})^2
\leq 3\Delta_n \sum_k (t_{nk+1} - t_{nk})
= 3\Delta_n (t_2 - t_1) \to 0 \text{ as } n \to \infty.
\]

(21)
(h) Thus,
\[E\left| \sum_k \left(W(t_{nk+1}) - W(t_{nk}) \right)^2 - (t_2 - t_1)^2 \right| \rightarrow 0 \text{ as } n \rightarrow \infty. \] (22)

(i) By the definition of stochastic integral,
\[
\int_{t_1}^{t_2} W(t)dt + \int_{t_1}^{t_2} tdW(t) = \lim_{n \to \infty} \left(\sum_{k=0}^{n-1} W(t_{nk+1})(t_{nk+1} - t_{nk})
+ \sum_{k=0}^{n-1} t_{nk}(W(t_{nk+1} - W(t_{nk})) \right). \] (23)

(j) But,
\[
\sum_{k=0}^{n-1} W(t_{nk+1})(t_{nk+1} - t_{nk}) + \sum_{k=0}^{n-1} t_{nk}(W(t_{nk+1} - W(t_{nk}))
= \sum_{k=0}^{n-1} \left(t_{nk+1}W(t_{nk+1}) - t_{nk}W(t_{nk}) \right)
= t_2W(t_2) - t_1W(t_1). \] (24)

(k) Relations (23) and (24) imply that
\[
t_2W(t_2) - t_1W(t_1) = \int_{t_1}^{t_2} W(t)dt + \int_{t_1}^{t_2} tdW(t). \] (25)

(l) This is equivalent to relation \(d(tW(t)) = W(t)dt + tdW(t). \)
2.3 Product and chain rules

Theorem 11.2 (Product rule). Let

\[
\begin{align*}
 dX_1(t) &= a_1(t)dt + b_1(t)dW(t), \\
 dX_2(t) &= a_2(t)dt + b_2(t)dW(t),
\end{align*}
\]

(26)

that is equivalent to

\[
\begin{align*}
 X_1(t) &= X_1(0) + \int_0^t a_1(s)ds + \int_0^t b_1(s)dW(s), \\
 X_2(t) &= X_2(0) + \int_0^t a_2(s)ds + \int_0^t b_2(s)dW(s),
\end{align*}
\]

(27)

then

\[
\begin{align*}
 d\left(X_1(t) \cdot X_2(t)\right) &= X_1(t)dX_2(t) + X_2(t)dX_1(t) + b_1(t)b_2(t)dt.
\end{align*}
\]

(28)

(a) Let assume that stochastic coefficients \(a_1(t) = a_1, \ b_1(t) = b_1, \ a_2(t) = a_2, \ b_2(t) = b_2\) do not depend on \(t\). Then,

\[
\begin{align*}
 X_1(t) &= a_1t + b_1W(t) \\
 X_2(t) &= a_2t + b_2Z(t)
\end{align*}
\]

(29)

(b) So,

\[
X_1(t)X_2(t) = a_1a_2t^2 + (a_1b_2 + a_2b_1)tW(t) + b_1b_2W(t)^2.
\]

(30)

(c) Thus, using Lemmas 11.1 and 11.2, we get,

\[
\begin{align*}
 d\left(X_1(t)X_2(t)\right) &= 2a_1a_2t dt \\
 &\quad + (a_1b_2 + a_2b_1)(W(t)dt + tdW(t)) \\
 &\quad + b_1b_2(dt + 2W(t)dt) \\
 &= (a_1t + b_1W(t))(a_2dt + b_2dW(t)) \\
 &\quad + (a_2t + b_2W(t))(a_1dt + b_1dW(t)) + b_1b_2dt \\
 &= X_1(t)dX_2(t) + X_2(t)dX_1(t) + b_1b_2dt.
\end{align*}
\]

(31)
(d) The corresponding limiting transition let one translate the
formula to the case of step-wise coefficients and then to coeffi-
cients depending on t satisfying conditions imposed on them in
the definition of stochastic differentials.

Theorem 11.3. The following formula takes place for $m \geq 2$,

$$dW(t)^m = mW(t)^{m-1}dW(t) + \frac{m(m-1)}{2}W(t)^{m-2}dt. \quad (32)$$

(a) $m = 2$:

$$dW^2(t) = 2W(t)dW(t) + dt. \quad (33)$$

(b) $m = 3$:

$$dW^3(t) = d(W(t)^2 \cdot W(t))$$
$$= (2W(t)dW(t) + dt)W(t) + W(t)^2dW(t) + 2W(t) \cdot 1dt$$
$$= 3W^2(t)dW(t) + 3W(t)dt. \quad (34)$$

(c) \cdots.

Theorem 11.4. Let $P(t) = a_0 + a_1 + \ldots + a_m t^m$ be a polynom
of degree m. Then,

$$dP(W(t)) = P'(W(t))dW(t) + \frac{1}{2}P''(W(t))dt. \quad (35)$$

Theorem 11.5 (chain rule). Let $f(t)$ be a function that
has the derivative $f''(t)$ which is continuous. Then,

$$df(W(t)) = f'(W(t))dW(t) + \frac{1}{2}f''(W(t))dt. \quad (36)$$
(a) It can be conducted by mean-square approximation of functions $f(t)$, $f'(t)$, $f''(t)$ by polynomials.

(1) It is useful to compare formula (36) with the corresponding deterministic formula,

$$df(g(x)) = f'(g(x))dg(x) = f'(g(x))g'(x)dx.$$ \hspace{1cm} (37)

3. Itô’s formula

3.1. Variants of Itô’s formulas

Theorem 11.6 (1st Itô formula). Let $f(t, x)$ be a function that have continuous derivatives f'_t, f'_x and f''_{xx}. Then,

$$df(t, W(t)) = \left(f'_t(t, W(t)) + \frac{1}{2}f''_{xx}(t, W(t))\right)dt$$

$$+ f'_x(t, W(t))dW(t).$$ \hspace{1cm} (38)

(a) Let consider first the case when $f(t, x) = h(t)g(x)$ then Theorem 11.5 implies that

$$d\left(h(t)g(W(t))\right) = g(W(t))h'(t)dt + h(t)dg(W(t))$$

$$= \left(g(W(t))h'(t) + \frac{1}{2}h(t)g''(W(t))\right)dt$$

$$+ h(t)g'(W(t))dW(t).$$ \hspace{1cm} (39)

(b) So, (38) holds for functions of the form $f(t, x) = h(t)g(x)$.

15
(c) The general case can be proved by approximation of functions f, f'_t, f'_x and f''_{xx} by functions of the form $\sum a_k f_k(t)g_k(x)$ and their derivatives.

\textbf{Theorem 11.6 (Itô formula).} Let $dx(t) = a(t)dt + b(t)W(t)$ and $f(t, x)$ be a function that has continuous derivatives f'_t, f'_x and f''_{xx}. Then, the following formula takes place,

$$
df(t, X(t)) = \left(f'_t(t, X(t)) + \frac{1}{2} f''_{xx}(t, X(t))b^2(t) \right) dt + f'_t(t, X(t))b(t)dW(t). \tag{40}$$

(a) Let $X(t) = x_0 + at + bW(t)$. Then, $f(t, x_0 + at + bW(t)) = \Phi(t, W(t))$, where $\Phi(t, x) = f(t, x_0 + at + bx)$.

(b) In this case,

$$
\Phi'_t(t, x) = f'_t(t, x_0 + at + bx) + f'_x(t, x_0 + at + bx)a,
\Phi'_x(t, x) = f'_x(t, x_0 + at + bx)b,
\Phi''_{xx}(t, x) = f''_{xx}(t, x_0 + at + bx)b^2. \tag{41}
$$

(c) Now application of Theorem 11.6 to function $\Phi(t, x)$ yields (40) in the case where $a(t) = a$, $b(t) = b$ are random variables which do not depend on t.

(d) Formula (40) for such $a(t)$ and $b(t)$ implies this formula for step stochastic function.

(e) The last step is based on the corresponding limiting transition from step stochastic function $X(t)$ to the case of general $X(t)$ with Itô differential.
4.2 Examples

(1)

(1.1) Consider a Geometrical Brownian Motion

\[S(t) = S(0)e^{\mu t + \sigma W(t)}, \quad t \geq 0. \] (42)

(1.2) In this case, (a) \(f(t, x) = S(0)e^{\mu t + \sigma x} \); (b) \(f'_t(t, x) = S(0)e^{\mu t + \sigma x} \mu \); (c) \(f'_x(t, x) = S(0)e^{\mu t + \sigma x} \sigma \); (d) \(f''_{xx}(t, x) = S(0)e^{\mu t + \sigma x} \sigma^2 \).

(1.3) Application of Itô formula yields the following relation,

\[
\begin{align*}
&dS(t) = \left(S(0)\mu e^{\mu t + \sigma W(t)} + \frac{1}{2} S(0)\sigma^2 e^{\mu t + \sigma W(t)} \right) dt \\
&\quad + S(0)\sigma e^{\mu t + \sigma W(t)} dW(t).
\end{align*}
\] (43)

(1.4) In this way, we have get a stochastic differential equation for the geometrical Brownian Motion,

\[
\begin{align*}
&dS(t) = (\mu + \frac{1}{2} \sigma^2)S(t)dt + \sigma S(t)dW(t).
\end{align*}
\] (44)

(2)

(2.1) Let there exist the stochastic differential \(dX(t) = a(t)dt + b(t)dW(t) \) and function \(f(x) = \frac{1}{x} \).

(2.2) In this case, \(f(t, x) = f(x) = \frac{1}{x} \) and, thus, (a) \(f'_t = 0 \); (b) \(f'_x = -\frac{1}{x^2} \); (c) \(f''_{xx} = \frac{2}{x^3} \).
(2.3) Application of Itô formula yields the following relation,

\[
\begin{aligned}
d\frac{1}{X(t)} &= \left(0 + \frac{1}{2} \frac{2}{X(t)^3} b^2(t) - \frac{a(t)}{X(t)^2} \right) dt \\
&\quad - \frac{1}{X(t)^2} b(t) dW(t) = \frac{b^2(t)}{X(t)^3} - \frac{dX(t)}{X(t)^2}.
\end{aligned}
\]

(45)

(3)

(3.1) Let there exist stochastic differentials,

\[
\begin{align*}
dX_1(t) &= a_1(t) dt + b_1(t) dW(t), \\
\begin{align*}
dX_2(t) &= a_2(t) dt + b_2(t) dW(t).
\end{align*}
\end{align*}
\]

(46)

(3.2) Then,

\[
\begin{aligned}
d\frac{X_1(t)}{X_2(t)} &= d\left(X_1(t) \cdot \frac{1}{X_2(t)} \right) \\
&= X_1(t) d\frac{1}{X_2(t)} + \frac{1}{X_2(t)} dX_1(t) + \left[- \frac{b_2(t)}{X_2(t)^2} \right] b_1(t) dt \\
&= X_1(t) \left[- \frac{dX_2(t)}{X_2(t)^2} + \frac{b_2(t)^2}{X_2(t)^3} dt \right] \\
&\quad + \frac{1}{X_2(t)} dX_1(t) - \frac{b_1(t) b_2(t)}{X_2(t)^2} dt \\
&= \frac{X_2(t) dX_1(t) - X_1(t) dX_2(t)}{X_2(t)^2} \\
&\quad + \frac{b_2(t)^2 - b_1(t) b_2(t) X_2(t)}{X_2(t)^3} dt.
\end{aligned}
\]

(47)
4. LN Problems

11.1. Let $dX(t) = a(t)dt + b(t)dW(t)$ find $df(t, X(t))$ for the cases:
(a) $f(t, x) = \ln x$;
(b) $f(t, x) = e^{tx}$;
(c) $f(t, x) = \frac{x}{x+t}$;
(d) $f(t, x) = \sin(tx)$;
(e) $f(t, x) = x^\alpha$.

11.2. Let $dX(t) = a(t)dt + b(t)dW(t)$. Prove that $X(t)$ is a martingale, i.e., $E_t\{X(t+s)\} = X(t)$, $s, t \geq 0$ if $Ea(s) = 0$, $s \geq 0$.

11.3. Let $X(t) = \exp\{bW(t) - \frac{b^2t}{2}\}$. Using Itô formula, prove that $X(t)$ is a martingale.