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Abstract

Forecasting of macroeconomic variables has for many years been
done by models with quite few variables. Today we have many differ-
ent time series that can contain relevant information. In this paper
we want to forecast one series using many predictor time series. We
will do this by applying the dynamic factor model with the factors
estimated by principal component analysis. To forecast the inflation
in Sweden we use 39 yearly macroeconomic time series for 1991-2013.
We find that three estimated factors can make a good prediction.
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1 Introduction

Economic forecasting of macroeconomic variables, such as inflation, has for
many years been done by models with quite few variables. Today we have a
lot of different time series that can contain relevant information. These time
series of potential predictor variables (n) can be so many that they exceed
the number of observations in the time series. What we want to do is to
forecast one series using many predictor time series. According to [James
H. Stock, 2006] this can be done by modeling the covariability of the series
in terms of a relatively few number of unobserved latent factors.

The aim of this thesis is to find a model that can be used to forecast the
inflation in Sweden. One way of doing this is to estimate a vector of factors
from the predictor time series and use it in a dynamic factor model (DFM).
We will make this estimate using principal component analysis. We then
get the prediction model by regressing the inflation time series against these
estimated factors. This regression is linear so we therefore get a forecast that
is linear in its predictors.

In section 2 we will look into how principal components and factor models
are connected, how to compute principal components and how the classi-
cal linear factor model is defined. We will also examine the dynamic factor
model and how to estimate and forecast with it. Section 3 contains results
from applying the preceding methods to forecast the Swedish inflation.

There are many studies that have applied these methods. For example |[Kuno-
vac, 2008] use 144 macroeconomic variables to construct a factor analysis
model by PCA to forecast the inflation in Croatia. Their conclusion is that
the factor model forecast is better than the autoregressive (AR) forecast
which is the benchmark model. [Figueiredo, 2010] try to find forecast mod-
els that are better than models typically used by the monetary authorities
(vector autoregressive models). The forecast of the inflation is done by using
macroeconomic data from the Central Bank of Brazil. As alternative mod-
els they use factor models with PC and partial least squares (PLS). Their
conclusion is that the factor model outperforms the other models. [Banerjee
et al., 2008] compare both empirical, where they use macroeconomic vari-
ables of the Euro area and Slovenia, and simulated forecasting performance
between factor models and the benchmark AR-forecast. Here they use rela-
tive short time series and their conclusion is that factor-based forecasts are
good also in short samples. This is however not true for vary small sam-
ples. [Marcellino et al., 2003] aims at comparing forecasting models such as



autoregressions, vector autoregressions (VAR) and DFM by forecasting the
Euro-area variables real GDP, industrial production, price inflation, and the
unemployment rate. Their conclusion is that within the multivariate meth-
ods the factor models are better than VARs.

2 Methods

2.1 Principal components and factor models

Principal component analysis (PCA) and factor analysis are closely related.
Both are statistical techniques used to reduct the dimension of a set of vari-
ables. The aim of PCA is to reduce a large set of variables to a smaller set
that still contains most of the information from the large set. The aim of
factor analysis is to regroup the large set of variables into a limited set of
clusters based on shared variance. Although the estimates of the two meth-
ods differ when n is small, we can see that when n increases the difference
disappears. Because of this PCA can be used to estimate the factors in the
DFM [James H. Stock, 2006].

Suppose we have p observations of correlated variables, PCA transforms these
variables into a set of linearly uncorrelated variables, which is called principal
components. Often a small number k of these principal components can ac-
count for most of the variability of the total set of variables |Johnson, 2014a].

The factor model analysis describes the covariance relationship among many
variables in terms of a few underlying, unobservable, random quantities called
common factors. The variables are thus grouped by their correlations, so
within the groups the variables are highly correlated and all groups have
small correlation with each other. Each group represent an underlying con-
struct (factor) that is responsible for the observed correlations |Johnson,
2014b|. Any variance that is not explained by the factors are described by
the residuals (error terms).

The first use of factor analysis was by psychologists who wanted to under-
stand intelligence. Intelligence tests were performed and then factor analysis
was used to analyse these tests, with the aim to establish if intelligence is
made up of one or several factors measuring properties like mathematical
ability. Other than in psychology factor analysis is often used in physical
sciences and biological sciences |[Chatfield, 1980].



2.2 Principal component analysis

Let X be a p x 1 random vector with covariance matrix 3 and eigenvalues
Al > A > ... > A, > 0. Consider the linear combinations

V;=a X =auXi+apXo+--+a,X,, i=1,...,p

Using that the linear combinations Y = a’X have Cov(Y') = Cov(a’X) =
a’Xa we obtain

Var(Y;) = a¥a;, i=1,2,...,p.
Cou(Y;,Y;) = aXa,, i,k=1,2,...,p.

The matrix a contains the loadings of the observable vector X (also known
as the eigenvectors of the covariance matrix 3), which tell us how the com-
ponents in the new space relates to the initial variables. The principal
components (also called the principal component scores, the observations
coordinates in the new space) are those uncorrelated linear combinations
Y1, Ys, ..., Y, whose variances are as large as possible |[Johnson, 2014a]. Here
the variance is the same as the corresponding eigenvalue. The first principal
component is the one with maximum variance. That is the one who maxi-
mizes Var(Y;) = ajXa;. In order to ensure uniqueness in the definition of
principal components we additionally need the weight vectors a; to have a
unit form, therefor we set the condition ala; = 1. The principal components
are now defined as:

First principal component = linear combination ajX that maximizes

Var(aiX) given condition aja; = 1.

Second principal component = linear combination a,X that maximizes

Var(a,X) given condition aja; = 1 and

Cov(a} X, a,X) = 0.

3



i:th principal component = linear combination a;X that maximizes

Var(a;X) given condition aja; = 1 and

Cov(a}X,a;X) =0 for k < i.

2.3 The linear factor model

Let X be a p x 1 vector of observable random variables with mean g and
covariance matrix 3. The classical factor analysis model can be written as

X =LF +e,

where F' is a m x 1 vector of common factors, L is a p X m matrix of factor
loadings where the coefficient ¢;; is the loading of the 7th variable on the jth
factor. These factor loadings explain the relationship between the variables
and the common factors. € is a p x 1 vector of errors.

We assume that F and e are independent and that E(F) = 0,Cov(F) =
I, E(e) = 0,Cov(e) = ¥, where VU is a diagonal matrix [Johnson, 2014b].

2.4 The dynamic factor model

Let X; be a high dimensional vector of observed time series variables at time
t. The dynamic factor model can be written as

Xit:)\i(L)/ft+uita 1= 1,...,n, (].)

where f; is a ¢ X 1 vector of (unobserved) latent dynamic factors, u,; is a
vector of mean-zero idiosyncratic (unique for each time series) disturbances
that might be serially correlated. Here we assume the factors (f;) and the
idiosyncratic disturbances (u;;) to be uncorrelated and stationary. \;(L) is a
g x 1 vector lag polynomial, where L is the lag operator. When multiplying
this vector with the time series vector f; we get the same vector but moved
backwards one time unit, i.e \;(L)f; = (NioL® + M L' + -+ + X\ L™) fy =



Xioft + Ainfic1 + -+ Nim fi—m [Cochrane, 2005]. The vector A;(L) is called

the "dynamic factor loadings .

2.4.1 The forecasting model

The forecasting equation for the variable to be forecast, Y;, can be derived

from (1),

Yir1 =BL) fe + (L)' Zy + €441

[James H. Stock, 2006] shows that this can be done by setting

Y, = A (L) fi + uyq,

where the last term is distributed independently of f; and u; fori =1, ...

and supposes that it follows the autoregression

(5y (L)uYt = Vyt¢.

Now we see that

Oy (L)Yip1 = 0y (L)' Ay (L) fe1 + via

and we get
Yier = oy (L)Ay (L)' fra + (L)Y + v

where y(L) = L7(1 — §y (L)) is a lag polynomial. Hence
E(}/:‘A*llXt? }/;‘/7 ft; thlu }/;717 ftflu s )
= EQy (L)Ay (L) frsr + v (L)Y + v |V, fo Yiers fiors )
= B(L)fi +v(L)Yy,
where

B(L) fr = E(oy (L) Ay (L) fenl fis fier, )

Here

err1 = Vyir1 + (O(L)Ay (L) fryr — EO(L)Ay (L) frsalfe, fror,)),

(2)

which has, given X, f;, Y; and their lags, mean zero. Z; includes all the laged

Y; but can also include other observable predictors.



2.4.2 Estimation

If \;(L) and B(L) have order p (finit order), then (1) and (2) can be written
in the static form

Xt :AFt—i—ut, (3)
Yir = B'F + (L) Zy + €141, (4)

where F} is an r x 1 factor vector that include the current and lagged values
of the ¢ dynamic factors, that is Fy = [f{f{_, ... fi_, 1], ue = [ure .. une), A
is a n X r matrix of factor loadings, and from the elements of (L) we get
a r x 1 vector of parameters 5. The representation (3) and (4) is called the
static form of the dynamic factor model (DFM) because F; appears without
any lags. If the dimension of F; is  we have that ¢ < r < gp. (3) implies that
the r factors can explain almost all of the variation of the n variables (the
difference is the disturbance). (4) implies that the one step ahead forecast of
the variable Y; is formed by the factors, lags of ¥; and a disturbance.

The fact that F; and u; are uncorrelated gives us Cov(X;) = ACov(F;)A" +
Cov(u;) which is recognized as the variance of the classical factor analysis.

If we assume that the eigenvalues are O(1) for Cov(u;) and O(n) for A'A
we get that the eigenvalues of C'ov(X};) are O(N) for eigenvalues 1...r and
O(1) for the remaining eigenvalues. From this we can see that the principal
components of X that could estimate A is components 1...r. From this A
we can estimate Fj.

The principal components estimator of F}; is the solution to the nonlinear
least-squares problem

T
ming,. AT (Xp — AR (X, — AF)

t=1

subject to A’A = I,.. According to [James H. Stock, 2006] the solution to this
is to set A to be the first r eigenvectors of the sample covariance matrix of X,
60\1)(Xt) =T Ethl X, X!. The estimator of the factors is F; = A’X,. Here
F, is a vector with the first 7 principal components of X;. 7! Zthl EF is
a diagonal matrix with the largest r eigenvalues of @(Xt). Thus F, is the



PCA estimator of the factors in the DFM.

2.4.3 Determination of the number of factors

To determine how many factors that should be included in the model when n
is large we can use model selection methods by information criterion. [James
H. Stock, 2002] shows that this can be accomplished given an upper bound
on the dimension and lags of F;. When estimating with PCA we can also
chose the number of eigenvalues that explain the most of the variance. [Bai
and Ng, 2002| prove that r, the dimension of F}, can be estimated using a
certain information criteria.

2.4.4 h-step ahead forecasts

Here h is a constant specifying how many steps ahead we want to forecast.
A direct h-step ahead forecasts of the variable Y; are computed by regressing
V", against F,, Y, and their lags. Iterated h-step ahead forecasts can be
computed, according to |[James H. Stock, 2010|, by first estimating a vector
autoregressive (VAR) model for F}, then using this VAR together with the
one-step ahead forecasting equation to iterate forward h periods.

2.4.5 Alternative methods for forecasting

Other methods of estimate the DFM is for example by maximum likelihood,
dynamic principal components analysis and Bayes methods. The maximum
likelihood estimation has been proven to be a good estimation when n is small
but when n gets larger it becomes inefficiently because it takes to much time
to compute. The dynamic principal component estimation has also been
proven to be good but it can not be used for forecasting. Bayes methods
are better than maximum likelihood estimation because it is much easier to
compute but today we don’t know enough to say that it is better than PCA
when n is large.

2.5 AIC

The Akaike Information Criteria (AIC) is a model selection measure, which
can be used to compare different models. The model we prefer is the one
with the smallest AIC value. AIC is defined as



AIC = 2k — 2L,

where L is the maximized log likelihood for the estimated model with &
parameters |[T'say, 2005|.

2.6 R?

R-square (R?) is the proportion of the total variation in the data that the
model explain and is thus a measure of fit. The model we prefer is the one
with an R? value as close to one as possible. R? is given in procent and is
defined as [Tsay, 2005]

R Residual sum of squares

Total sum of squares

3 Modeling

3.1 Data

The data used to construct the factors are 39 yearly time series for 1991-2013.
These macroeconomic time series were selected because they probably have
an impact on the inflation and represent the macroeconomic variables: tax,
wage, price index, real output, exchange rate, interest rate and money. The
time series were obtained from SCB and Riksbanken (2015-02-26). For more
information about the time series see Appendix. We transform all time series
by taking the first difference and then standardize them to have mean zero
and unit variance. An example of this can be seen in Figure 1 where the time
series to the left is the original and the one to the right have been transformed.

3.2 Prediction

We will now use the previous explained methods to construct a model for
the prediction of inflation in Sweden. We start by setting the time series as
columns in a matrix (X;) and compute the covariance matrix on which we
can perform PCA. A summary of the first six principal components using the
complete data set can be seen in Table 2. The factors we use are thus the
scores in the PCA. We regress the inflation time series (Y;) on the 1-lagged
inflation time series (Z;) and the 1-lagged scores from the principal compo-
nent analysis. There are many different models that can be constructed by
these principal components and the 1-lagged inflation time series. Although
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we should choose the first r principal components, we will examine another
approach as well. We will compare the models where we in Model 1 choose
the first 1,3 and 6 principal components and in Model 2 choose some 1,3
and 6 principal components. To help us decide which we should include in
the model we use a model selection tool in R. In particular we will use the
leap package and the function regsubsets which selects the best models with
respect to R?, residual sum of squares, adjusted R? Mallows’ C, or BIC.
Like in Section 2.2.2 we have the model

Yt+1 = Blﬁt + BQZt + €441,

where in Model 1 we have F, = (cl,¢2,¢3,c4,cb, cb), F, = (cl,¢2,¢3) and
F, = (c1) and in Model 2 we have F, = (c2,¢3,¢b, 6,7, c8), F, = (€2, €3, c8)
and F, = (¢2) where cl is the 1-lagged first principal component, ¢2 the
1-lagged second principal component etc.

3.3 Results

To get some sort of idea if the models are good we will compare it to the
following benchmark model

}A/;f+1 = K? (5)

that is, we suppose that the inflation will not change over the year. The
comparison will be between the mean squared errors (MSE), that is the sums

S v O
S s g

where (7) belongs to the prediction using Model 1 and Model 2 and (6) to
the prediction using the benchmark model (5).

We can see in Table 1 that regarding the MSE, all models are better predic-
tion models than the benchmark model. The preferable model are Model 1
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with 6 PCs, although we want to have a model with as few factors as pos-
sible. The R? is similar and about 90% in all models but Model 1: 1 PC,
which also is the only one that have an positive AIC. Variation explained
refer to the total variation of the original data set explained by the principal
components. We can see that the factors in Modell 1 explain more of the
variation than the factors in Model 2.

Modell 1 Modell 2 Benchmark
6 PC 3 PC 1 PC 6 PC 3 PC 1 PC model
R? 0.8918 | 0.8791 | 0.0961 | 0.9398 | 0.9204 | 0.8198 -
AIC -22.48 | -26.16 12.09 -34.79 | -34.94 | -21.78 -
Var. exp. | ca 90% | ca 70% | ca 35% | ca 50% | ca 35% | ca 30% -
MSE 0.0330 | 0.2649 | 1.3397 | 0.3460 | 0.4002 | 0.3731 2.3600

Table 1: R-squared, AIC, variation explained (var. exp.) for Model 1 and
Model 2 with 6, 3 and 1 principal components and mean squared error for
all models.

4 Discussion

As this thesis do not compare different models it is hard to have a direct con-
clusion about the model. All models tested were better than the benchmark
model, but then again, the benchmark model was not a realistic model. If
we look at Figure 2-5 we can conclude that the prediction is better in the
case with 6 PCs. Model 1: 1 PC should not be used to forecast. As we want
a simple model the preferable model would be Model 1 with 3 PC, because
it is easy to find the factors and make the prediction model and we also have
a much smaller model than we started with.

According to other studies the DFM seems to outperform other similar mod-
els, such as VA and VAR. In our empirical studies we only look at the DFM
but the results seem to confirm their conclusions.

To get better precision on the predictions we could use a lot more time
series, as we used very few in this studie, and for a longer time period. It
would be interesting to compare the DFM models we get with some VA and
VAR as well to see if our DFM is in fact better than the models often used
today with the purpose to predict macroeconomic variables.
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Appendix

Data

Price index:

Property Price Index for Rural, 1992=100, Sweden

Property Price Index for permanent smal houses (1981=100), Sweden

Property Price Index for secondary residence (1981=100), Sweden

Property Price Index for permanent houses, 1990=100, Sweden

Building Price Index for housing (BPI), inkl value added tax,
1968=100 apartment buildings, function indices

Building Price Index for housing (BPI), inkl value added tax,
1968=100 apartment buildings, quality indices

Factor price index (FPI) for residences inkl, wage adjustment,
1968=100 apartment buildings

Factor price index (FPI) for residences
exkl, wage adjustment och value added tax, 1968=100 apartment buildings

Consumer price index (CPI)/Cost-of-living index, july 1914=100

Consumer price index (CPI) annual average overall, shadow index, 1980=100

Consumer price index (CPI) constant taxes, annual average, 1980 = 100

Producer Price Index (PPI), 2005 = 100 by product group SPIN 2007

Import price index (IMPI), 2005=100 by product group SPIN 2007

Export price index (EXPI), 2005=100 by product group SPIN 2007

Home sales price index, 2005=100 by product group SPIN 2007

Real output:

Completed apartments

Completed houses, number of room units

Reconstruction of apartment buildings, supplementation of apartments

Imports total, mskr

Export total, mskr

Net trade, mskr
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Wage:

Average personal monthly wage, skr, all levels of education

Swedens population

Earnings for all full-year and full-time employees for persons 20-64 years,
average, tsek / per cent of earnings

Earnings for all full-year and full-time employees for persons 20-64 years,
median, tsek

Total income for residents in Sweden 31/12, 16+ years, average income tskr
Total income for residents in Sweden 31/12, 16+ years, median income tskr
Total income for residents in Sweden 31/12, 16+ years, total income mnskr

Tax, exchange rate, interest rate and money:

Swedish TCW index

Price base amount , skr

Tax rate, total local

Currencies: USD against Swedish kronor

Currencies: EUR against Swedish kronor

International Government Bonds, maturity 5 years: US
International Government Bonds, maturity 5 years: JP
Mortgage Bonds, 5Y

Swedish Government Bonds, 5Y

Treasury Bills, SE 6M

STIBOR (Stockholm interbank offered rate), 6M

Tables

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 3.2959 | 2.7757 | 2.1024 | 1.91527 | 1.67066 | 1.41570
Proportion of Variance | 0.2785 | 0.1976 | 0.1133 | 0.09406 | 0.07157 | 0.05139
Cumulative Proportion | 0.2785 | 0.4761 | 0.5894 | 0.68347 | 0.75504 | 0.80643

Table 2: Summary of the first six principal components for the total data
set.

Figures
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Before After

1500
|
2

Figure 1: One of the 39 time series before and after taking the first difference
and standardizing.

Model 2 : 6 PC

4
|

1995 2000 2005 2010

Figure 2: The inflation time series in blue and the predicted inflation in red
with Model 2, six principal components.

15



Model 2 : 1 PC
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Figure 3: The inflation time series in blue and the predicted inflation in red
with Model 2, one principal component.

Model 1: 6 PC
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1995 2000 2005 2010

Figure 4: The inflation time series in blue and the predicted inflation in red
with Model 1, six principal components.
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Model 1 :1 PC
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Figure 5: The inflation time series in blue and the predicted inflation in red
with Model 1, one principal component.
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