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Abstract

In this thesis we will apply and compare two autoregressive condi-
tional heteroscedasticity models, the GARCH(1, 1) and EGARCH(1, 1),
to see which one is the better to use for predicting future volatility
in time series data. In statistics these models are used when we en-
counter time series data that is heteroscedastic, i.e. has a non-constant
variance. Both models use information about previous values and
volatility to determine future volatility, but EGARCH(1, 1) includes
properties that takes in to consideration that volatility respond asym-
metrically to positive and negative shocks. In this thesis we will apply
both the assumption of standard normal distribution and Student’s t
distribution to the stock returns of Texas Instruments and then ap-
ply the models to this time series. The models and distributions will
be compared by constructing confidence intervals based on predicted
variances, computed AIC and MeSSIE values and Ljung-Box tests.
The results will show us that the models and assumed distributions
were quite alike, but after discussion we would rather assume a Stu-
dent’s t distribution and use a EGARCH(1, 1) model to predict the
volatility of tomorrow of Texas Instrument stock returns.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-
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1 Introduction

The financial market is one area where it is common to see values which over
time have a changing variation. Return of assets as stocks, exchange rates
or changes of inflation rates have the tendency to vary differently over time.
These are values which we would like to be able to model so that we can
predict how they will behave in the future. If we know how much the value
of an asset will vary tomorrow, we can decide if we would like to invest in it
today or not. Or if a central bank knew how much the inflation rate would
vary in the future, they could make changes to regulate it. But when they
vary differently over time this becomes more difficult. One of the assets in
which we can see that there is a difference in variation over time is in the
daily stock returns of Texas Instruments.

Two models that have the ability to predict volatility is the GARCH(1, 1)
and EGARCH(1, 1). These have different properties that are constructed
to model reality and these are just a few of the autoregressive conditional
heteroscedasticity models. Since they have different properties but both are
invented to be able to predict the same thing, it is interesting to compare
them so that we in the future are sure to be using the one with the best
predictive ability. The aim of this thesis is to analyse which of these two
models that are the best to use when we want to predict the future volatility
of Texas Instruments stock returns.

This thesis will in section 3 start with a presentation of the theory that will
be used to analyse and compare these models. The theory will give a short
overview of how the two models are constructed. Since a few assumptions
about the time series data (the stock returns) has to be fulfilled for the
models to work properly, we will in section 4 continue with an analysis of
the data to see if these underlying assumptions hold. In this section we
will analyse which of two distributions that is suitable to assume that the
returns have, the standard normal distribution or Student’s t distribution.

In section 5 the modeling and forecasting of volatility will be described and
results of which the comparison of the two models predictive ability will be
based on is presented in section 6.

In the discussion, section 7, we will compare the results and see if they are
enough to separate the models ability from each other and choose the one
that is the best.
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2 Background

In most statistical models we have to assume that data has constant volatil-
ity for the models to work properly. The phenomenon of constant volatility
is called homoscedasticity while non-constant is called heteroscedasticity.
The assumption of constant volatility is often violated in the financial mar-
ket. We refer to it as clustering volatility when there are periods of high
volatility and periods of low volatility in time series data and this is a com-
mon behaviour amongst returns of assets.

In 1982 Robert F. Engle introduced a model which uses the fact that data is
heteroscedastic: the ARCH model (AutoRegressive Conditional Heteroscedas-
ticity model). He received The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2003 for his financial analyses with the model.
The ARCH model uses information about past values of data to determine
future volatility.

An extension of the ARCH model was introduced by Tim Bollerslev in 1986:
the GARCH model (Generalized AutoRegressive Conditional Heteroscedas-
ticity model). The model does not only include information about past
values to determine future volatility, but also the past conditional variances
that are known.

The ARCH and GARCH model both use a shock term as one of the compo-
nents to predict the future volatility, however they only consider the mag-
nitude of the shock term. It is known that the financial market responds
asymmetrically to positive and negative shocks. The variance of an asset
seems to increase when the market is hit by a negative shock, while it does
not increase as much when it is hit by a positive shock. This property is
something that Daniel B. Nelson’s extension, the EGARCH model, allows
for.

The EARCH model (Exponential AutoRegressive Conditional Heteroscedas-
ticity model) was introduced by Daniel B. Nelson in 1991. He suggests a
model which predicts the natural logarithm of the conditional variance and
include properties which also changes the variance due to what algebraic sign
the shock term has. The question is if the asymmetrical response to shock
have to be included to make a better prediction of the volatility of tomorrow.

There are many extensions of the ARCH and GARCH models, such as inte-
grated GARCH, GJR-GARCH, asymmetric power ARCH and so on. They
all have different properties and are said to handle different phenomenons
within the data better than the other. In this thesis, the GARCH and
EGARCH models will be applied and compared.
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3 Theory

This section will present definitions of models, tests and terms used to anal-
yse data and compare the results of applied GARCH and EGARCH models.

3.1 ARCH and GARCH

3.1.1 ARCH(q)

The ARCH model (AutoRegressive Conditional Heteroscedasticity model)
was introduced by Robert F. Engle in 1982. The ARCH model should be
used when time series data are heteroscedastic and with information about
past values the model can help us determine future volatility, σt. Engle
suggests the following model for the random variable at:

at = σtεt, (3.1)

σ2
t = α0 + α1a

2
t−1 + ...+ αqa

2
t−q. (3.2)

In the model εt is white noise with V ar(εt) = 1 and we will refer to it as
the shock term. It is often assumed to be standard normal distributed or
standardized Student’s t distributed. The coefficients α0 > 0 and αi ≥ 0
for i = 1, ..., q are scalar parameters (Engle, 1982). The random variable at
is stationary, which means that its distribution will not change over time
(Tsay, 2005, pp. 105).

The ARCH(q) model suggests that the value of at depends upon knowledge
about previous values {at−1, ..., at−q}, also called the lagged values. The
parameters that are to be estimated in the model are α0 and αi, i = 1, ..., q.
The latter ones will represent the weight that previous values will have on
determining σ2

t . We call this previous information Ψt−1, the information
known at time t− 1 (Engle, 1982).

For the interested reader, the conditional and unconditional expected values
and variances of at will be derived in Appendix 1.

3.1.2 ARCH(1)

Letting the lag, q, in an ARCH model (equation 3.2) be one give us the
ARCH(1) model:

σ2
t = α0 + α1a

2
t−1. (3.3)

In the model α0 > 0 and α1 ≥ 0. There are now only two parameters,
α0 and α1, that are to be estimated in the model, where α1 represent the
impact that a2

t−1 have on σ2
t . See Appendix 1 for derivations of the expected

value and variance of at in the model ARCH(1).
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3.1.3 GARCH(p, q)

The GARCH model (Generalized AutoRegressive Conditional Heteroscedas-
ticity model) is an extension of the ARCH model. It was introduced by Tim
Bollerslev in 1986. The model does not only use the lagged values to deter-
mine the conditional variance of at (as in the ARCH model), it also includes
the lagged conditional variances to the known information. Bollerslev argues
that the GARCH extension gives a more flexible lag structure and allows
for a longer memory. We use the same expression and assumptions for at
(equation 3.1), and Bollerslev’s extension follows:

σ2
t = α0 +

q∑
i=1

αia
2
t−i +

p∑
j=1

βjσ
2
t−j , (3.4)

p ≥ 0, q > 0,

α0 > 0, αi ≥ 0 for i = 1, ..., q,

βj ≥ 0, for i = j, ..., p,

see Bollerslev, 1986. The parameters αi are called the ARCH parameters
and βj the GARCH parameters and they are both scalar and non-stochastic.
They will be estimated to determine the impact that either the previous
known squared values, a2

t−i, i = 1, ..., q, or previous conditional variances,
σ2
t−j , j = 1, ..., p, will have on σ2

t . If p = 0 the model reduces to an ARCH(q).

See Appendix 1 for derivations of the conditional and unconditional expected
values and variances of at in a GARCH(p, q) model.

3.1.4 GARCH(1, 1)

The simplest version of a GARCH model is the GARCH(1,1). Remember
that we define at as a at = σtεt, where εt is white noise with variance 1.
The conditional variance of at is then expressed as

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1. (3.5)

See equation 3.4 for conditions for the coefficients. As we see, this variance
depends upon the squared one lag value of a and the one lag conditional
variance and their effect on σ2

t is determined by the estimated α0, α1 and β1.

See Appendix 1 for derivations of the conditional and unconditional expected
values and variances of at in a GARCH(1, 1) model.
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3.2 EARCH and EGARCH

3.2.1 EARCH

EARCH, exponential ARCH, was introduced by Daniel B. Nelson in 1991.
In ARCH and GARCH models we use a constraint of non-negative param-
eters in the expression for the conditional variance, σ2

t , to ensure that the
implied variance does not become negative. This restricts the modeling
since the parameter estimates do become negative at times. This constraint
is not included in the EARCH model. Instead Nelson introduces a model
to estimate ln(σ2

t ) and thereby ensure a non-negative variance and negative
parameters can be used. The EARCH model also handle a shock to the
market, represented by the ε term, differently from the previously studied
models. Some theories imply that the volatility of a financial asset does not
have a symmetric response to a negative and positive shock. While ARCH
and GARCH only use the magnitude of a shock to predict future volatility,
EARCH also includes the sign of the shock.

Nelson suggests the following model, called EARCH, to define the condi-
tional variance, σ2

t , of at = σtεt. The shock term, εt, is once again white
noise with variance equal to 1.

ln(σ2
t ) = α0 +

∞∑
k=1

αkg(εt−k), α1 = 1. (3.6)

In the model α0 and αk are scalar, non-stochastic parameters and g is a
function defined as

g(εt) ≡ θεt + γ[|εt| − E|εt|],

see Nelson, 1991. The random sequence of the white noise variable,
{g(εt)}t=(−∞,∞), is independent and identically distributed. The unknown
parameters in EARCH are α0, αk, θ, γ. This function gives the conditional
variance, σ2

t , the properties that are special for EARCH and EGARCH. The
two terms in the g function (θεt and γ[|εt| − E|εt|]) represent the effects of
the algebraic sign of εt and a magnitude effect respectively.

We begin by studying the magnitude effect (γ[|εt| − E|εt|]) of εt on ln(σ2
t ).

Assume that θ = 0 and γ > 0, then

if |εt| < E|εt| =⇒ g(εt) < 0,

if |εt| > E|εt| =⇒ g(εt) > 0.

That is, if the magnitude of the white noise, εt, is smaller (larger) than
expected, then g(εt) will be less (larger) than zero and have a negative (pos-
itive) effect on ln(σ2

t ). The assumption of γ > 0 assumes that the conditional
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variance of, say an asset, will be larger when a large shock hits and smaller
when a small shock hits, which often is how we assume that an asset varies
due to shocks.

If we now study the “sign effect” of εt, we assume that γ = 0 and θ < 0,
then

if εt < 0 =⇒ g(εt) > 0,

if εt > 0 =⇒ g(εt) < 0.

That is, if there is a negative (positive) shock accuring, then g(εt) will have
a positive (negative) effect on ln(σ2

t ) (Nelson, 1991, 351). Now the assump-
tion of θ < 0 indicates that the volatility in a market is higher when affected
of negative shocks, which also often is what is assumed in financial markets.
The volatility in a market will increase more with negative shocks than with
positive shocks. Therefore we would expect θ to be estimated to a negative
value.

Note that g(εt) has expected value zero since E[εt] = 0 and

E[g(εt)] = E[θεt + γ[|εt| − E|εt|]] =

= E[θεt] + E[γ[|εt| − E|εt|]] =

= θE[εt] + γ(E|εt| − E|εt|) = 0,

see Nelson, 1991.

3.2.2 EGARCH(p, q)

Equation 3.6 extends to a EGARCH(p, q) model where we include the log-
arithmic value of the lagged conditional variances, σ2

t−j , of at−j = εt−jσt−j .
We get

ln(σ2
t ) = α0 +

q∑
i=1

αig(εt−i) +

p∑
j=1

βj ln(σ2
t−j), α1 = 1. (3.7)

Inserting the expression for g(εt−i) in ln(σ2
t ) gives us

ln(σ2
t ) = α0 +

∑q
i=1 αiθεt−i + γ[|εt−i| − E|εt−i|] +

∑p
j=1 βj ln(σ2

t−j),

and using that εt = at
σt

we get

ln(σ2
t ) = α0 +

∑q
i=1 αiθ

at−i
σt−i

+
∑q

i=1 αiγ[ |at−i|σt−i
−E[ |at−i|σt−i

]] +
∑p

j=1 βj ln(σ2
t−j),

8



see Tsay, 2005, page 125. The unknown parameters that are to be estimated
in this model are α0, αi, i = 2, ..., q, βj , j = 1, ..., p, θ and γ. The EGARCH
model does not only consider the magnitude and algebraic sign of the ear-
lier white noise variables, εt−k, but also includes the knowledge of earlier
conditional variances σ2

t−j and use the logarithm of these. This extension
can be compared to the extension from ARCH to GARCH where previous
conditional variances also was included in the extension.

3.2.3 EGARCH(1, 1)

The simplest model of EGARCH is the one with orders (1, 1), given by

ln(σ2
t ) = α0 + α1g(εt−1) + β1 ln(σ2

t−1). (3.8)

This model can also be expressed as

ln(σ2
t ) = α0 + α1θ

at−1

σt−1
+ α1γ[ |at−1|

σt−1
− E[ |at−1|

σt−1
]] + β1 ln(σ2

t−1).

or we can take the exponential of the first expression to get it in terms of
σ2
t :

σ2
t = (σ2

t−1)β1eα0+α1g(εt−1).

We then can determine the conditional variance, σ2
t , by the one lagged

conditional variance, standard deviation and one lagged value of a. The
definition α1 = 1 leaves us with the unknown parameters α0, θ, γ and β1

whom will represent impacts on ln(σ2
t ) by the one lag a value, conditional

standard deviation and logarithmic variance.

3.3 Summary of model theory

To easier see the difference between the two models that will be compared
and analysed they are here presented together. Remember that at = σtεt.

GARCH(1, 1): σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, α0 > 0, α1 ≥ 0, β1 ≥ 0.

EGARCH(1, 1): ln(σ2
t ) = α0 + α1g(εt−1) + β1 ln(σ2

t−1)

where g(εt−1) ≡ θεt−1 + γ[|εt−1| − E|εt−1|].

3.4 Estimate parameters

As mentioned in section 3.1.1. the white noise term εt in the variable
at = σtεt is often assumed to be either standard normal distributed or
standardized Student’s t distributed. The density function of the condi-
tional at will differ depending on which distribution we assume and thereby
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also the likelihood function which we use to obtain the maximum likelihood
estimators of unknown parameters. In this thesis both distributions will be
applied to εt and the results will be compared.

3.4.1 Maximum likelihood estimator, MLE

A maximum likelihood estimator is a value of a parameter that maximizes
the maximum likelihood function. θ̂ML is an maximum likelihood estimator
of θ if

L(θ̂ML;x) = argmaxθ∈ΘL(θ, x)

for all x in its sample space and Θ is the parameter space. The MLE is one
of the most widely used estimators and under certain regularity conditions
it is consistent, asymptotically normal and efficient (Liero & Zwanzig, 2012,
79, 116).

3.4.2 Normal distribution

If we assume that εt is standard normal distributed we know that the ele-
ments of a vector a′ = (at, at−1, ..., at−T ′), conditionally with respect to the
known information, has a marginal normal distribution with variance σ2

t .

at|Ψt−1 ∼ N(0, σ2
t )

Therefore we can estimate the αi parameters in the conditional variance
by using the likelihood function for every element in a. Let f(at|α,Ψt−1)
denote the conditional density function of at given the known information
and parameters α′ = (α0, α1, ..., αi).

f(at|α,Ψt−1) = 1√
2σ2
t

e
− a2t

2σ2t

We obtain the log likelihood of the tth a as

l(α; at,Ψt−1) = C − 1
2 ln(σ2

t )−
a2t

2σ2
t

where C is a constant independent of α.

Taking the derivative with respect to αi we can obtain the maximum like-
lihood estimate of the parameter when setting the derivative to zero and
solve for αi (Engle, 1982, 990).

The log likelihood function will look differently depending upon which model
we assume, GARCH or EGARCH:

10



GARCH(1, 1): α′ = (α0, α1, β1),

l(at|α,Ψt−1) = C− 1
2 ln(α0+α1a

2
t−1+β1σ

2
t−1)−a2

t /(2(α0+α1a
2
t−1+β1σ

2
t−1)),

EGARCH(1, 1): α′ = (α0, α1, θ, γ, β1),

l(at|α,Ψt−1) = C − 1
2(α0 + α1g(εt−1) + β1 ln(σ2

t−1))−

a2
t /(2(exp{α0 + α1g(εt−1) + β1 ln(σ2

t−1)})).

3.4.3 Student’s t-distribution

The Student’s t distribution can have the property of larger tails than a
normal distribution have, depending upon which degree of freedom that
is used. Stock returns often have larger tails than a normal distribution
and the Student’s t distribution is therefore one of the most commonly
assumed distributions i GARCH and EGARCH modeling. If we assume
that εt has a standardized Student’s t distribution, then our at gets the
following conditional density function

f(at|α,Ψt−1) = Γ((v+1)/2)

Γ(v/2)
√

(v−2)π

1
σt

(1 +
a2t

(v−2)σ2
t
)−(v+1)/2, v > 2,

where v are the degrees of freedom and the gamma function Γ(x) is defined
as Γ(x) =

∫∞
0 yx−1e−ydy (Tsay, 2005, 108).

As for the standard normal distribution we can obtain the maximum like-
lihood estimates in the same way, but now with a different log likelihood
function. We can also estimate the degrees of freedom, v, with the maximum
likelihood function and differentiate with respect to v. The log likelihood
function will be

l(α; at,Ψt−1) = C − ln(σt)− v+1
2 ln(1 +

a2t
(v−2)σ2

t
), v > 2,

where C is a constant which will vanish when we differentiate with respect
to any of the parameters we want to estimate. The log likelihood will be
the following in the GARCH and EGARCH models.

GARCH(1, 1): α′ = (α0, α1, β1)

l(α; at,Ψt−1) = C − ln(
√
α0 + α1a2

t−1 + β1σ2
t−1)−

v+1
2 ln(1 +

a2t
(v−2)(α0+α1a2t−1+β1σ2

t−1)
)

EGARCH(1, 1): α′ = (α0, α1, θ, γ, β1)

l(α; at,Ψt−1) = C − ln(
√
exp{α0 + α1g(εt−1) + β1 ln(σ2

t−1)})−

v+1
2 ln(1 +

a2t
(v−2)(exp{α0+α1g(εt−1)+β1 ln(σ2

t−1)}))
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3.5 Return

The arithmetic return of an asset at time t is defined as

rt = St−St−1

St−1

where St is the value of the asset at time t and St−1 the value of the asset
at time t− 1, one time unit before t. In this thesis the time units will be in
days.

3.6 Variance, standard deviation and volatility

The sample variance of X = (x1, x2, ..., xn) is defined as

σ2 = 1
n−1

∑n
i=1(xi − x̄)2

where n is the number of observations in the sample and x̄ is the sample
mean. We call σ =

√
σ2 the standard deviation of a sample.

Volatility is the standard deviation of a time series (Capinski & Zastawniak,
2011, 200).

3.7 t-test

Assuming that X = (x1, x2, ..., xn) is a sample from a normal distribution
with expected value µ and standard deviation σ we can test the hypothesis
H0 : µ = µ0 against H1 : µ 6= µ0 with the test statistic

Tµ = X−µ
s(X)/

√
n
∼ t(n− 1)

which is Student’s t-distributed with (n−1) degrees of freedom. The sample
standard deviation is s(X). We reject the null hypothesis if |Tµ| > tα/2(n−
1), where tα/2(n−1) is the α/2 t-distributed quantile (Alm & Britton, 2008,
328).

3.8 ACF and PACF

ACF (AutoCorrelation Function) and PACF (Partial AutoCorrelation Func-
tion) can be used to study the correlation between values in a time series.

We start by defining the estimated kth lag autocovariance, ck

ck = 1
N

∑N−k
t=1 (rt − r̄)(rt+k − r̄) k = 0, 1, 2, ...,K

where N is the number of observations in the time series r and r̄ is the
sample mean of the time series. Then the estimated autocorrelation function
is defined as

12



ACFk = ρ̂k = ck
c0

This is the estimated autocorrelation of lag k. If the process rt is stationary,
this is a function only depending on the lag, k (Box et al. , 2008, 31).

The PACFk is a measure of autocorrelation between rt and rt−k when we
have adjusted for the effects that the time series values between rt and rt−k
have, i.e. the values {rt−1, rr−2, ..., rt−k+1} (Box et al. , 2008, 68).

3.9 Ljung-Box test

The Ljung-Box test tests the hypothesis that autocorrelations are zero.

H0 : ρ1 = ρ2 = ... = ρm = 0

The Ljung-Box test statistic is defined as

Q(ρ) = N(N + 2)
∑m

k=1
ρ̂2k
N−k ∼ X

2
m

where N is the number of observations in the time series and ρ̂k is the
estimated autocorrelation. This statistic is X 2 distributed with m degrees
of freedom (Ljung & Box, 1978).

3.10 Mean sum of squares of interval error, MeSSIE

Sometimes it can be hard to visually see which of several confidence intervals
that are the most fitting to the data if you don’t plot them in the same figure.
When confidence intervals will be analysed in this thesis, we will measure
the length from the value of a return to the percentiles in that time. To do
this, we here propose the measure Mean Sum of Squares of Interval Error,
MeSSIE, which is defined as

MeSSIE(α) = 1
N

∑N
i=1[(ri − qα/2)2 + (ri − q1−α/2)2]

where ri are the returns and qα is the 100 ∗ α%-percentile when 1 − α is
the confidence level of the interval. N is the number of returns the interval
is covering. The MeSSIE value will always be larger or equal to zero. The
smaller the value, the closer the values of the confidence interval will be to
the return values. The lowest MeSSIE value should not alone be regarded
as the best fitted confidence interval, since this does not say anything about
if the confidence level is obtained or not.
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3.11 Akaike Information Criteria, AIC

The Akaike Information Criterion (AIC) is a measurement of goodness of
fit of a model. AIC is defined as

AIC= −2(maximized log likelihood − number of parameters in model).

When compared, the model with the best fit is the one who has the lowest
AIC (Agresti, 2012, 212).

4 Data

This section will describe and analyse the properties of Texas Instrument
stock returns which GARCH(1, 1) and EGARCH(1, 1) will be applied to.

4.1 Texas Instruments

Texas Instruments is an American company which for more than 80 years
have developed new innovations in technology. They are today located in
35 countries world wide and their production of chips help costumers in
industrial, energy, media and medical industries to improve their products
and equipments. Texas Instruments also provide software and development
tools for different markets (Texas Instruments, 2009). One of their most
famous products are their calculators which was developed in the 1990’s.

Texas Instruments have been traded in The New York Stock Exchange since
1953 to 2011 and is listed in NASDAQ since 2012.

The data analyzied in this thesis is the closing price of the Texas Instruments
Incorporated stock (TXN), collected from NASDAQ Historical Quote. The
data is from 10 years, covering the time 2005/01/26 - 2015/01/23. This
is 2516 observed closing prices. This will result in 2515 return values rt,
t = 2, 3, ...2516.

4.2 Data analysis

4.2.1 Texas Instruments stock

All the 2515 rt values will not be used to estimate GARCH(1, 1) and
EGARCH(1, 1) models at the same time. The first half of values, which
will cover the first five years (2005/01/26 to 2010/01/25), will be used to
estimate the first models (see section 5.2 Forecasting for more about this
procedure). This first half will be analysed with histograms, normal QQ-
plots and tests to see whether it seems that GARCH and EGARCH models
are a proper models to estimate future conditional volatility with.
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Figure 1 show plots of the closing price and calculated returns of the period
2005/01/26 - 2010/01/25. The plot of returns indicate that there may be
heteroscedasticity, its variance is not constant. It also illustrates what is
called clustering volatility, there are periods of higher volatility and lower
volatility. The volatility is especially higher in the end of year 2008, which
could be due to the financial crisis in 2008, and then seems to decrease
through year 2009.
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Figure 1: Closing price and returns of Texas Instruments stock

4.2.2 Histogram and normal Q-Q plot

Figure 2 is a histogram of the return probabilities and an estimated density
function (the dashed line) and a fitted density function of a normal distri-
bution with mean and standard deviation computed from the returns. The
histogram and density function seems to almost follow a normal distribu-
tion. But the normal Q-Q plot in the same figure deviates some from the
line and indicates that the returns may not follow a normal distribution.
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Figure 2: Histogram of returns and normal Q-Q plot. The solid line in
the histogram is an estimated kernel density function of the returns and the
dashed line is the density function of a fitted normal distribution with the
mean and standard deviation of the returns.

4.2.3 Autocorrelation

To study if there occurs autocorrelation in the returns we compute the ACF
and PACF, seen in Figure 3. For the autoregressive conditional heteroscedas-
ticity models to work properly we want to apply the models to data that
is serially uncorrelated, but still dependent (Tsay, 2005, 99). Unfortunately
we can see in the ACF of returns that there seems to be several significant
correlations in the return data. The occurrence of autocorrelations can be
a problem when constructing GARCH and EGARCH models and for the
forecasting of volatility. The high values of PACF of squared returns tell us
that the return series seems to be serially dependent.

We also test if the autocorrelations can be assumed to be zero with the
Ljung-Box test. When we test the hypothesis that the autocorrelations for
10 lags are zero (m = 10 in the test) we obtain the value of the test statistic
to 34.24. The statistic is X 2

10 distributed and we get a p-value of 0.0002.
This means that we reject the null hypothesis of zero autocorrelations on
a 95% level, which then again validates what was seen in the ACF figure.
There seems to be serial autocorrelation in the returns.
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Figure 3: Autocorrelation function (a) for returns and partial autocorre-
lation function (b) for squared returns with 100 lags.

4.2.4 Heteroscedasticity

To test for heteroscedasticity in the returns we may again use the Ljung-Box
test. As we will assume that the returns are equal to the stationary process
which will be modelled with GARCH and EGARCH, rt = at (se section
5.1), we may test if there are any autocorrelation between squared at’s, or
equivalently if there are any autocorrelations between the squared rt’s. If
autocorrelations are present, it means that we can assume heteroscedasticity
in the data.

We get the Ljung Box test statistic when we use the lag 10 to 437.75, which
is very high and the p-value is less than 2.2e-16. We may reject the null
hypothesis of zero autocorrelations on a 95% level and assume that the data
is heteroscedastic. This was what we thought was seen in figure 1 and is
now stated.
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5 Modeling

This section will present some assumptions, steps and tools that are used in
this thesis to compare the result when we apply GARCH(1, 1) and
EGARCH(1, 1) to Texas Instruments stock returns. All the modeling and
calculations will be done in R (R Core Team, 2015).

5.1 Model of returns

To model returns, rt, we assume a simple time series model

rt = µt + at = µ+ σtεt (5.1)

where µt = E[rt|Ψt−1]. Returns are a sum of expected value and the random
variable at. The expected value, µt, can be expressed in several ways, for
example it could be constant or be an ARMA(p, q) process (this can be read
more about in chapter 3 in Tsay, 2005). To see if we can simplify our model
we will test the assumption that the expected value is zero.

This is tested with a t-test. We assume that the returns are normally dis-
tributed and the null hypothesis, H0 : µ = 0 is tested against Ha : µ 6= 0
with the first half of our returns (period 2005/01/26 to 2010/01/25) as the
observed returns. We get the test statistic to 0.44 and the p-value to 0.6612,
which means we can not reject the null hypothesis on a 95% level.

We assume that the expected value of the returns are zero and therefore
reduce the model of returns to

rt = at = σtεt. (5.2)

5.2 Forecasting

To investigate which of the GARCH and EGARCH models that are most
suitable to use for forecasting future volatility we will construct several
of these models. We will always predict one day ahead and use obser-
vations from five years back to estimate the models, approximately 1257
observations. The models that will be estimated are GARCH(1, 1) and
EGARCH(1, 1), which will use the one lagged value rt and the one lagged
conditional variance σ2

t to forecast σ2
t+1.

The first forecast will be done to predict σ2
1259, which is the conditional

variance of the return at date 2010/01/26. This will be predicted with
models estimated with observations 2005/01/26-2010/01/25. When this
is done we will predict σ2

1260, the conditional variance of the return at
date 2010/01/27, with models which are estimated with observations from
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2005/01/27-2010/01/26, and so on. This will be done 1258 times over and
give us 1258 predicted conditional variances covering the time 2010/01/26-
2015/01/23. We call this process a “moving window”, since we always will
be using the same amount of observations backwards to estimate the models
and predict one day ahead. Since we have the real historical values of returns
for that five year time period, we will have the opportunity to compare and
analyse the predicted values to those of reality to see which model is most
suitable.

The “moving window” procedure, which cover 1257 observations at a time,
will only move one day a head for every new model. This means that only
one observation will be dropped and one new will enter the windows. Since
1257 observations are quite many for just predicting the volatility one day
a head and the difference between successive windows will be so small, this
might indicate that the parameter estimations will not change as much for
all the models. This might be something to consider if further analyses of
the parameters are to be done.

Remember that we have only analysed the distribution, mean, autocorre-
lation and heteroscedasticity of the returns from the first five years, which
will be the ones used to estimate the first models. The process of analysing
all the 1258 “windows” of each 1257 observations will be to extensive and
therefore we assume that all the windows have approximatley the same dis-
tribution, mean and properties of autocorrelation and heteroscedasticity as
the first window.

In totalt there will be four groups of predicted variances, one for every com-
bination of GARCH(1, 1) or EGARCH(1, 1) and assumed standard normal
distribution or Student’s t distribution.

The predicted variances can then be used to construct confidence intervals
by calculating percentiles for every return. One indication of a good model
is one where the confidence interval will cover the real returns closely. If it
does not, it means that the predicted variances were misleading.

To do this we will use a package in R called rugarch. Details of how this
package work can be seen in Appendix 2.

5.3 Confidence intervals

We will construct 95% confidence intervals based on the estimated standard
deviations from the four models with combinations of GARCH/EGARCH
and standard normal distribution/Student’s t distribution. We use per-
centiles of the standardized distributions and multiply them with the esti-
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mated standard deviations to thereby get a percentile for a distribution with
that standard deviation. The procedure follows.

If we have a stochastic variable, Z, with E[Z] = µ and V ar(Z) = θ2 we get
the 100 ∗ α%-percentile, zα, of that distribution from

P (Z ≤ zα) = α.

To standardize this distribution and get a stochastic variable, Z̃, with E[Z̃] =
0 and V ar(Z̃) = 1 we subtract the mean and divide by the standard devia-
tion and get the standardized percentile, z̃α.

P (Z−µθ ≤ zα−µ
θ ) = P (Z̃ ≤ z̃α) = α.

We want to find the percentiles from the distributions that have the esti-
mated standard deviation which were calculated with our models, σ̂, and
therefore multiply the percentiles with it.

P (Z̃ ≤ z̃α) = P (Z̃σ̂ ≤ z̃ασ̂) = P (Q ≤ qα) = α.

Now the stochastic variable Q has E[Q] = 0 and V ar(Q) = σ̂2, as we
wanted. The percentile qα is the ones which are shown in the plots of the
confidence intervals (see Result).

6 Result

In Figure 4 to 7 we can see the returns of Texas Instruments stocks for the
period 2010/01/26 to 2015/01/23 and the blue dashed lines are the esti-
mated confidence intervals for the four models. They all seem to cover the
returns pretty well and grasp areas of clustering volatility, however none of
them catches the high and low peaks, see especially the beginning of 2012
and end of 2014. The GARCH(1, 1) models give quite similar results for
standard normal distribution (Figure 4) and Student’s t distribution (Fig-
ure 5) and the same holds for the two distributions when we have used
EGARCH(1, 1) models (Figure 6 and 7). However, the confidence intervals
based on EGARCH(1, 1) seems to be narrower in the end of 2010 as well
as in the end of 2011. The EGARCH(1, 1) models also give us confidence
intervals that are a bit smoother from the end if 2012 to the beginning of
2013 than what the confidence intervals from GARCH(1, 1) are.
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Figure 4: Return of period 2010/01/26-2015/01/23 and GARCH(1, 1)
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Figure 5: Return of period 2010/01/26-2015/01/23 and GARCH(1, 1)
forecasted 95% confidence intervals from a Student’s t distribution
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Figure 7: Return of period 2010/01/26-2015/01/23 and EGARCH(1, 1)
forecasted confidence intervals from a Student’s t distribution

In Table 1 we can se calculated per cent of returns that violate the es-
timated confidence intervals and MeSSIE for all the models. The confi-
dence intervals that are estimated should be of the level 95%, which means
that we assume that 5% will not be within the interval. All the models
have approximately that amount of returns outside their intervals, although
EGARCH(1, 1) and Student’s t distribution are closest to the wanted level
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and both GARCH(1, 1) models have almost a too low level of returns outside
their confidence intervals.

The MeSSIE values tell us how narrow or wide the fit of the confidence
interval is. An indication of a good confidence interval should have a low
MeSSIE value, since this means that the confidence interval is close to the
real values. The model with the lowest MeSSIE value is the EGARCH(1, 1)
with normal distribution, while the GARCH(1, 1) models have the same
MeSSIE values for both distributions.

Table 1: Per cent of returns that violates the estimated confidence intervals
and MeSSIE(0.05) values

Model Distribution Per cent of returns MeSSIE(0.05)
outside the CI

GARCH(1, 1) Normal 0.045 0.0025

GARCH(1, 1) Student’s t 0.043 0.0025

EGARCH(1, 1) Normal 0.053 0.0023

EGARCH(1, 1) Student’s t 0.051 0.0024

In Figure 8 and 9 we see all p-values for Ljung-box tests of standardized
residuals (small dotted line) and squared standardized residuals (dashed
line). With the standardized residuals we are testing the null hypothesis
that there are zero autocorrelation in the standardized residuals serie, which
should not be rejected (the small dotted line should not be less than 0.05)
if the autoregressive heteroscedasticity models have done their job. When
we test the squared standardized residuals we test the null hypothesis of
homoscedasticity, which we wish to have for there to be good models (the
dashed line should not be less than 0.05) (Tsay, 2005, 119).

As we can see in Figure 8 and 9 both the null hypothesis of zero auto-
correlations and homoscedasticity in the standardized residuals is not re-
jected in the 95% level in most of the models, especially the first models
of GARCH(1, 1) (Figure 8). But we can also se that the null hypothesis
of zero autocorrelations will be rejected for all the models from the begin-
ning of 2013 to the end of 2014. The test of homoscedasticity will never be
rejected for either of the models.
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Figure 8: Ljung-Box test of standardized residuals (small dotted line)
and squared standardized residuals (dashed line). a) is GARCH(1, 1) and
normal distribution, b) is GARCH(1, 1) and Student’s t distribution. The
straight line marks 0.05.
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Figure 9: Ljung-Box test of standardized residuals (small dotted line)
and squared standardized residuals (dashed line). c) is EGARCH(1, 1) and
normal distribution, d) is EGARCH(1, 1) and Student’s t distribution. The
straight line marks 0.05.

In Figure 10 we can see calculated AIC for all the models. For the first
models, GARCH(1, 1) and Student’s t distribution seems to have the small-
est AIC, while both EGARCH(1, 1) models after the beginning of 2013 then
have the smallest AIC (there AIC are so alike that their curves are approx-
imately the same all the time, that’s why we see the bold line). We can
calculate the average AIC for all models, which are -5.16 (GARCH(1, 1),
standard normal distribution), -5.2 (GARCH(1, 1), Student’s t distribu-
tion), -5.19 (EGARCH(1, 1) and standard normal distribution) and -5.22
(EGARCH(1, 1), Student’s t distribution). We here see that EGARCH(1, 1)
and Student’s t distribution has the lowest avarge AIC for this period.
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Figure 10: AIC for all models. a) is GARCH(1, 1) and normal distribution,
b) is GARCH(1, 1) and Student’s t distribution, c) is EGARCH(1, 1) and
normal distribution, d) is EGARCH(1, 1) and Student’s t distribution. c)
and d) is the bold line, since they are almost exactly the same for all models.

7 Discussion and conclusion

The purpose of this thesis was to analys which of the models GARCH(1, 1)
and EGARCH(1, 1) that are most suitable to use for predicting volatility of
Texas Instruments stock returns. Since we have to assume a distribution
for the returns and could not determine which one was the most suitable
just by analysing the data, we applied the standard normal distribution and
the Student’s t distribution to the two models. This gave us four models to
compare when it comes to predictive ability.

We constructed confidence intervals based on the predicted volatility given
from 1258 models for every one of the four models (seen in Figure 4 to 7).
The visual analysis showed us that the difference in distributions among
GARCH(1, 1) was not that big and this was also confirmed when per cent of
returns outside the confidence interval and MeSSIE was calculated in Table
1, they are almost exactly the same. The similarity is also confirmed in
the Ljung-Box tests of autocorrelation and homoscedasticity in the models
(Figure 8). But when it comes to AIC, the GARCH(1, 1) with assumed Stu-
dent’s t distribution has the lower AIC values in the time period observed.
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But this is the only advantage shown by assuming Student’s t distribution in
the GARCH(1, 1) model. When we in section 4 of this thesis studied which
distribution was appropriate to assume that the returns had, it seemed that
assuming normal distribution was not the best choice. But the little dif-
ference in all these results also seem to tell us that assumed Student’s t
distribution did not give us a big advantage.

When it comes to the difference due to the distributions in the EGARCH(1, 1)
models, neither they are as extensive. The narrower confidence interval is
the one where we have assumed normal distribution, but this can hardly
be seen visually when comparing Figure 6 and 7, and is only noticed when
calculating the MeSSIE values. But the narrow confidence interval of as-
sumed normal distribution also have a higher level of returns that violates
the confidence interval. The confidence intervals are calculated to have a
95% confidence level, but in the case of EGARCH(1, 1) and normal distri-
bution we have a bit smaller confidence level than that. This means that
the predictions of volatility calculated by these models are a bit to small
at times, which can make us miss clusters of higher volatility. We can see
some differences in the p-values of the Ljung-box tests in Figure 9. We can
especially see that there seems to be autocorrelation in the standardized
residuals for a period of 2010 when we assume normal distribution, while
this does not occur when we assume Student’s t distribution. The AIC of
the EGARCH(1, 1) models are so alike that we can barely see a difference.
So the two distributions both had a disadvantage of the other, one seems to
under estimate the volatility at times making the confidence interval nar-
rower while the other one could not produce models in which there were no
autocorrelation.

If we compare GARCH(1, 1) and EGARCH(1, 1) over all we see that
EGARCH(1, 1) in both cases had the narrower confidence interval, however
the confidence level was violated more times than what was wanted. The
EGARCH(1, 1) model with assumed Student’s t distribution was the closest
to the wanted confidence level and the GARCH(1, 1) models have a bit to
high levels. When the standardized residuals are tested for zero autocorrela-
tion and homoscedasticity there seem to be several cases where these prop-
erties are not rejected in the GARCH(1, 1) models, while the EGARCH(1, 1)
models do not only violate these properties from the period 2013 to end of
2014 (which all models does) but also some times in the time of 2010. If
we look at the AIC’s, the EGARCH(1, 1) models have the smallest average
AIC if we only compare the ones with the same distributions (if we compare
a) and c) and compare b) and d) in Figure 10) and therefore may be the
better model to use.

Something that we may consider is the fact that the returns was not serially
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uncorrelated, which should not have been the case if the model estimation
should work properly. It could be due to this that the Ljung-Box tests of the
properties of standardized residuals was rejected at some times. Also, the
analysis of data was only made to the first five years of data. The “moving
window” procedure make us use all the returns, but at different times, in the
five year windows. To simplify our analysis, we assumed that the properties
of the first five years can be assumed for all the windows. This may not be
the case and several assumption may not hold.

There is something that is happening to the estimated models in the begin-
ning of 2013 to the end of 2014. During this period we can not in any of
the models assume that there are zero autocorrelation in the standardized
residuals of the models, but at the same time AIC is decreasing, telling us
there is a better fit in the models than before.

There is no model and distribution that has a big advantage to another
in this study. Although, the QQ-plot in our data analysis show us that
a normal distribution is not appropriate to assume and this upholds me
to say that the models with this assumption are the best. If we then com-
pare the GARCH(1, 1) and EGARCH(1, 1) with Student’s t distribution, the
EGARCH(1, 1)’s accuracy of the confidence level is to its advantage. The
GARCH(1, 1) underestimated the volatility, and although the hypothesis of
zero autocorrelation in the Ljung-Box tests seems to have gotten the result
we wanted more times for the GARCH(1, 1) the difference is small when
compared to EGARCH(1, 1). Therefore, the better choice of model and dis-
tribution for predicting the volatility of Texas Instruments stock returns are
a EGARCH(1, 1) model with assumed Student’s t distribution.

8 Further research

As mentioned in the discussion, there is something that is happening to the
models when we predict the volatility from the beginning of 2013 to the end
of 2014. It would be interesting to look further into this and see what it
was that made the models behave as they did. Since it occurs in all the
models, a guess would be that it has something to do with the data. What
happened there in the Texas Instruments stock returns?

It would also be interesting to have studied the parameters in the models
further, since this could have given us some information of how much ei-
ther previous conditional variances or previous values of the returns effected
the future values. Which of these two values had the large impact on the
volatility of tomorrow?
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9 Appendix

9.1 Appendix 1: Conditional and unconditional expected
value and variance of at in different models

9.1.1 ARCH(q) and ARCH(1)

The shock term, εt has expected value zero. Thereby, both the unconditional
expected value of at and the conditional expected values will be zero since

E[at] = E[E[at|Ψt−1]] = E[E[σtεt]] = E[σtE[εt]] = 0.

The conditional variance of at is σ2
t since

V ar[at|Ψt−1] = V ar(σtεt) = σ2
t V ar(εt) = σ2

t .

These results hold for both ARCH(q) and ARCH(1).

If we assume that at is a stationary process, which means that V ar(at) =
V ar(at−1), then the unconditional variance for a ARCH(q) model is

V ar(at) = E[a2
t ] = E[E[a2

t |Ψt−i]] = E[σ2
tE[ε2

t ]] = E[σ2
t ] =

= E[α0 + α1a
2
t−1 + ...+ αqa

2
t−p] = α0 + α1E[a2

t−1] + ...+ αqE[a2
t−q] =

= α0 + α1V ar(at−1) + ...+ αpV ar(at−q) = [stationarity] =

= α0 + α1V ar(at) + ...+ αqV ar(at) =⇒

=⇒ V ar(at) = α0

1−(
∑q
i=1 αi)

.

If the unconditional variance should be finite, some regularity conditions
have to be fulfilled for αi (Tsay, 2005, pp. 103).

For a ARCH(1) model the conditional variance of at only depends upon
the squared value of a one time unit earlier. The unconditional variance
becomes

V ar(at) = α0 + α1V ar[at] =⇒ V ar(at) = α0
1−α1

.

9.1.2 GARCH(p, q) and GARCH(1, 1)

The unconditional and conditional expected value of at in a GARCH(p, q)
and GARCH(1, 1) model will (as in ARCH) be zero since

E[at] = E[E[at|Ψt−1]] = E[E[σtεt]] = E[σtE[εt]] = 0.

And the conditional variance is
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V ar[at|Ψt−1] = V ar(εtσt) = σ2
t V ar(εt) = σ2

t .

The expression for the unconditional variance of at in a GARCH(p, q) can
be derived as

V ar(at) = E[a2
t ] = E[E[a2

t |Ψt−i]] = E[σ2
tE[ε2

t ]] = E[σ2
t ] =

= E[α0 +
∑q

i=1 αia
2
t−i +

∑p
j=1 βjσ

2
t−j ] =

= α0 +
∑q

i=1 αiE[a2
t−i] +

∑p
j=1 βjE[σ2

t−j ] =

= α0 +
∑q

i=1 αiV ar(at−i) +
∑p

j=1 βjE[σ2
t−j ] = [stationarity of at]

= α0 +
∑q

i=1 αiV ar(at) +
∑p

j=1 βjE[σ2
t−j ] =⇒

=⇒ V ar(at) =
α0+

∑p
j=1 βjE[σ2

t−j ]

1−(
∑q
i=1 αi)

.

For a GARCH(1, 1) the unconditional variance reduces to

V ar(at) =
α0+β1E[σ2

t−1]

1−α1
.

9.2 Appendix 2: rugarch in R

The rugarch package (Ghalanos, 2014b) can help us model several of the
GARCH models that is used in statistics and econometrics. The package
properties are extensive and here only the ones used for this thesis will be
presented. For more information and descriptions of the commands you can
find reference manuals at
http://cran.r-project.org/web/packages/rugarch and Alexio Ghalanos
have written a helpful introduction to the package (Ghalanos, 2014a).

To construct a model we first have to specify which model we want. This is
done with ugarchspec.

ugarchspec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)), mean.model = list(include.mean = FALSE),

distribution.model = "norm")

Here we have specifed which GARCH model we want, “sGarch”, which give
us the standard GARCH. If we wanted the EGARCH we would have used
“eGARCH”. Then we specify the orders of the model and also if we want
to include a mean in the model, which we do not in this thesis. We also
specify which distribution we assume for the process, where we will use the
standard normal distribution, “norm”, and Student’s t distribution, “std”.
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When the model is specified we can fit a model to the data we have. This is
done with ugarchfit. The estimations of parameters in the specified model
will be maximum likelihood estimates.

modelfit <- ugarchfit(spec=garchspec, data=return)

garchspec is the specified model and return are the returns that are used
to estimate the model. Since we will use the “moving window” approach to
estimate all the models, these returns will be different for every model.

When this is done we want to forecast the volatility one day ahead, and
therefore use ugarchforecast.

forecast <- ugarchforecast(spec=garchspec, data = return, n.ahead

= 1, n.roll = 0, out.sample =0)

With this command we then use the specified model and the data for which
the model was constructed to forecast the volatility one day ahead (Hy-
bel Pedersen, 2013).
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