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Abstract

In this thesis, we aim to identify genetic markers associated with

lithium treatment response of patients with bipolar disorder. Identify-

ing such genetic markers is a step towards personalized genotype-based

treatment of bipolar disorder. By using causal inference we estimate

bounds on the causal interaction between lithium treatment and ge-

netic markers on treatment response. In particular, we aim to identify

genetic markers that might either block the effect of lithium treatment

or be a prerequisite for treatment response. For this reason we also

estimate bounds on the causal interaction under the assumption of

monotonic effects of lithium treatment and genetic markers on treat-

ment response. We use a weighed logistic regression model to estimate

the bounds, with Inverse Probability of Treatment Weights to control

for confounding. We find that, to some extent, the genetic markers

interact with lithium treatment. A small number of genetic markers

potentially affect lithium treatment in only one direction.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: fransson.carolina@gmail.com. Supervisor: Tom Britton.



Sammanfattning

Kunskap om hur genetiska faktorer påverkar resultatet av medicinering kan i för-
längningen leda till skräddarsydda behandlingar baserade på patientens genetiska
profil. I den här uppsatsen undersöker vi genetiska markörers inverkan på effekterna
av litiumbehandling av bipolär sjukdom. Bipolär sjukdom är en psykisk sjukdom
som kännetecknas av omväxlande perioder av mani och depression och en vanlig
behandling av bipolär sjukdom är medicinering med litium. Vi använder kausal
inferens för att skatta övre och undre gränser för hur vanligt förekommande det
är att genetiska markörer interagerar kausalt med litiumbehandling. Vi genomför
även analysen under antagandet att de genetiska markörerna inverkar monotont på
resultatet av litiumbehandlingen. Detta eftersom genetiska markörer som, i den
mån de påverkar resultatet av litiumbehandlingen, antingen blockerar effekten av
behandlingen eller är en förutsättning för att behandlingen ska vara framgångsrik är
av särskilt intresse. Vi skattar gränserna med en viktad logistisk regressionsmodell.
Genom att använda "Inverse Probability of Treatment Weights” som vikter justerar
vi för störningsfaktorer som varierar med tiden. Resultaten av analysen tyder på att
de genetiska markörerna i viss mån samverkar med litiumbehandling. För ett mindre
antal genetiska markörer tyder resultaten på att effekterna kan vara monotona.
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Chapter 1

Introduction

Bipolar disorder, or manic depression, is a mental disorder characterized by recurring
episodes of mania, depression and in some cases "mixed episodes” (Mondimore, 2014).
It is estimated that around 2 percent of the population suffers from some form of bipolar
disorder. In the manic phase of a bipolar episode, individuals often experience inappro-
priately good or unusually irritable moods. Symptoms of the depressive phase of bipolar
disorder may be feelings of hopelessness, loss of interest in activities once enjoyed etc. An
individual with mixed episodes have symptoms characteristic of both mania and depres-
sion simultaneously, or in rapid sequence. An episode may last for a varying period of
time, from a few hours to years. Many are free of symptoms between episodes. The cause
is not clearly understood, but both genetic and environmental factors play a role. There
is currently no cure for bipolar disorder. There are a range of medications developed to
treat bipolar disease, including the mood stabilizer lithium.

In this thesis, we aim to identify genetic markers associated with lithium treatment
response of patients with bipolar disorder. As genetic markers, we used Single Nucleotide
Polymorphisms, SNP’s (Xu, 2014). A SNP is a type of DNA sequence variation in the
form of different sequence alternatives (alleles) at a single base pair position, commonly
occurring within a population.

The structure of this report is as follows. In Chapter 2, we give a description of the data
material, mainly focusing on the potential presence of time-dependent confounding, since
this is a major problem if not controlled for properly. In the third chapter, we present
the tools we will use to assess impact of genetic markers on lithium treatment response
and to control for time-dependent confounding. We also describe important components
of the process of analyzing the data. In the next chapter, Chapter 4, we present the
results and conclusions and in Chapter 5 we give a brief discussion of the results.
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Chapter 2

Material

The data analyzed in this project originates from a cohort study using clinical data
from the Swedish National Quality Register for Bipolar Disorder (BipoläR). BipoläR
was launched in 2004 and contains individualized data concerning basic demographic
variables, presence of affective illness in the family, treatment with antidepressants and/or
mood stabilizers and treatment outcome (Registercentrum Västra Götaland, 2015).

The study (Karantia et al., 2015) consists of 7354 bipolar patients registered in BipoläR
between 2004 and 2011. The study subjects were followed between 2004 and 2011 with
annual updates. Data were collected by treating physicians and participation was volun-
tary, both for bipolar patients and clinicians. Of the 7354 bipolar patients genotype data
are available for 1318 bipolar patients which constitute the data material analyzed in this
project. For these 1318 patients 4587 follow-up observations were made. The patients
left blood samples from which DNA was extracted at the Karolinska Institutet Biobank.
Genotyping were thereafter conducted at the Broad Institute of MIT and Harvard. In
this project, 12168 SNP’s are included. Each SNP is coded as 0,1 or 2 depending on
whether the allele occur for 0,1 or 2 chromosomes. The data material has also been
used by Tidemalm et al. (2014) in a cohort study aiming to investigate risk factors for
attempted suicide in bipolar patients.

2.1 Description of data

We include variables measuring current and previous treatment of the disorder, occur-
rence of episodes, occurrence of episodes last year, age, type of bipolar disorder, date of
follow up and gender. For a complete list of the variables, see Appendix A. Of the bipolar
patients, 62% are women. Lithium treatment assignment is common among the patients,
for 77% of the observations the patient is assigned to lithium treatment. The average age
at registration is 50.3 years with standard deviation 14.2. (Figure 2.1) The prevalence
of bipolar disorder Type I is 47% among the patients, the prevalence of bipolar disorder

2



Chapter 2. Material 3

Type II is 41%, the prevalence of bipolar type schizoaffective disorder is 1.6% and for
10% of the patients the type of bipolar disorder is not specified.

Figure 2.1: Age at registration in BipoläR

In our analysis, the impact of genetic markers and lithium treatment on the occurrence of
bipolar episodes is central. Estimating treatment effects requires appropriate control for
confounding. In observational studies in which the study subjects are followed over time,
time-dependent confounding of the association between the outcome and treatments of
interest is often present. One potential time-dependent confounder is previous bipolar
episodes since treatment is likely to be affected by a patient’s history of bipolar episodes
and it is also possible that bipolar episodes tend to reoccur. Table 2.1 classifies data by
current lithium treatment, by occurrence of bipolar episodes in the current year and by
occurrence of episodes during the preceding year.

Table 2.1: Current lithium treatment, bipolar episodes in the current year and
episodes during the preceding year

No current lithium treatment

Episodes current
year

Episodes last year

No Yes
No 200 202
Yes 96 539

Current lithium treatment

Episodes current
year

Episodes last year

No Yes
No 1180 795
Yes 353 1181

From Table 2.1 we construct Tables 2.2-2.4, marginalizing over last year’s episodes,
current year’s episodes and current lithium treatment respectively.
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Table 2.2: Proportion
of the participants expe-
riencing bipolar episodes
among those assigned to
lithium treatment and
among those not as-
signed to lithium treat-

ment

Episodes

Lithium No Yes
No 0.39 0.61
Yes 0.56 0.44

Table 2.3: Proportion
of the participants as-
signed to lithium among
those for which bipolar
episodes occurred during
the preceding year and
among those for which
bipolar episodes did not

occur

Lithium

Epi. last No Yes
No 0.16 0.84
Yes 0.27 0.73

Table 2.4: Proportion
of the participants expe-
riencing bipolar episodes
among those for which
episodes occurred the
preceding year and
among those for which
episodes did not occur

Episodes

Epi. last No Yes
No 0.75 0.25
Yes 0.37 0.63

Table 2.2 suggests that the occurrence of episodes is more frequent among bipolar patients
not assigned to lithium treatment than among those assigned to lithium treatment. Table
2.3 suggests that lithium treatment is more common among those who did not experience
episodes during the preceding year. Table 2.4 suggests that bipolar episodes tend to
reoccur. Thus, we have reasons to suspect that occurrence of episodes is a confounder of
the association between future treatment and future bipolar episodes. The causal graph
(see Chapter 3.1.6 for further information) shown in Figure 2.2 summarizes the suspected
causal relations between lithium treatment and the occurrence of bipolar episodes.

Figure 2.2: Causal graph summarizing the (suspected) causal relations between
lithium treatment and the occurrence of bipolar episodes. Each arrow represents the

presence of causal effects.



Chapter 3

Methods

3.1 Tools for causal analysis

The information in this chapter is based on Sjölander et al. (2014a), unless stated oth-
erwise.

3.1.1 Notation

Using the same notation as Sjölander et al. (2014a) we let Y denote a response variable
with binary outcome (0 or 1) for some individual in a population under study. Further-
more, we let X and Z denote two different categorical explanatory variables with levels
0, 1, 2 . . . ,KX and 0, 1, 2 . . . ,KZ respectively, where KX > 0 and KZ > 0.

3.1.2 Potential outcomes

If, for a certain individual X = x and Z = z then it is clearly impossible to observe
the value that Y would have attained, had X 6= x and/or Z 6= z. The assumptions
(Greenland and Brumback, 2002) of the potential-outcome model are however:

1. Each individual could have been assigned to any one of the treatment levels 0, ...,KX

and 0, ...,KZ .

2. The value of Y that we would have observed at a specific time point, had the ex-
planatory variables been intervened to take the values x and z respectively, possibly
contrary to fact, exists for each individual in the population for all x ∈ {0, . . . ,KX}
and z ∈ {0, . . . ,KZ}. We denote this value, called the potential or counterfactual
outcome, by Yxz.

5



Chapter 3. Methods 6

3.1.3 Causal interaction

To assess the impact of genetic markers on lithium treatment response we introduce the
concept of causal interaction, not to be confused with statistical interaction. Absence of
the latter often refers to the presence of additive effects on the outcome of interest on
some scale.

If, for an individual, Yxz 6= Yx̃z for some levels x and x̃ of X and z of Z then X is said to
have a causal effect on Y for that individual. Similarly, if Yxz 6= Yxz̃ for some levels z and
z̃ of Z and x of X then Z is said to have a causal effect on Y for that individual. Thus,
if for a given individual, we could have prevented or caused the outcome by intervention
in the level of an explanatory variable, that explanatory variable is said to have a causal
effect on the outcome for that individual.

If X and Z both have causal effect on Y for a given individual then we say that there
is causal interaction between X and Z for that individual. Equivalently, there is causal
interaction between X and Z for a certain individual if the causal effect of both X and
Z depends on the level of the other.

3.1.4 Monotonic effects

If, for all individuals, an explanatory variable always affect the outcome in a certain
direction, that variable is said to have monotonic effects. We introduce the concept of
monotonic effects.

We say that X has a positive monotonic effect on Y if for all individuals

Yxz ≥ Yx̂z if x ≥ x̂ for all z ∈ {0, . . . ,KZ}. (3.1)

That is, under the assumption that X has positive monotonic effects, interventions to
set X to a higher level can never prevent the outcome.

We say that X has a negative monotonic effect on Y if

Yxz ≤ Yx̂z if x ≥ x̂ for all z ∈ {0, . . . ,KZ} (3.2)

for all individuals. Similarly, we say that Z has a positive monotonic effect on Y if for
all individuals

Yxz ≥ Yxẑ if z ≥ ẑ for all x ∈ {0, . . . ,KX} (3.3)

and we say that Z has a negative monotonic effect on Y if for all individuals
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Yxz ≤ Yxẑ if z ≥ ẑ for all x ∈ {0, . . . ,KX}. (3.4)

3.1.5 Bounds on Causal Interaction

Sjölander et al. (2014a) have derived bounds for the proportion of individuals in a pop-
ulation for which there is causal interaction.

We denote the proportion of individuals for which there is causal interaction between X
and Z on Y by θ and we let pxz denote the proportion of individuals for which Yxz = 1.

That is to say, pxz is the proportion of individuals for which the outcome would occur if
the levels of X and Z had been x and z respectively for all individuals, possibly contrary
to fact.

The lower bound on θ is given by

max
x>x′≥0, z>z′≥0

(±0.5ψxx′zz′ , ψxx′zz′ − px′z′ ,−ψxx′zz′ − px′z, (3.5)

− ψxx′zz′ − pxz′ , ψxx′zz′ − pxz,−ψxx′zz′ + px′z′ − 1,

ψxx′zz′ + pxz′ − 1, ψxx′zz′ + px′z − 1,−ψxx′zz′ + pxz − 1)

where ψxx′zz′ = pxz + px′z′ − pxz′ − px′z. The upper bound on θ is given by

min
ωX , ωZ

(1,
∑
x,z

I(x ∈ ωX)(1− pxz) + I(x ∈ ωcX)pxz,∑
x,z

I(z ∈ ωZ)(1− pxz) + I(z ∈ ωcZ)pxz)
(3.6)

where ωX = {20, 21, . . . , 2KX}, ωZ = {20, 21, . . . , 2KZ} and the indicator I(a ∈ A) = 1 if
a ∈ A and 0 otherwise. If the pxz’s are known, these bounds are guaranteed to contain
θ.

Sjölander et al. (2014a) also derived bounds valid under the assumption of positive mono-
tonic effects of X and Z on Y. These bounds are at least as narrow as the bounds under
no assumptions of monotonic effects. The lower bound on θ under the monotonicity
assumption is given by
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max
x>x′>x′′≥0, z>z′>z′′≥0

(±ψxx′zz′ ,±(ψxx′zz′ + ψxx′zz′′),±(ψxx′zz′ + ψx′x′′zz′), (3.7)

ψxx′zz′ − ψx′x′′zz′ , ψxx′zz′ − ψxx′z′z′′ ,±(ψxx′zz′ + ψx′x′′z′z′′),

± (ψxx′zz′ − ψx′x′′z′z′′), ψx′x′′zz′ − ψxx′z′z′′ − ψx′x′′z′z′′ ,
ψxx′z′z′′ − ψx′x′′zz′ − ψx′x′′z′z′′ ,±(ψxx′zz′ + ψx′x′′zz′ + ψx′x′′z′z′′),

± (ψxx′zz′ + ψxx′z′z′′ + ψx′x′′z′z′′), ψxx′zz′ ± (ψx′x′′zz′ − ψxx′z′z′′),
ψxx′zz′ ± (ψx′x′′zz′ ± ψxx′z′z′′)− ψx′x′′z′z′′)

and the upper bound is given by

min
ωX ,ωZ

(δKXKZ00 ± δ1001, δKXKZ00 +
∑

x∈ωX\{2(KX )}

δxKZ(x+1)0,

δKXKZ00 +
∑

z∈ωZ\{2(KZ )}

δKXz0(z+1))
(3.8)

where δxx′zz′ = pxz − px′z′ . Let ∆ = pKXKZ
− p00 denote the proportion of individuals

for which YKXKZ
= 1 but Y00 = 0. Under assumptions (3.1) and (3.3) of positive

monotonicity, ∆ is the proportion of individuals for which there exists x, x̂,z and ẑ such
that Yxz = 1 but Yx̂ẑ = 0, 0 ≤ x̂ ≤ x ≤ KX and 0 ≤ ẑ ≤ z ≤ KZ . That is to say, since
(3.1) and (3.3) is assumed, ∆ is the proportion of individuals for which at least one of
X and Z have an causal effect, so that under assumptions (3.1) and (3.3)

θ

∆
(3.9)

is the proportion of individuals for which there is causal interaction among individuals
for which there are causal effects.

3.1.6 Confounding

A confounder is a variable associated both with the occurrence of the outcome and the
treatment of interest. We say that the covariate C is a confounder of the association
between the treatment Z and the outcome Y if C is a cause of both Z and Y.

Figure 3.1 shows a causal graph (Greenland and Brumback, 2002) summarizing the
fictional causal relations between the variables X, Y , C and Z in a population. An
arrow from a variableX (the causal variable) to another variable Y (the affected variable)
represents the presence of individuals for which X has a causal effect on Y not mediated
through any of the other variables in the graph. If there is no sequence of directed arrows
from a variable Y to a variable X the variable Y is assumed to have no causal effects
on X. That is, no alternation of the distribution of Y would have an impact on the
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distribution of X (Greenland and Brumback, 2002). If, as in Figure 3.1, there exists a
sequence of directed arrows from a variable C to a treatment Z (not mediated through
Y) and a sequence of directed arrows from C to the outcome Y (not mediated through
Z) then C is a confounder of the association between Y and Z.

Due to confounding, estimation of the pxz’s will be biased, if C is not controlled for.

Figure 3.1: Example of confounding of the association between Z and Y by C

As noted, potential outcomes are unknown and impossible to observe except for the
actual setting of the explanatory variables. Therefore estimation of pxz is required in
order to assess bounds on θ. Due to confounding, in general P (Y = 1|X = x, Z =

z) 6= P (Yxz = 1) = pxz for observational studies. That is, in the absence of appropriate
control for confounding, estimation of the pxz will be biased. If

P (Yxz = 1|C) = P (Y = 1|X = x, Z = z, C) (3.10)

for a set of measured covariates C, we say that C is sufficient for confounding control. If
(3.10) hold, then

E(P (Y = 1|X = x, Z = z, C)) = E(P (Yxz = 1|C)) =

=
∑
c

P (Yxz = 1|C = c)P (C = c) = pxz.

3.2 Logistic regression model

A logistic regression model, also called a logit model, assume a binomial distribution of
a binary response variable (Agresti, 2002).

The logistic regression model for P (Y = 1|C = c) = E(Y |C = c) is

logit(P (Y = 1|C = c)) = β0 +

p∑
i=1

βici (3.11)

where c = (c1, . . . , cp) is the observed p-dimensional predictor variable C.
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If C = (C1, . . . , Cp) consists of factor variables the logistic regression model for
P (Y = 1|C = c) = E(Y |C = c) is

logit(P (Y = 1|C = c)) = β0 +

p∑
i=1

βi(ci). (3.12)

For the functions βi to be identifiable, we impose constraints on βi, i = 1, . . . , p, say
βi(c

∗
i ) = 0 for some level c∗i of Ci, i = 1, . . . , p.

3.3 Marginal Structural Models

In observational studies where subjects typically are followed during a relatively long
period of time, time-dependent confounders are often present. A covariate that satisfies
the following two criteria

1. is associated with future treatment

2. is associated with future outcome

is a potential time-dependent confounder for the effect of treatment on outcome. If
time-dependent confounders are also affected by previous treatment, conventional sta-
tistical methods might lead to biased estimates of treatment effect (Robins et al., 2000).
Since we suspect that the occurrence of bipolar episodes last year is a confounder of
the association between lithium treatment and episodes during the current year, control-
ling for confounding requires a careful approach. By using Marginal structural models
(MSM’s) we adjust for time-dependent confounding so that parameters of the model are
consistently estimated, under the assumption that there are no unmeasured confounders
(Robins et al., 2000).

A marginal structural model is a model for E(Yxz) = pxz = P (Yxz = 1) and can, for
instance, be parameterized by

logit(pxz) = γ0 + γ1(x) + γ2(z) + γ3(x, z) (3.13)

where pxz is uniquely determined by γi , i = 0, 1, 2, 3, if we impose constraints similar to
the constraints on (3.12).

Let us now consider a logit model for E(Y |X = x, Z = z) = P (Y = 1|X = x, Z = z)

corresponding to (3.13) parameterized by:

logit(E(Y |X = x, Z = z)) = γ′0 + γ′1(x) + γ′2(z) + γ′3(x, z). (3.14)

If X and Z are randomized or unconfounded, γ′i = γi, i = 0, 1, 2, 3. Fitting model (3.14)
to observed data using ML will then result in asymptotically unbiased estimations of
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γ′i, i = 0, 1, 2, 3 since maximum likelihood estimators are asymptotically unbiased under
the regularity conditions (Liero and Zwanzig, 2011). Hence, estimating the parameters
in (3.14) will result in asymptotically unbiased parameters of the model (3.13) when
confounding is not present.

If the (possibly multivariate) covariate C is a confounder of the association between, say,
Z and Y , we can use the Inverse-Probability-of-Treatment-Weights (IPTW’s) to adjust
for the confounding of C. A marginal structural model will then be fitted according to
the following two steps:

1. The probability for each participant to have his/her own treatment history con-
ditioned on the covariate C is estimated. These estimated probabilities are then
used to construct the IPTW’s. The IPTW for an individual assigned to treatment
Z = z is

1

P (Z = z|C)
. (3.15)

2. A weighed model for the probability of the outcome to occur conditioned on X is
fitted. The IPTW’s are used as weights. Under the assumption of no unmeasured
confounding the estimations of E(Yxz) made in this step will be asymptotically
unbiased (Robins et al., 2000).

We will use logistic regression for the estimations made in these two steps. Thus, the
marginal structural model is (3.13) with the estimated IPTW’s used as weights. The
IPTW’s are estimated using the model

logit(P (Z = 1|C = c)) = α0 +

p∑
i=1

αi(ci) (3.16)

where ci, i = 1, . . . , p constitute c.

To see why this approach results in consistent estimators, assume that there is no un-
measured confounders of the association between outcome and treatment and that the
causal graph 3.1 is accurate. If we were to fit the model (3.14) to data, the following
function would be maximized in order to maximize the likelihood function:

n∑
i=1

Yi(log(πi(xi, zi))) + (1− Yi)log(1− πi(xi, zi)) (3.17)

where Yi is outcome for participant i, xi and zi is the observed values of X and Z for
participant i and πi(xi, zi) = E(Yi|X = xi, Z = zi). When using the IPTW’s as weights
the following function is maximized:

n∑
i=1

wiYi(log(πi(xi, zi))) + wi(1− Yi)log(1− πi(xi, zi)) (3.18)
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where wi is the IPTW for for participant i.

Using a similar reasoning as Robins et al. (2000), by using the IPTW’s model (3.18) is
fitted to a pseudo-population consisting of wi copies of person number i, i = 1, 2, . . . , N ,
where N is the number of individuals in the actual population. To see why this works,
assume that within stratum C = c consisting of n = n1 + n2 individuals n1 individuals
were assigned to the treatment Z = z1 and n2 individuals were assigned to the treatment
Z = z2. If we were to construct a pseudo-population by creating 1

n1/n
copies of each

individual assigned to Z = z1 and 1
n2/n

copies of each individual assigned to Z = z2 then
the pseudo-population would consist of n1

n1/n
+ n2

n2/n
= 2n individuals of which n were

assigned to Z = z1 and n to Z = z2. This corresponds to using a model with all possible
interaction terms included to estimate the IPTW’s.

By using IPTW’s, we create a fictional pseudo-population in which the treatment Z is
unconfounded by the covariate C. Furthermore, the pxz’s are not altered in the pseudo-
population which we show in Appendix C. Hence, in the pseudo-population, the pxz’s
can be consistently estimated by fitting a model for E(Y |X = x, Z = z).

3.4 Data analysis

3.4.1 Assumptions

A person’s genotype is already settled before birth and it is impossible that the associa-
tion between a certain SNP and the occurrence of bipolar episodes is confounded by some
of the covariates (Appendix B) included in the data material. To the extent that there is
a causal relation between an individual’s genotype and the covariates, the covariates are
a consequence of the genotype. Therefore, we do not include the SNP’s when estimating
the IPTW’s.

If the covariates listed in Appendix A are not sufficient for confounding control the
estimations of the pxz’s will not be consistent. There is no way to decide if that is the
case (Robins et al., 2000). Due to the complexity of the world, it is not reasonable
to assume sufficiency for confounding control. Before prescribing lithium treatment,
a psychiatrist will consider factors such as the patient’s history of bipolar symptoms,
(that is the severity of the illness) the bipolar type and the treatment history. These
factors describe much of the mechanisms behind lithium prescription. This suggests that
the untestable assumption that the bias inflicted by unmeasured confounders is small is
plausible.

3.4.2 Model selection based on Akaike’s information criterion

In section 3.3 we described how Marginal Structural Models can be used to control
for time-dependent confounding. MSM’s can also be used to control for time-invariant



Chapter 3. Methods 13

confounding. There are a number of covariates (see Appendix A) that are potential
confounders of the association between lithium assignment and the occurrence of bipolar
episodes.

We use Akaike’s information criterion, AIC, to compare models for the IPTW’s. For a
given model M and for a given sample, the definition of AIC is (Agresti, 2002)

AIC = −2(LM − d) (3.19)

where d is the number of parameters in M and LM is the maximized log-likelihood for
M . When using AIC to compare models, models with small AIC is preferred. AIC is
the sum of two functions, −2LM which rewards goodness of fit and 2d which penalizes
models with many parameters.

We use the built in R function step (R Core Team, 2015) to select a model for the
probability to be assigned to lithium treatment. The function step performs backward
elimination based on AIC.

3.4.3 Estimation of the bounds

To estimate the pxz’s, we use the weighed logistic regression model

logit(P (Y = 1|X = x, Z = z)) = γ0 + γ1(x) + γ2(z) + γ3(x, z) (3.20)

with the IPTW’s as weights, where Z denotes current lithium treatment and X denotes
the SNP under consideration. The estimated bounds on θ are then calculated according
to (3.5) and (3.6) for no monotonicity assumptions and according to (3.7) and (3.8) for
monotonicity assumptions. Note that (3.7) and (3.8) can be used to calculate bounds on
θ under assumptions of both negative and positive monotonic effects since the direction
of a monotonic effect only depends on the coding. Bounds were not estimated under
the assumption of lithium treatment having positive monotonic effects, since that would
mean that lithium treatment could never prevent bipolar episodes.

3.4.4 Confidence intervals by Bootstrapping

We calculate bootstrapped (Alm and Britton, 2008) 95% percentile confidence intervals
for each estimated bound based on 500 bootstrap replicates. Bootstrapping is made
from individuals, not observations, and thus the number of observation varies between
bootstrap replicates due to drop outs. For each resampled set of participants, the IPTW’s
are recalculated and used as weights when estimating the pxz’s. When monotonicity is
assumed, the number of replicates for which the monotonicity assumptions are violated
is recorded.
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3.4.5 Multiple testing

In this project, confidence intervals are calculated for more than 12.000 SNP’s under
various assumptions. If the individual confidence level is 1−α then the overall confidence
level will, if left unadjusted, be considerably smaller than 1−α. That is, the risk of false
discoveries will be larger than α. Adjusting CI’s for multiple testing will typically result
in wider intervals. The number of CI’s is quite large, and adjustments will probably lead
to a situation where no conclusions can be drawn. During this discovery stage we want
to maintain high power, even at the expense of potentially more false positives. For this
reason, we will calculate confidence intervals with individual confidence levels 95%. It
is important to bear in mind that some of these confidence intervals will probably not
attain zero by pure chance.

3.4.6 Coding of genetic markers

It may be of interest to investigate the effect of having none (SNP level 0) or any (SNP
level 1 or 2) SNP, in particular under monotonicity assumptions. For this reason we
group level 1 and 2 of SNP’s so that SNP’s are coded as binary (none/any) in addition
to the ternary coding of the SNP’s. We perform a analysis with SNP’s coded as binary
analogous to the analysis with SNP’s coded as ternary.
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Results

4.1 Model for the weights

As described is Chapter 3.4.2 we use backward elimination based on AIC in order to
select a model for the probability to be assigned to lithium treatment. We start with an
initial model with no interaction terms presented in Appendix B. The initial model has
deviance 1142.8 on 3215 degrees of freedom. The deviance D can be used to test the
null hypothesis that the initial model is accurate against the alternative of the saturated
model, since D is (asymptotically) χ2 distributed with 3215 degrees of freedom under
the null. P (χ2

3215 > 1142.8) ≈ 1, indicating a good fit for the initial model. For this
reason, we do not consider more complicated models. The selection process results in
the following model for the probability to be assigned to lithium treatment:

logit(P (Zt = 1|Zt−1 = zt−1, Yt−1 = yt−1)) = α0 + α1zt−1 + α2yt−1 (4.1)

where Zt denotes current lithium treatment, Zt−1 denotes lithium treatment in the pre-
ceding year and Yt−1 denotes the occurrence of bipolar episodes in the preceding year.
Model (4.1) is presented in Appendix B.

4.2 Bounds on causal interaction

We estimate bounds on θ, the proportion of individuals for which there are causal inter-
action between the genetic markers and lithium treatment. We also calculate bootstrap
confidence intervals for the bounds on θ with (individual) confidence level 95%. This
analysis is carried out with binary coding of the SNP’s (none or any) and with ternary
coding (none, single or double).

15
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4.2.1 Bounds with no monotonicity assumption

4.2.1.1 Binary coding of genetic markers

With binary coding (Chapter 3.4.6) of the SNP’s and under no assumption of monotonic
effects, the estimated upper bound on θ attains one for all SNP’s and the confidence
bounds on the upper bound on θ collapse into one.

Figure 4.1 shows the estimated lower bound on θ, which we call θl, and the upper and
lower confidence bound on θl sorted by the estimated value of θl.

Figure 4.1: The estimated lower bound on θ, θl, and lower and upper confidence
bounds on θl with binary coding of the SNP’s

Table 4.1 contains the estimated θl and the confidence bounds on θl for the ten SNP’s
for which the lower confidence bound on θl is largest.

Table 4.1: Estimated θl and (individual) 95% confidence intervals on θl for the ten
SNP’s for which the lower confidence bound on θl is largest with binary coding of the

genetic markers

SNP Estimated θl Confidence interval for θl
rs9974713 0.15 (0.090,0.20)
rs2285689 0.15 (0.090,0.21)
rs247908 0.16 (0.092,0.21)
rs11188500 0.15 (0.093,0.22)
rs3751212 0.16 (0.097,0.22)
rs1921372 0.17 (0.099,0.24)
rs10461813 0.16 (0.10,0.24)
rs12153044 0.16 (0.10,0.24)
rs4141835 0.18 (0.12,0.24)
rs6805636 0.18 (0.12,0.24)
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4.2.1.2 Ternary coding of genetic markers

With ternary coding (Chapter 3.4.6) of the SNP’s and under no assumption of monotonic
effects, the estimated upper bound on θ attains one for all SNP’s and the confidence
bounds on the upper bound on θ collapse into one.

Figure 4.2 shows the estimated lower bound on θ, denoted by θl, and the upper and
lower confidence bound on θl sorted by the estimated value of θl.

Figure 4.2: The estimated lower bound on θ, θl, and lower and upper confidence
bounds on θl with ternary coding of the SNP’s

Table 4.2 contains the estimated θl and the confidence bounds on θl for the ten SNP’s
for which the lower confidence bound on θl is largest.

Table 4.2: Estimated θl and (individual) 95% confidence intervals on θl for the ten
SNP’s for which the lower confidence bound on θl is largest with ternary coding of the

genetic markers

SNP Estimated θl Confidence interval for θl
rs11762251 0.28 (0.20,0.36)
rs4817536 0.27 (0.20,0.33)
rs7495931 0.30 (0.20,0.38)
rs1457614 0.28 (0.20,0.35)
rs12466870 0.29 (0.20,0.39)
rs16842755 0.32 (0.21,0.41)
rs8000327 0.30 (0.21,0.41)
rs7713886 0.29 (0.22,0.35)
rs12972417 0.29 (0.23,0.36)
rs8139063 0.33 (0.26,0.39)

These results suggest that, on the whole, there are some causal interaction between the
SNP’s and lithium treatment on the occurrence of bipolar episodes. That is, there are
SNP’s that influence how some individuals respond to lithium treatment.
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4.2.2 Bounds under assumption of positive monotonic effects

Negative monotonic effects of lithium treatment are assumed, both for the binary and
for the ternary coding of the SNP’s. That is, we assume that lithium treatment can
not cause bipolar episodes. We make no assumptions of positive monotonic effect of
lithium treatment since it is unreasonable to assume that lithium treatment, which is a
well documented mood stabilizer, can never prevent bipolar episodes. Positive monotonic
effects of the genetic markers are assumed. In other words we assume that the occurrence
of the SNP in question can block the effect of lithium treatment on bipolar episodes but
never prevent episodes.

4.2.2.1 Binary coding of genetic markers

With binary coding of the SNP’s and under the assumption of positive monotonic effects
of the SNP’s, the lower confidence bound on the lower bound on θ attain zero for all SNP’s
except for four SNP’s, which are tabulated in Table 4.3. We note that the confidence
intervals for θl and θu overlap to a great extent for the four SNP’s. The lower confidence
bound on θl/∆ is close to zero and the upper confidence bound on θu/∆ is close to one
for all SNP’s. Even if we were to ignore that the confidence intervals are unadjusted, it
would be impossible to assess the importance of the positive monotonic effects, if they
exist.

For each SNP, we record the number of bootstrap replicates for which the monotonicity
assumptions are violated. The monotonicity assumptions are violated if the lower bound
exceeds the upper bound, that is if θl > θu. For 31 SNP’s, the monotonicity assumptions
are violated for less than 5% of the bootstrap replicates. This suggests that there are
some SNP’s that may reduce the chance for lithium treatment to succeed in preventing
bipolar episodes.

Figure 4.3 shows the (sorted) proportion of bootstrap replicates for which the monotonic-
ity assumption was violated for each SNP. The proportion of violations is quite large for
most of the SNP’s, suggesting that most SNP’s do interact with lithium treatment to
prevent bipolar episodes for some patients.
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Table 4.3: The SNP’s for which lower confidence bound on the lower bound on θ is
larger than zero. By θ

∆ we denote the proportion of the causal effect that are due to
(causal) interaction between the SNP’s and lithium treatment

SNP rs1962292 rs17707219 rs485220 rs7149001

Prop. violated
bootstrap repl.

0.024 0.024 0.022 0.022

Estimated lower
bound on θ

0.056 0.049 0.077 0.065

Estimated upper
bound on θ

0.25 0.24 0.25 0.26

CI lower bound on
θ

(0.00092,0.19) (0.00013,0.18) (0.0015,0.20) (0.00045,0.20)

CI upper bound
on θ

(0.059,0.33) (0.064,0.33) (0.110,0.37) (0.086,0.34)

Estimated lower
bound on θ

∆

0.21 0.20 0.24 0.25

Estimated upper
bound on θ

∆

0.93 0.99 0.78 0.99

CI lower bound on
θ
∆

(0.00320,0.62) (0.00054,0.63) (0.0047,0.52) (0.0018,0.62)

CI upper bound
on θ

∆

(0.19,0.99) (0.18,1.00) (0.20,0.99) (0.20,0.99)

Figure 4.3: The proportion of bootstrap replicates for which the assumption of posi-
tive monotonic effects were violated for each SNP
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4.2.2.2 Ternary coding of genetic markers

With ternary coding of the SNP’s and under the assumption of positive monotonic effects
of the SNP’s, both the lower confidence bound for θl and the lower confidence bound
for θu attains zero for all SNP’s. The proportion of bootstrap replicates for which the
monotonicity assumptions are violated (Figure 4.4) is at least 0.054 for all SNP’s.

Figure 4.4 shows the proportion of bootstrap replicates for which the monotonicity as-
sumptions are violated for each SNP.

Figure 4.4: The sorted proportion of bootstrap replicates for which the assumption
of positive monotonic effects are violated (θl > θu) for each SNP

4.2.3 Bounds under negative monotonicity assumption

Negative monotonic effects of lithium treatment are assumed as in the previous chapter.
Negative monotonic effects of the genetic markers are assumed. In other words, we
assume that the occurrence of the SNP in question can cause the patient to respond to
lithium treatment and in doing so prevent bipolar episodes but never block the effect of
lithium treatment.

4.2.3.1 Binary coding of genetic markers

With binary coding of the SNP’s and under the assumption of negative monotonic ef-
fects of the SNP’s, the lower confidence bound on the lower bound on θ and the lower
confidence bound on the upper bound on θ attain zero for all SNP’s. That is, even if
we were to ignore that the confidence intervals are unadjusted, no conclusions on the
presence of negative monotonic effects can be drawn. For each SNP, we record the num-
ber of bootstrap replicates for which the monotonicity assumptions are violated. The
monotonicity assumptions are violated if the lower bound exceeds the upper bound, that
is if θl > θu. For the four SNP’s tabulated in Table 4.4, the monotonicity assumptions
are violated for less than 5% of the bootstrap replicates.
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Table 4.4: The SNP’s for which the monotonicity assumptions are violated (θl > θu)
for less than 5% of the bootstrap replicates. By θ

∆ we denote the proportion of the causal
effect that are due to (causal) interaction between the SNP’s and lithium treatment

SNP rs7781044 rs7150844 rs8090471 rs139662

Prop. viol 0.042 0.046 0.030 0.042

Estimated lower bound on θ 0.050 0.024 0.047 0.089

Estimated upper bound on θ 0.23 0.23 0.23 0.25

CI lower bound on θ (0,0.18) (0,0.14) (0,0.18) (0,0.20)

CI upper bound on θ (0,0.30) (0,0.30) (0,0.32) (0,0.32)

Estimated lower bound on θ
∆ 0.22 0.10 0.19 0.36

Estimated upper bound on θ
∆ 0.99 0.95 0.94 0.99

CI lower bound on θ
∆ (0,0.67) (0,0.54) (0,0.59) (0,0.72)

CI upper bound on θ
∆ (0,0.99) (0,0.99) (0,0.99) (0,1.00)

Figure 4.5 shows the (sorted) proportion of bootstrap replicates for which the mono-
tonicity assumptions are violated for each SNP. As under the assumption of positive
monotonic effects, the proportion of violations is high for most SNP’s. This indicates
that number of investigated SNP’s that can not block the effect of lithium treatment is
small.

Figure 4.5: The proportion of bootstrap replicates for which the assumption of neg-
ative monotonic effects were violated for each SNP

4.2.3.2 Ternary coding of genetic markers

With ternary coding of the SNP’s and under the assumption of negative monotonic
effects of the SNP’s, both the lower confidence bound on θl and the lower confidence
bound on θu attains zero for all SNP’s. The proportion of bootstrap replicates for which
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the monotonicity assumptions are violated (Figure 4.6) is at least 0.27 for all SNP’s and
considerably larger for most SNP’s.

Figure 4.6: The sorted proportion of bootstrap replicates for which the assumption
of negative monotonic effects were violated for each SNP

4.3 Conclusions

The results suggest that there are genetic markers that, to some extent, influence how
some individuals respond to lithium treatment. For most of the genetic markers, the
results do not indicate that they always affect lithium treatment response in the same
direction. With binary coding (see Chapter 3.4.6) of the genetic markers we find 35
particularly interesting markers that potentially affect lithium treatment response in the
same direction. Some of these genetic markers are tabulated in Table 4.3 and in Table
4.4. As shown in these tables, both the lower confidence bound on the lower bound
on θ (the proportion of bipolar patients for which the genetic marker affects treatment
response) and the lower confidence bound on the lower bound on θ/∆ (the proportion of
causal effect that is due to causal interaction between lithium treatment and the genetic
marker in question) are close to zero for all genetic markers. The upper confidence bound
on the upper bound on θ and the upper confidence bound on the upper bound on θ/∆
are close to one for all genetic markers. That is, the evidence is not strong enough to
assess to what extent the genetic markers influence lithium treatment response based on
the results.
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Discussion

The aim of this project was to find genetic markers that affect how bipolar patients
respond to lithium treatment. We were primarily interested in genetic markers that, to
the extent they affect treatment response, always act in the same direction. Knowledge
about such genetic markers allows for personalized treatment.

Out of 12186 genetic markers, we found around 35 interesting candidates. Under the
assumption that the genetic marker under consideration always act in the same direction,
the lower confidence bound on the lower bound on the proportion of individuals for
which genetic markers affect lithium treatment response is very close to zero for all
interesting candidates. The upper confidence bound on the upper bound is close to
one for all interesting candidates. Even more important, the corresponding bounds on
the proportion of the causal effects inflicted by lithium and/or the genetic marker under
consideration that is due to interaction between the genetic marker and lithium treatment
range from a value close to zero to a value close to one for all genetic markers. For this
reason, we can not draw any conclusions about how important the role of these genetic
markers is, if they do affect lithium treatment response. It is important to emphasize
that the result can not be used to establish statistical significance, since we do not adjust
for simultaneous comparisons.

Twelve thousand genetic markers is, from a genetic perspective, a very small number. A
more extensive genotype data material is available, and this project could easily be ex-
tended to include a larger number of genetic markers. Another possible extension of this
project is to estimate bounds on the sufficient-cause interaction between genetic markers
and lithium treatment rather than the causal interaction, as described by Sjölander et al.
(2014b). Sufficient-cause interaction is present if causal interaction is present and, in ad-
dition, the interacting exposures are necessary for the outcome to occur. The finding
of genetic markers that participate in sufficient-cause interaction with lithium treatment
would be even more interesting than the finding of genetic markers that participate in
causal interaction.
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List of variables

Number Variable Description

1 li
Whether participant currently assigned to
lithium treatment

2 bipol type
Type of bipolar disorder: Type I, Type II, bipo-
lar type schizoaffective disorder or Not specified

3 epi depr bf reg
Whether depressive episodes resulting in hospi-
talization had occurred before registration

4 epi hypo bf reg
Whether hypomanic episodes resulting in hospi-
talization had occurred before registration

5 epi manic bf reg
Whether manic episodes resulting in hospitaliza-
tion had occurred before registration

6 epi mixed bf reg
Whether mixed episodes resulting in hospitaliza-
tion had occurred before registration

7 epi total bf reg
Whether bipolar episodes resulting in hospital-
ization had occurred before registration

8 info day Date of follow up
9 age at reg Participants age at registration

10 current anti depr
Whether participant currently assigned to anti-
depressive medicine

11 current neuro
Whether the patient is currently assigned to an-
tipsychotic medication

12 current mood
Whether the patient is currently assigned to
mood stabilizers

13 epi yr
Whether patient experienced episodes resulting
in hospitalization during current year

14 epi last yr
Whether participant was hospitilized due to
episodes the previous year

15 li last yr
Whether participant was assigned to lithium the
previous year

16 sex Man/Woman
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Models for the IPTW’s

Call:
glm(formula = li ~ epi_manic_bf_reg + epi_total_bf_reg + bipol_type +

epi_depr_bf_reg + epi_last_yr + li_last_yr + sex + current_neuro +
epi_hypo_bf_reg + epi_mixed_bf_reg + age_at_reg + current_anti_depr ,
family = "binomial", data = dataMY)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7858 0.2109 0.2392 0.2654 2.3394

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.938476 0.831598 -3.534 0.00041 ***
epi_manic_bf_reg 0.208634 0.328079 0.636 0.52482
epi_total_bf_reg -0.008678 0.288479 -0.030 0.97600
bipol_typeTyp I 0.625160 0.594229 1.052 0.29278
bipol_typeTyp II 0.709135 0.651981 1.088 0.27674
bipol_typeUNS (utan narmare specifikation) 0.546787 0.676875 0.808 0.41920
epi_depr_bf_reg 0.122693 0.413823 0.296 0.76686
epi_last_yr -0.260637 0.179871 -1.449 0.14733
li_last_yr 5.603749 0.176511 31.747 < 2e-16 ***
sexMan -0.180257 0.176041 -1.024 0.30586
current_neuro -0.204158 0.197167 -1.035 0.30046
epi_hypo_bf_reg -0.025438 0.239751 -0.106 0.91550
epi_mixed_bf_reg 0.058407 0.185663 0.315 0.75308
age_at_reg 0.003144 0.006572 0.478 0.63232
current_anti_depr -0.036133 0.180100 -0.201 0.84099
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3343.1 on 3229 degrees of freedom
Residual deviance: 1142.8 on 3215 degrees of freedom
AIC: 1172.8

Number of Fisher Scoring iterations: 6

Listing B.1: Initial model for the IPTW’s
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Call:
glm(formula = li ~ epi_last_yr + li_last_yr , family = "binomial",

data = dataMY)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6774 0.2373 0.2373 0.2739 2.2077

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0534 0.1583 -12.972 <2e-16 ***
epi_last_yr -0.2921 0.1705 -1.713 0.0867 .
li_last_yr 5.6097 0.1721 32.593 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3343.1 on 3229 degrees of freedom
Residual deviance: 1147.4 on 3227 degrees of freedom
AIC: 1153.4

Number of Fisher Scoring iterations: 6

Listing B.2: Choosen model for the IPTW’s
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Proof that using IPTW preserves
the pxz’s

Let Y denote a binary outcome (0 or 1) and let X and Z denote two categorical ex-
planatory variables with levels 0, . . . ,KX and 0, . . . ,KZ respectively. Let C denote a
categorical multivariate covariate and assume that C is sufficient for confounding con-
trol, that is P (Yxz = 1|C) = P (Y = 1|(X,Z) = (x, z), C) and that (X,Z) has no causal
effects on C. Now suppose that we create a pseudo-population (as described in Chapter
3.3) by using the IPTW’s

1

P (Z = z|C = c)
· 1

P (X = x|Z = z, C = c)
=

1

P (X = x, Z = z|C = c)

and let Ŷ denote the outcome in the pseudo-population created by using the IPTW’s.
Similarly, let the (X̂, Ẑ) denote the treatments in the pseudo-population and let Ĉ denote
the covariate in the pseudo-population.

Then
P (Ŷ = 1|(X̂, Ẑ) = (x, z)) =

=
∑
c

P (Ŷ = 1|(X̂, Ẑ) = (x, z), Ĉ = c)P (Ĉ = c|(X̂, Ẑ) = (x, z)) =

=
∑
c

P (Y = 1|(X,Z) = (x, z), C = c)P (Ĉ = c|(X̂, Ẑ) = (x, z))

where the last step follows from the fact that within strata (X,Z) = (x, z) and C = c the
proportion of subjects for which Y = 1 is intact after using the IPTW’s. Furthermore,

P (Ĉ = c|(X̂, Ẑ) = (x, z)) =

=
P (Ĉ = c, (X̂, Ẑ) = (x, z))

P ((X̂, Ẑ) = (x, z))

27
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= k
P (C = c, (X,Z) = (x, z))

P ((X̂, Ẑ) = (x, z))P ((X,Z) = (x, z)|C = c)

= k
P (C = c)

P ((X̂, Ẑ) = (x, z))

Since
∑
c
P (Ĉ = c|(X̂, Ẑ) = (x, z)) = 1 it follows that k = P ((X̂, Ẑ) = (x, z)) and

P (Ĉ = c|(X̂, Ẑ) = (x, z)) = P (C = c).

Hence

P (Ŷ = 1|(X̂, Ẑ) = (x, z)) =
∑
c

P (Y = 1|(X,Z) = (x, z), C = c)P (C = c)

and since C sufficient for confounding control this equals∑
c

P (Yxz = 1|C = c)P (C = c) = pxz

where the last step follows from the assumption that (X,Z) has no causal effects on C.
Thus

P (Ŷ = 1|(X̂, Ẑ) = (x, z)) = pxz.
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