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Abstract

Assessing the probability of extreme and rare events is an im-
portant issue in financial risk management, in order to account for
potential losses. To model and estimate tail risk adequately, such as
value at risk (VaR), is of typical interest. Recent financial disasters
has made the common distribution assumption of normality for asset
returns questionable. This assumption makes modeling easy but ineffi-
cient when the return distribution exhibits heavy tails. An interesting
solution to this problem is the extreme value approach, estimation of
extreme quantiles. In this thesis we demonstrate how the use of uni-
variate extreme value theory (EVT) can be combined with a GARCH
model in order to estimate daily VaR properly. Using backtesting
based on historical daily log-returns for OMXS30 and Ericsson the
results indicate that the GARCH-EVT approach outperforms other
well-known techniques.
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1 INTRODUCTION

1 Introduction

1.1 Background

Along with a more volatile financial market and the development of more complex

financial instruments the interest of measuring risk has increased. Recent finan-

cial disasters, such as the bankruptcy of Lehman Brothers in 2008, has triggered

and made it even more important for banks, financial institutions and treasury or-

ganisations within large corporations to account and cover for extreme outcomes.

Extreme outcomes are rare and the estimation is consequently not problem-free.

Value at risk (VaR) is a popular and above all an essential risk measure within

market risk (see Jorion 2001), whose origin date back to the late 1980’. Formally,

VaR is a quantile-based measure estimating the maximal loss during a given time

horizon for a given confidence level. Todays nearly limitless computing power has

contributed to existence of multiple techniques, methods and approaches to estimate

VaR, both parametric and non-parametric. One popular non-parametric method is

the historical simulation (HS) where VaR is estimated from historical price move-

ments, simply using the empirical distribution for the returns. The advantage of

HS is that few assumptions are required and the method is easy to implement.

However, in order to get accurate estimates from HS, the history has to repeat

itself, leading to the assumption of constant volatility. This is a contradiction to

the well-known phenomenon of volatility clustering in financial markets, meaning

that periods of high volatility are followed by periods of less.

The autoregressive conditional heteroscedastic (ARCH) model and the generalized

autoregressive conditional heteroscedastic (GARCH) model are introduced to model

such volatility clustering. VaR estimates based on these models are reflecting the

current volatility background but tend to underestimate the magnitude of risk. This

underestimation results from the assumption of conditional normality, which does

not seem to hold for real data. Models based on conditional normality are not that

well-suited for analyzing extreme scenarios. An important solution to this problem

is the extreme value approach, the estimation of extreme quantiles. The advan-

tages of using extreme value theory (EVT) is that it is based on solid statistical

theory for the asymptotic behavior in the tails, and it allow for extrapolation be-

yond the tail of the distribution. However, EVT applies estimators for independent

and identically distributed (iid) variables and do not reflect the current volatility

background which is a contradiction to two important features of daily asset returns.
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1.2 Aim and purpose of the thesis 1 INTRODUCTION

McNeil and Frey (2000) proposes one approach, which will be adapted in this the-

sis, combining the ideas of all three methods mentioned above. This approach is

based on GARCH-modelling and pseudo-maximum likelihood estimation for the

conditional volatility, HS for the central part of the distribution and EVT methods

for quantile estimation. The residuals (also called innovations) from the GARCH

model is said to be at least approximately an iid series, which makes EVT plausible.

The distribution of the residuals, estimates of the conditional mean and volatility

and EVT based quantile are used for estimating one day ahead VaR. The forecast-

ing of daily VaR will be based on historical data using a moving window of the 1000

most recent log-returns.

1.2 Aim and purpose of the thesis

The purpose of this thesis is to give an introduction on how extreme value theory

(EVT), together with time-series models, can be applied in financial risk manage-

ment when estimating VaR. The aim is to provide a theoretical framework for EVT

and present how it can be used together with an AR-GARCH model to forecast

the daily VaR. The empirical analysis is based on price-movements for the Swedish

OMXS30 index, short for OMX Stockholm 30, as well as the price-movements for

Ericsson.
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2 THEORETICAL FRAMEWORK

2 Theoretical framework

This section will provide the theoretical tools and formulas that will be useful for

the analysis. Since the main interest involves the future possible losses the focus

throughout the thesis will be on the negative return series, i.e. a loss is a positive

value.

2.1 Return series

Let Pt be the daily closing price of an asset at time t. The simple gross return Rt,

between time-period t− 1 and t, is defined as

1 +Rt =
Pt
Pt−1

(1)

The continuously compounded return or log return, rt, is defined as the natural

logarithm of (1), and will be the formula used in this thesis

rt = log(1 +Rt) = log
( Pt
Pt−1

)
(2)

The loss returns can then be expressed as

Xt = −rt (3)

2.2 Value at risk (VaR)

VaR is defined as the maximal loss during a given time period for a given probability

and can be applied in both analysis with one asset as several - a portfolio. In a

mathematical point of view [9], VaR is defined as the p-th quantile of the distribution

FX

VaRp(X) = inf{x ∈ R : F (x) ≥ p} = F−1x (1− p) 0 < p < 1 (4)

For example, if a portfolio of stocks has a daily 5% VaR of $1 million, there is a

0.05 probability that the portfolio will fall in value by at least $1 million over one

day. A loss of $1 million or more on this portfolio is expected on 1 day out of 20

days, because of 0.05 probability.

2.3 Time-series models

In the same way as [8], assume that Xt is a stationary time series representing the

daily loss returns. At time t the time-series is said to follow the dynamics of a first
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2.3 Time-series models 2 THEORETICAL FRAMEWORK

order stochastic volatility model

Xt = µt + σtZt (5)

where µt is the expected return at time t, σt the volatility at time t and Zt are

a white noise series, i.e. independent and identically distributed with zero mean,

unit variance and marginal distribution function FZ(z). Zt is commonly assumed

to be standard normal distributed. The parameters µt and σt are assumed to be

measurable with respect to the information available up until time t − 1, denoted

It−1. Based on the model in (5) the VaR measure of interest is

VaRt
p = µt+1 + σt+1VaRt(Zp) (6)

where µt+1 is the one day ahead predicted expected return, σt+1 is the one day

ahead predicted volatility and VaR(Zp) is the estimated quantile based on some

properly assumed distribution.

2.3.1 Autoregressive model (AR)

An autoregressive model (AR) is a representation of a random process used to

describe the time-varying dependence between the variable of interest and its past

values. Since daily returns tend to exhibit some serial autocorrelation, an AR

model is used to model the dependence and to forecast the conditional mean. An

AR model that depends on its r past observations is called an AR model of order

r, AR(r), and is mathematically defined as [9]

Xt = φ0 +
r∑
r=1

φt−rXt−r + εt (7)

where φ0 is a constant, φi are coefficients and εt ∼ iid (0, σ2). The AR(1) model

applied in this thesis is expressed as

Xt = φ0 + φ1Xt−1 + εt (8)

where the loss returns at time t depend on the constant φ0, the previous observation

Xt−1 and the innovation εt, describing the variability or randomness in the model.
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2.4 Extreme Value Theory (EVT) 2 THEORETICAL FRAMEWORK

2.3.2 ARCH / GARCH models

The autoregressive conditional heteroscedastic (ARCH) model was proposed by

Engle in 1982 in order to model financial time-series that exhibit time-varying

volatility clustering. The conditional variance is modeled as a linear function of

past squared residuals, ε2, also known as the ARCH-terms. The general ARCH(p)

is defined as [9]

σ2t = α0 +

p∑
i=1

αiε
2
t−i (9)

where α0 > 0, αi ≥ to keep the conditional volatility postitive. However, financial

time-series tend to need too many p in order to fit data well. For this purpose, the

generalized autoregressive conditional heteroscedastic (GARCH) model was intro-

duced by Bollerslev in 1986. GARCH is also a weighted average of past squared

residuals, but adding the GARCH terms, past σ2. According to [4], it gives parsimo-

nious models that are easy to estimate and has proven to be successful in predicting

conditional variances. The general GARCH (p,q), is defined as [9]

σ2t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j (10)

where εt ∼ iid (0, σ2), α0 > 0, αi ≥ 0 and βj ≥ 0 are the coefficients of the model

such that
∑p

i=1 αi +
∑q

j=1 βj < 1. The most commonly used form of the GARCH

model is the GARCH (1,1), adapted in this thesis

Xt = µt + εt

σ2t = α0 + α1ε
2
t−1 + β1σ

2
t−1

(11)

where the volatility at time t depends on the previous squared residual, ε2t−1, the

previous conditional variance σ2t−1 and the sum α1 + β1 indicate how fast the

variance tend to go back to its long-run weighted average.

2.4 Extreme Value Theory (EVT)

Extreme value theory (EVT) has since the middle of 1990s become a commonly

adaptable approach for estimating financial and insurance risk, see Embrechts. et

al (1997) [2]. McNeil (1997) [7] is using the statistical methods of EVT to estimate

the tail losses for Danish fire insurance data. Embrecths et. al (1999) [3] use EVT

as a risk management tool for several purposes within finance and insurance. The

concept behind EVT is to consider the distribution of maxima (or minima) so that
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2.4 Extreme Value Theory (EVT) 2 THEORETICAL FRAMEWORK

the focus is on the tails rather the center of the distribution. EVT plays the same

fundamental role for the asymptotic behavior of the extremes as the central limit

theorem plays when modelling sums of random variables.

EVT can be divided into two main parametric approaches, block maxima which

is based on the Fisher-Tippett-Gnedenko theorem and peaks over threshold (POT-

model) resulting from the Pickands-Balkema-de Haan theorem. For this specific

analysis the POT method uses data more efficiently and is therefore considered as

the most useful. Thus the focus will be on the POT method.

2.4.1 Generalized extreme value distribution (GEV)

Let X1, ..., Xn be a sequence of iid random variables with common distribution

function FX(x). The distribution for the maximum Mn = max{X1, X2, ..., Xn} is,

due to the assumption of independence for the variables, expressed as

P (Mn ≤ x) = P (X1 ≤ x, ...,Xn ≤ x) = Fn(x), x ∈ R (12)

The Fisher-Tippett-Gnedenko theorem states that if there exists constants cn > 0

and dn ∈ R and some non-degenerate distribution function H such that [2]

P ((Mn − dn)/cn) ≤ x) = Fn(cnx+ dn)→ H(x), as n→∞ (13)

then H must be one of the three distributions (using terms related to financial mar-

kets, µ and σ > 0)

The Fréchet family: ξ > 0 and with CDF

H(x) =

 exp
[
− (1 + ξ

(
x−µ
σ

)−1/ξ]
if x > −1/ξ

0 otherwise


The Gumbel family: ξ = 0 and with CDF

H(x) = exp
[
− exp(−

(x− µ
σ

)
)
]

−∞ < x <∞

The Weibull family: ξ < 0 and with CDF

7



2.4 Extreme Value Theory (EVT) 2 THEORETICAL FRAMEWORK

H(x) =

 exp[−(1 + ξ
(
x−µ
σ

)
)−1/ξ] if x < −1/ξ

0 otherwise


where µ is the location parameter, σ the scale parameter and ξ is the shape parame-

ter controlling the tail behavior of the limiting distribution indicating the thickness

of the tail. The generalized extreme value distribution is a three-parameter combi-

nation of these three types of distributions with CDF

Gµ,σ,ξ(x) = exp(−[1 + ξ(
x− µ
σ

)]−1/ξ), ξ 6= 0 (14)

The parameters µ, σ and ξ are estimated using the maximum-likelihood method

(see Appendix). For the block maxima method the time series is divided into

equally sized blocks, where the maxima for each block is determined and GEV

parameters are fitted for these. The estimated VaR-measure for a financial position

with negative log-returns Xt is [9]

V̂aRp =

 µ̂n − σ̂n
ξ̂n

{
1− [−n ln(1− p)]−ξ̂n if ξ 6= 0

µ̂n − σ̂n ln[−n ln(1− p)] if ξ = 0

 (15)

where n is the length of each block and (ξ̂n, µ̂n, σ̂n) are the estimates obtain using

maximum-likelihood. The subscripts are used to indicate that the estimates depend

on the size of n.

2.4.2 Generalized Pareto distribution (GPD)

The more modern approach of EVT is the Peaks over threshold, also known as

the POT-model. Instead of fitting a distribution to the maxima as with the GEV

distribution, the POT-model involves estimating the conditional distribution of ex-

ceedances beyond some threshold u, where the exceedances Xk−u is said to belong

to the generalised Pareto distribution (GPD).

Again, consider observations of iid random variables X1, ..., Xn with common un-

known distribution function FX . According to the Pickands-Balkema-de Haan the-

orem, Xk−u is well approximated by the GPD. The conditional excess distribution

function for X over the given threshold u is defined as [1]

Fu(x) = P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
for x ≥ 0. (16)
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2.4 Extreme Value Theory (EVT) 2 THEORETICAL FRAMEWORK

where Fu(x) is interpreted as the probability that a loss exceeds u by no more than

x given that the threshold is exceeded. The approximation is

Fu(x) ≈ Gξ,β(x) as u→∞ (17)

The cumulative distribution function for the GPD is given by

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ if ξ 6= 0

1− exp(−x/β) if ξ = 0

}

where the scale parameter β > 0, the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ
when ξ < 0. The distribution for F (x) can be expressed as

F (x) = F (u) + [(1− F (u))Gξ,β(x− u)] x > u (18)

We then require an estimate of F (u) which according to [1] can be approximated

by the empirical distribution function F̄ (u) = n−Nu
n where n is the total number of

observations and Nu the number of observations above the threshold. In this way

the tail estimator can be written as

F (x) = 1− Nu

n
(1 + ξ̂

(x− u
β̂

)
)−1/ξ̂ (19)

and inverting this formula give us the estimate for VaR

V̂aRp = u+
β̂

ξ̂

{[ n
Nu

(1− p)
]−ξ̂
− 1

}
(20)
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3 METHODOLOGY

3 Methodology

This section will present the methods for the analysis, starting with an overview of

the data sets. For OMXS30 the set consist of price-movements starting 1991-08-01

until 15-04-30, resulting in 5961 daily log-returns. For Ericsson it is covered from

1989-09-28 until 15-04-30, resulting in 6448 daily log-returns.

3.1 Data analysis

As outlined, there are some features for daily asset returns that need to be consid-

ered before modeling, such as the assumption of iid series, the presence of volatility

clustering and heavy tails. For illustrative purposes several graphs are used to get

a rough sense of this. Starting with the time series for the loss returns.
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Figure 1: Loss returns for OMXS30 (left) and for Ericsson (right)

As seen in Figure 1 the phenomenon of volatility clustering for the extreme values

can be noticed for both assets. There are several periods displaying high volatility

followed by periods of less. In Table 1 some descriptive statistics for the time se-

ries are summarized. The largest loss for Ericsson is nearly four times the size of

OMXS30 indicating a heavier right tail.

Data Mean Std.Dev Skewness Kurtosis Min Max

OMXS30 -0.00035 0.01482 -0.10938 3.91428 -0.11022 0.08527
Ericsson -0.00026 0.03169 0.65419 9.84829 -0.17768 0.35198

Table 1: Basic statistics for the loss return series.

The qq-plot is a useful graphical tool for studying the tails of a distribution.

Consider independent and identically distributed random variables X1, ..., Xn from

which we have observations x1, ..., xn. The ordered sample for the data is x1,n ≥

10



3.1 Data analysis 3 METHODOLOGY

... ≥ xn,n. The points in the q-q plot are the pairs

(
F−1

(n− k + 1

n− 1

)
, xk,n

)
where F−1(.) are the quantiles of the reference distribution, xk,n the empirical

quantiles and k = 1, ..., n. Using a qq-plot one should expect that the line is ap-

proximately linear if the empirical distribution belong to the reference distribution.
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Figure 2: Qq-plots for OMXS30 (left) and Ericsson (right) with the
normal quantiles as reference-line indicating that both the returns series
are leptokurtic. (No obvious visible comparison between them due to
different y-axis)

Figure 2 indicates that the use of EVT for the tails is adequate since the tails

are heavier than for the normal distribution. But in order to use EVT the data

should be iid, which can be investigated by autocorrelation plots.

An autocorrelation plot is based on the autocorrelation function (ACF) and is

used to investigate the assumption of independence and if heteroscedasticity occurs

by testing the squared returns. The dotted lines in Figure 3 are a 95% confidence

interval for the estimators. If more than 5% exceeds the confidence bound it im-

plies the presence of autocorrelation or heteroscedasticity. It might be hard to see

this straight from the plot, so a Ljung-Box test is performed. (For a mathematical

framework of the ACF and Ljung-Box test, see Appendix). The p-values from the

Ljung-Box test can be found in Table 2.
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3.1 Data analysis 3 METHODOLOGY
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Figure 3: Upper: ACF for OMXS30 loss series (left) and for the
squared observations (right). Lower: ACF for Ericsson loss series (left)
and for the squared observations (right).

Based on the ACF plots in Figure 3 and the corresponding Ljung-Box test in Table

2, an AR-GARCH model seems appropriate and necessarily in order to filter the

loss returns for autocorrelation and heteroscedasticity.
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3.2 Estimating VaR 3 METHODOLOGY

data p-value

Loss returns OMXS30 0.6423
Squared returns OMXS30 < 2e− 16
Loss returns Ericsson 0.3224
Squared returns Ericsson < 2e− 16

Table 2: P-values from the Ljung-Box test for both OMXS30 and Er-
icsson. No rejection for the null hypothesis of ’no autocorrelation’ but
a significant result for the presence of heteroscedasticity.

3.2 Estimating VaR

The assumption that µt and σt are measurable with respect to the information

available until t − 1, results in application also for predictive purposes. The one

step ahead predictive distribution is [8]

FXt+1|It(x) = P (µt+1 + σt+1Zt+1 ≤ x|It) = FZ

(x− µt+1

σt+1

)
(21)

which lead us to the VaR estimate

V̂aRt
p = µ̂t+1 + σ̂t+1V̂aRt(Zp) (22)

where we will follow the framework of [8], using an AR(1)-GARCH(1,1) model to

predict the conditional mean and volatility and instead of the commonly assumed

standard normal distribution for Zt we use the quantile estimation based on GPD

for the residuals zt = xt−µ̂t
σ̂t

. The estimation will contain a fixed number of n =

1000 previous negative log-returns.

The VaR estimation will contain two steps:

1. An AR(1) - GARCH(1,1) model is fitted to the historical loss returns us-

ing pseudo maximum-likelihood estimation (see Appendix). From the fitted

model, the one day ahead predictions of µt+1 and σt+1 are estimated and the

residuals are extracted for using in step 2 and for model validation.

2. Based on the extracted residuals, EVT is applied for quantile estimation us-

ing GPD. The parameters for GPD are estimated using ordinary maximum

likelihood estimation.

To obtain the parameter estimates θ̂ = (φ̂1, α̂0, α̂1, β̂), the likelihood for the fitted

AR(1)-GARCH(1,1) model is maximized in a conventional way using the assump-

tion of normality (see Appendix). At each time t, a collection of 1000 (µ̂t−n+1, .., µ̂t)
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3.3 Threshold choice 3 METHODOLOGY

and (σ̂t−n+1, .., σ̂t) are used for calculating the corresponding set of residuals

(zt−n+1, ..., zt) = (
xt−n+1 − µ̂t−n+1

σ̂t−n+1
, ...,

xt − µ̂t
σ̂t

) (23)

As seen in Figure 4, the AR(1)-GARCH(1,1) model seems appropriate and there is

no evidence against the assumption of iid residuals.
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Figure 4: ACF plots for OMXS30 from an arbitrary 1000 days pe-
riod where the residuals (left) and the squared residuals (right) are
displayed, indicating that there are no autocorrelation or heteroscedas-
ticity. P-values from Ljung-Box test (see Appendix), 0.4718 and 0.7939
respectively, confirm this since there is no rejection of the null hypoth-
esis of no autocorrelation and homoscedasticity.

The one day ahead forecast for the conditional mean and standard deviation can

then be calculated as

µ̂t+1 = φ̂1xt (24)

σ̂t+1 =

√
α̂0 + α̂1ε̂2t + β̂σ2t (25)

3.3 Threshold choice

Moving on to step 2, the challenge in the quantile estimation is the choice of thresh-

old, u. It is a trade-off between observations belonging to the center of the distri-

bution and those belonging to the tail. In this analysis we will continue to follow

the same procedure as [8], by fixing Nu = k to be 100 for each estimation period.
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3.4 Backtesting VaR 3 METHODOLOGY

In this way the threshold is random within each set but the tail will always contain

10% of the observations such that

V̂aR(Zp) = z[k+1] +
β̂

ξ̂

{[n
k

(1− p)
]−ξ̂
− 1

}
(26)

where z[k+1] is the (k+1):th ordered residual.

When the quantile based on GPD is calculated, the combined estimate for VaR

in (22) is complete and can be used for backtesting, which will be desribed in the

next section. The backtesting will be based on a moving window, such that at each

time t, a new set of AR(1)-GARCH(1,1) parameters, residuals and GPD based

quantile are estimated. In this way we will have 4961 predictions for OMXS30 and

5448 predictions for Ericsson.

3.4 Backtesting VaR

To verify the accuracy of the predicted VaR, [6] present one well-known method

called backtesting. It is an essential tool in model validation to observe whether or

not the chosen model is adequate. It involves systematically comparing the actual

losses with the estimated VaR. Meaning that the estimated VaR at time t can be

compared with the actual loss on day t + 1. For the model to be adequate the

expected result should be

P (Xt+1 > V̂aR
t

p) = 1− p (27)

If the confidence level is chosen to be 99% (p = 0.99) and the number of obser-

vations are 1000, as in this analysis, one should expect 10 violations. So for the

model to be satisfying, the expected number of violations for a n days period is

approximately n · (1− p).

From these violations a binomial test, also called bernoulli trials, can be constructed

in order to verify the significance of the violations. Under the null hypothesis that

the model is correctly the number of violations is said to follow a binomial proba-

bility distribution [6]

f(x) =

(
T

x

)
px(1− p)T−x (28)
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where T is the total number of predictions, x the number of violations and p is the

probability from the VaR level. The p-value for this test is in a conventional way set

to be 5%, a confidence level of 95%, and not to be confused with the confidence level

for the VaR estimates. The confidence levels used for VaR are 95%, 99% and 99,5%.

The VaR estimates from the GARCH-EVT approach will be compared with or-

dinary GARCH(1,1) estimates with assumption of conditional normality and un-

conditional EVT where the VaR estimates is simply the quantile estimation based

on GPD.

3.5 Software

The software used for this analysis is R. R is frequently used for both statistical

and data analysis and can easily be downloaded from the official website

http://www.r-project.org/.

The packages required for the analysis are evir, fExtremes and fGarch where the

first two are used for extreme value theory and the latter for the time series model-

ing. The functions are implemented by the formulas outlined in section 2 and the

methods described in section 3.

4 Results

Table 3 summarizes the number of expected violations and the actual VaR viola-

tions that occurred during the test period for the different methods. The p-values

indicate the success of the estimation method based on hypothesis tests for the

number of violations observed as compared to the expected number of violations.

As seen in Figure 5, the unconditional EVT do not reflect current volatility back-

ground and as expected this method express several violations in stress periods.

However, one should keep in mind that this method is not really appropriate since

EVT applies for iid series. The GARCH(1,1) with normally distributed innovations

respond to the changing volatility but fails the binomial test in each set. This in-

dicate the need for models based on heavy tail distributions. (Plots for backtesting

of the other quantile-levels and for Ericsson can be found in Appendix, where the

same results applies as for Figure 5).
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OMXS30 ERICSSON
Total predictions 4961 5448

0.95 Quantile
Expected 248 272
GARCH(1,1) 296 (0.00) 234 (0.00)
GARCH-EVT 275 (0.08) 286 (0.40)
Unconditional EVT 265 (0.27) 283 (0.51)

0.99 Quantile
Expected 49 54
GARCH(1,1) 88 (0.00) 85 (0.00)
GARCH-EVT 56 (0.35) 57 (0.73)
Unconditional EVT 71 (0.00) 69 (0.06)

0.995 Quantile
Expected 24 27
GARCH(1,1) 53 (0.00) 64 (0.00)
GARCH-EVT 31 (0.22) 29 (0.70)
Unconditional EVT 37 (0.02) 40 (0.02)

Table 3: Results from the backtesting-procedure, with p-values from the
binomial test in the brackets. GARCH(1,1) with normally distributed
innovations and the unconditional EVT, only using quantile-estimation
based on GPD.
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Figure 5: Backtesting for quantile 0.99 for OMXS30

5 Conclusion

The main purpose of this thesis was to demonstrate how EVT along with time-series

models can be applied in risk management, in this case when forecasting daily VaR.

This analysis was restricted to the case with single assets and one day predictions,
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in reality this type of analysis usually involves portfolios and multiple days.

As seen from the backtesting result in Table 3, the dynamic GARCH-EVT ap-

proach outperforms the other methods in 4 cases out of 6. This states the obvious

importance of modeling the volatility in order to get accurate estimates for VaR as

well as the clear need for EVT for higher quantiles (p > 0.95).

Since the main interest for the analysis was the ability to forecast VaR, the signifi-

cance for the parameters in the AR-GARCH modeling has been of minor interest.

The fact that there might be periods within the ’moving window’ where some pa-

rameter/s are insignificant is ignored.

As discussed in section 3.3 the choice of threshold is critical. For further analy-

sis there would be interesting to use other thresholds. One could also try different

calibration periods, such as less than 1000 days.
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6 APPENDIX

6 Appendix

6.1 Skewness and kurtosis

Let x1, .., xN be a random sample of X with N observations. Then the sample

skewness Ŝ and sample kurtosis K̂ are defined as [9]

Ŝ =
1

(N − 1)σ̂3

N∑
n=1

(xn − µ̂)3 (29)

K̂ =
1

(N − 1)σ̂4

N∑
n=1

(xn − µ̂)4 (30)

where µ̂ and σ̂2 are the sample mean and variance respectively. As a reference the

skewness for a normally distributed sample is 0 and the kurtosis 3. (Excess kurtosis

would be 0, i.e. K̂ - 3 = 0)

6.2 Maximum likelihood estimation

The idea behind this method is to find the values for the parameters such that the

observations are as likely as possible to occur. Let x1, ..., xn be observed values from

n random variables X1, ..., Xn with the same distribution function. The probability

density function f is then

fX1,..,XN
(x1, ..., xn) =

n∏
k=1

f(xk)

and the likelihood-function is defined as

L = fX1,..,XN
(x1, ..., xn)

The values that maximizes the likelihood-function is then the maximum-likelihood

estimates, the ML-estimates. It is equivalent and often more preferable to use the

log-likelihood-function

` = log(L)

The estimates are then found by differentiate the log-likelihood function with re-

spect to the parameter, and set equal to zero.

Since the underlying distribution for the data used in this analysis is unknown,
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the so called pseudo-maximum likelihood method is used instead. The difference

between the ordinary maximum likelihood is that the estimates are obtained by

maximizing a function that is related to the log-likelihood. For example, a normal

distribution can be used for estimating the parameters even though the empirical

distribution has heavier tails than a normal distribution. As mentioned above, fi-

nancial time series often exhibit heavy tails but [8] present that maximum likelihood

can still be used since it provides consistent estimators.

6.3 Autocorrelation function (ACF)

According to [9], the correlations between the variable of interest, in this case Xt,

and its past values Xt−1, Xt−2 and so on are referred to as serial correlations or

autocorrelations. The lag-` autocorrelation coefficient is defined as

ρ` =
Cov(Xt, Xt−`)√
V ar(Xt)V ar(Xt−`)

=
Cov(Xt, Xt−`)

V ar(Xt)

The lag-1 sample autocorrelation of Xt is given by

ρ̂1 =

∑N
t=2(Xt − x̄)(Xt−1 − x̄)∑N

t=1(Xt − x̄)2

6.4 Ljung-Box test

The Ljung-Box test is one way to test the significance of the autocorrelation coef-

ficient. According to [9] the test-statistic is defined as

Q(m) = N(N + 2)
m∑
`=1

ρ̂`
N − `

where N is the length of the time-series, ρ̂ is the autocorrelation coefficient. H0 is

rejected if Q(m) > χ2 for the alternative that dependence is present.

When testing for serial dependence the at = σtZt is used. When testing for het-

eroscedacity, ARCH effect, a2t is used.

6.5 Figures
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Figure 6: Backtesting for quantile = 0.95 for OMXS30
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Figure 7: Backtesting for quantile 0.995 for OMXS30
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Figure 8: Backtesting for quantile 0.95 for Ericsson.
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Figure 9: Backtesting for quantile 0.99 for Ericsson
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Figure 10: Backtesting for quantile 0.995 for Ericsson
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