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Abstract

The aim of the thesis is to try out the Poisson time series model for

count data, in order to analyze telecommunications monitoring data

from Ericsson AB. The amount of data a telecommunications network

produces is untenable to check manually, and thus the detections of

malfunctions can be both time consuming and extremely lengthy.

In this thesis we will explore the implementation of the above men-

tioned count data time series model on a subset of the data from a

telecommunications network and the viability of such an approach, in

particular, we will using identity link based generalized linear models

to perform the analysis- We will also attempt to select the best model

amongst several based on Akaike’s information criteria. Finally we

will cover how to implement said models in R and cover some of the

more technical aspects of the Poisson time series model for count data.

It turns out that the model fits quite well on most of the studied

time series, although, some of the data the telecommunications net-

work produces have counts in order of magnitudes of millions, hence

a better approach would probably have been to use an ordinary time

series based framework using a Gaussian response model.
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1 Introduction

1.1 Aim of Thesis

In this thesis we will explore implementing the Poisson time series model for
count data on time series count data provided by Ericsson. The data origi-
nated from one of their telecommunication networks, the location cannot be
disclosed due to a non disclosure agreement governing the data, however the
location is not important for the present analysis. In order to provide the
necessary background knowledge, we will in this chapter, give a rudimentary
overview of how a telecommunication network functions. In chapter two we
will cover the data in detail while in chapter three go over the technical
details of said Poisson time series model for count data, as well as some
background calculations. I chapter four we will take look at how to imple-
ment said model into R as well as select the most suitable individual model
from a set of possible candidates.

1.2 Overview of a telecommunications network

In a somewhat simplified model of a telecommunications network or ra-
dio access network (RAN) consist of one or more radio network controllers
(RNC) that each handles one or more radio base stations (RBS), which in
turn handles multiple cells which are geographical areas. For instance the
old city center of Stockholm “Gamla stan”, might in theory be handled by
one RBS with four cells each spanning a quadrant as illustrated in Figure
1. In reality Gamla stan is divided into many more cells, one reason be-
ing the high roofs. There are also probably multiple networks covering the
area, since I am assuming that some Swedish phone operators use separate
networks.

1.2.1 RNC - Radio Network Controller

The RNC is the node that controls all RAN functions. There are two distinct
roles for the RNC, to serve and to control. The Serving RNC has overall
control of the phone that is connected to the RAN. It controls key and
frequently used resources, such as different voice bands, internet etc. The
Controlling RNC has the overall control of a particular set of cells, and their
associated base stations. When a phone must use resources in a cell not
controlled by its Serving RNC, the Serving RNC must ask the Controlling
RNC for those resources. An RNC is in contact with both other RNCs and
with all RBS under its control.
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Figure 1: Google maps picture of Gamla Stan (Stockholm, Sweden) divided
into 4 cells

1.2.2 RBS - Radio Base Station

The RBS the radio transmission and reception to/from the phone. It is
controlled from the Radio Network Controller and its main purpose is just
to shuffle signals and data between the phone and the RNC. One Radio Base
Station can handle multiple cells. Figure 2 below illustrates the relation
between the core network (RAN), RBS and RNCs.

Figure 2: Figure from Ericsson Radio Systems AB (2001) illustrating basic
setup of the RAN. Iu, Uu and Iur are just different protocols for communi-
cation.
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2 Data Description

The data we received from Ericsson is 3 months of counter data from a full
sized RAN, its location cannot be disclosed due to a confidentiality agree-
ment with Ericsson. There are many events in such a network that needs
to be tracked for maintenance and anomaly detection purposes. The way
it is done here, there are counters for a set of predetermined events that
count the amount of occurrences within a limited time frame. For instance,
if someone were to call from this network first the counter for access would
count up one, then the counter for attempts would count up one and so
forth. The same way if your call would be suddenly disconnected then the
counter for unexpected termination as well as the counter for drops from
the network would increase by one.

Our data is divided into 15 minute intervals which gives us 96 data points
for each counter each day. In total we have access to roughly 3 months worth
of data, starting from 3rd of March 2015 up to 1st of June 2015, in total 8682
data points. In the present thesis we are going to focus on 4 counters, these
have been chosen based on discussions with Ericsson testers for being key
indicators for the health of the network as well as being within the suitable
range that count data time series are useful for.

2.1 Counter 1 - A counter for number of load sharing di-
versions caused by high load when connecting to the
network

This counter is used to count the number of times the RNC has to ask
neighboring RNCs to take over some tasks due to high load. Lets take a
look at the first three weeks (more would not make the resulting graph very
clear) of data and see if we can discern any patterns (figure 3).

We note that there seem to be a strong daily and weekly cycle in data,
weekends seem to produce less load then weekdays (remember data starts
on a Tuesday). Lets take a look at some box plots to see if our suspicion is
correct (Figure 4):
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Figure 3: First 3 weeks of Counter 1
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Figure 4: Box plots of daily distribution of Counter 1

The slightly lower upper hinges on Friday and Monday can be explained
by that during the duration of the dataset there are two national holidays
each that occur on Monday and Friday respectively,and no holidays for the
rest of the weekdays. With this in mind let us take a look at box plots for
the weekday (figure 5) respectively weekend pattern for said box plots.

Noticeable is the higher top on weekdays and that the top occurs on the
afternoon rather then around noon on weekends.
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Figure 5: Box plot of daily cycle for weekday respectively weekends
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2.2 Counter 2 - A counter for number of dropped calls

There are a multitude of reasons dropped calls can occur in the RAN. These
include bad coverage and lack of resources during a handover between net-
works. Neither of which is desirable. Lets take a look at a box plot for the
daily distribution of data for counter 2 (figure 6):
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Figure 6: Box plots of daily distribution of Counter 2

Similar to counter one we see that weekends have somewhat lower load
then weekdays. Lets explore this in the plots below (figure 7):

Just as counter two we see very similar behavior between weekends and
weekdays with the distinction being weekdays having consistently higher
load then weekdends.
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Figure 7: Box plot of daily cycle for weekday respectively weekends
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2.3 Counter 3 - A counter for number of occurances when
lacking rescources due to high load on the network

A counter for number of occurrences when the network is overloaded to the
degree that all the resources cant be distributed to all request due to its
load. The box plot for weekly pattern below (figure 8) looks very similar to
the previous counters
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Figure 8: Box plots of daily distribution of Counter 3

Just as the previous counters weekdays seem to have a higher load then
weekends. Lets look at the daily patterns (figure 9):
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Figure 9: Box plot of daily cycle for weekday respectively weekends

Again very similar to the previous 2 counters weekends have a consis-
tently lower load then weekdays.
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2.4 Counter 4 - A counter for the sum of all CS64 rescources
added to an existing call

Counter 4 is a counter that counts the amount of occurrences of CS64 re-
source being added to an existing call. Resources are usually added to a call
if during the call one starts video chat, starts to surf etc, CS64 is one such
resource. Here we see less of a weekly pattern with Mondays having similar
density to Saturdays (figure 10):
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Figure 10: Boxplots of daily distribution of Counter 4

With this in mind lets explore the daily patterns for weekdays and week-
ends and see if they differ from the previous counters (figure 11):
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Figure 11: Boxplot of daily cycle for weekday resepectivly weekends

Here we also see a much more erratic behavior over the course of the
day, with weekdays being slightly higher in load compared to weekends.
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2.5 Summary

One thing that is clear from the previous descriptive analysis is that all four
of our studied counters have a very strong daily and weekly cycles. The
daily cycle is 24 hours and hence 96 observations long. Its noteworthy that
activity during nightly hours are much lower across all 4 counters. The
weekly cycle is 674 data points long and here we note that weekends tend
to have a lower ”top” then weekdays. In addition we can note that national
holidays very similar to weekends. Counter 4 is somewhat a special case,
while the patterns from the first three counters are present, the differences
are much more minute, with the daily pattern being much less clear as well.

Now that we are more familiar with the behavior of the data lets move
on to the theory behind the model we are going to implement.
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3 Short introduction to generalized linear models

In this section we will take a look at the generalized linear model, more
precisely the Poisson response model for time series that we will be using in
this thesis. We will also look at parameter estimation and model selection
for this type of models.

Consider a nonnegative integer valued time series {Yt} called the response
time series of said process. Furthermore let Ft−1 denote all available infor-
mation on the process up to time t, this could also include covariates that
are known at time t, in our case, current date and time are two examples.
According to Kedem and Fokianos (2002, p. 140) a most natural candidate
distribution for the response process is the Poisson. Then the conditional
distribution of {Yt} is specified by assuming that the conditional density of
the response given the past is Poisson with mean µt.

f(yt;µt|Ft−1) =
exp(−µt)µytt

yt!
, t = 1, ..., N. (1)

Furthermore we will define Zt−1, t = 1, ..., N as a p- dimensional covari-
ate vector that includes past values of the response up to time t − 1 and
possibly any other supplementary information available up to time t.

In order to model the process {Yt} we will use a generalized linear model,
which is an extension of the general linear model:

yt = xtβ + εt. (2)

The differences being the relaxation of the assumption that y is inde-
pendently normally distributed with constant variance, instead the gener-
alized linear model permits any distribution of the response that belongs
to the exponential family, in our case the Poisson, and instead of modeling
µt = E[yt|xt] directly as a function of the linear predictor ηt = xtβ, we
model some function g(µt) of µt. Thus, the generalized linear model takes
the form

g(µt) = ηt = xtβ, (3)

with g(·) being called the link function. With the above in mind our
model then becomes, using the inverse link function h(·) = g−1(·), above
mentioned covariate vector Zt−1 and the p-dimensional parameter vector for
the model β:

µt = h(Zt−1β), t = 1, ..., N. (4)

We will however concern ourselves with a Poisson model with identity
link, since it fits the aggregated nature of our data very well and the fact that
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the traditional link function being a log link have the unfortunate tendency
that for unbounded covariates the proccess tends to grow at an exponatial
rate (for more details see Kedem and Fokianos (2002, p. 143)). In this case
g(µt) = µt and as a consequence h(Zt−1β) = Zt−1β.

3.1 Parameter estimation

Now that we have formulated our time series Poisson model, we need to
estimate the parameter vector β. The likelihood function is not always
easily obtainable, we will therefore use the partial likelihood function to
estimate the β vector. Kedem and Fokianos (2002, p. 2) defines partial
likelihood as follows:

Definition 1 Denote the density of Yt, given the information Ft−1, by
ft(yt; θ) where θ ∈ Rp is a fixed parameter vector. The partial likelihood
(PL) function relative to θ,Ft, and the data Y1, Y2, ..., YN , is given by the
product

PL(θ; y1, y2, ..., yN ) =
N∏
t=1

ft(yt; θ). (5)

Conditional likelihood takes only into account what is known to the
observer up to time t. The partial likelihood function of β for the Poisson
model is given by

PL(β) =
N∏
t=1

f(yt;β|Ft−1) =
N∏
t=1

exp(−µt(β))µt(β)yt

yt!
(6)

Then the partial log -likelihood is (using equation (4)):

`(β) = log PL(β) =

N∑
t=1

yt log(ηt)−
N∑
t=1

ηt −
N∑
t=1

log(yt!) (7)

By differentiation, we obtain the partial score function

SN (β) = ∇`(β) =

(
∂`(β)

∂β1
, . . . ,

∂`(β)

∂βp

)
(8)

Calculation of which is done by using the chain rule (analogous to Kedem
and Fokianos (2002, p.11)):

∂`t
∂βj

=
∂`t
∂µt

∂µt
∂ηt

∂ηt
∂βj

, j = 1, . . . , p

Where
∂`t
∂µt

=
yt
µt
− 1

18



Furthermore since ηt = µt when using identity link and ηt =
∑p

j=1 z(t−1)jβj

we get ∂ηt
∂βt

= z(t−1)j . Combining all parts of the chain rule and inserting
them into (8) we obtain the partial score function as a p-dimensional vector:

SN (β) =
N∑
t=1

(Zt−1
yt

µt(β)
− 1) (9)

The solution β̂ such that SN (β̂) = 0 constitutes the partial maximum
likelihood estimator, i.e.

β̂ = argmax
β

(PL(β))

This, however, is a system of nonlinear equations and is usually solved by
the Fischer scoring method. For more information on how β̂ is obtained see
Kedem and Fokianos (2002, p. 12)

3.2 Model Validation

In order to evaluate how well the model fit data we will be looking at Pearson
Residuals which is defined in Olsson (2002, p.56) as follows:

rpt =
yt − µ̂t√

µ̂t
(10)

In chapter 4 we will use these residuals to gauge model performance and
to identify obvious outliers.

3.3 Model Selection

In order to select the most suitable model we will primarily be looking at
Akaike’s Information Criteron (AIC) and the Bayesian Information Criterion
(BIC).

Accoridng to (Kedem and Fokianos 2002, p. 25), Akaike’s Information
Criteron is defined as a function of the number of independent model para-
maters,

AIC(p) = −2 log(PL(β̂)) + 2p (11)

where β̂ is the maximum partial likelihood estimator of β and p = dim(β).
This criterion evidently penalises models with many parameters.

The Bayesian Information Criterion is defined as follows, with N being
the length of the time series

BIC(p) = −2 log(PL(β̂)) + p log(N) (12)

Notable is that BIC penalises models with many parameters even further
than AIC. We will choose the model that for a given p will minimise BIC
and AIC, since BIC is harsher we will prefer BIC.
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4 Implementation on telecom data

Now that we are familiar with both data and the intended model, lets take
a look at the specific models we will be comparing.

Model 1 The first model we will be looking at will be a very simplistic

model, with the assumption that Yt
indep.∼ Po, namely

µt = β0 + β1Yt−1 (13)

Here we only incorporate information from the last observation.

Model 1 is a branching process with immigration (see Leonhard Held,
Michael Höhle and Mathias Hofmann (2005, p.189) equation (1.2) for de-
tails) and as such is stationary when 0 ≤ β1 ≤ 1. Lets expand this model,
and take the weekly cycle into account. This would give us the following

model (the assumption that Yt
indep.∼ Po(λt) holds for this and all subsequent

models)

Model 2 In this second model we will add the following variable

It =

{
1, if day ∈ {Saturday, Sunday}
0, otherwise

thus our model thus becomes

µt = β0 + β1Yt−1 + β2It (14)

Lets now take those national holidays in account:

Model 3 In model 3 we will introduce the following variable

Ht =

{
1, if day ∈ {weekday is national holiday}
0, otherwise

thus our model thus becomes

µt = β0 + β1Yt−1 + β2It + β3Ht (15)

Remember those daily cycles, we will attempt to incorporate them into
the model using a Fourier series expansion (see Hansen (2002, p. 187)),
which is given by the relation

f(x) =
a0
2

+

∞∑
n=1

an cos

(
2nπx

P

)
+ bn sin

(
2nπx

P

)

20



with P being the period of the series. Here, β0 in combination with the

terms β4 sin

(
2πt
96

)
+ β5 cos

(
2πt
96

)
constitute the first three terms in such a

series.

Model 4 Here we will add a cos(·) and sin(·) function to take our daily
cycle of 96 observations into account:

µt = β0 + β1Yt−1 + β2It + β3Ht + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
(16)

In models 5 and 6 we will remove the indicator for weekend and holiday
respectivly. While in model 7 we will remove both:

Model 5

µt = β0 + β1Yt−1 + β2It + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
(17)

Model 6

µt = β0 + β1Yt−1 + β3Ht + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
(18)

Model 7

µt = β0 + β1Yt−1 + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
(19)

The following R code is used to fit Model 4 for the Counter 4 Data:

1 > mdl4 <− glm ( Counter4 [ 2 : numrow ] ˜ 1 + Counter4 [ 1 : trow ] +
nWeekend [ 2 : numrow ] + nHoliday [ 2 : numrow ] + s i n (2 /96 ∗ pi ∗
nTime [ 2 : numrow ] ) + cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) , data =
xData , fami ly = po i s son ( l i n k = ” i d e n t i t y ” ) , s t a r t = c
(1 , 0 , 0 , 0 , 0 , 0 ) )

2 > summary(mdl4 )
3
4 Ca l l :
5 glm ( formula = Counter4 [ 2 : numrow ] ˜ 1 + Counter4 [ 1 : trow ] +
6 nWeekend [ 2 : numrow ] + nHoliday [ 2 : numrow ] + s i n (2 /96 ∗ pi ∗
7 nTime [ 2 : numrow ] ) + cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) , f ami ly

= po i s son ( l i n k = ” i d e n t i t y ” ) ,
8 data = xData , s t a r t = c (1 , 0 , 0 , 0 , 0 , 0) )
9

10 Deviance Res idua l s :
11 Min 1Q Median 3Q Max
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12 −20.405 −5.017 −3.491 0 .923 47 .293
13
14 Co e f f i c i e n t s :
15 Estimate Std . Error z va lue

Pr(>| z | )
16 ( In t e r c ep t ) 12.719191 0.062515 203.457

< 2e−16 ∗∗∗
17 Counter4 [ 1 : trow ] 0 .571631 0.001935 295.347 < 2e

−16 ∗∗∗
18 nWeekend [ 2 : numrow ] −0.863481 0.102203 −8.449

< 2e−16 ∗∗∗
19 nHoliday [ 2 : numrow ] −1.425307 0.219904 −6.481

9 .08 e−11 ∗∗∗
20 s i n (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.837293 0.065788 −12.727

< 2e−16 ∗∗∗
21 cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.727017 0.066031 −11.010

< 2e−16 ∗∗∗
22 −−−
23 S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’ 0 . 1 ’ ’ 1
24
25 ( Di spe r s i on parameter f o r po i s son fami ly taken to be 1)
26
27 Nul l dev iance : 487540 on 8680 degree s o f freedom
28 Res idua l dev iance : 364620 on 8675 degree s o f freedom
29 AIC : 395132
30
31 Number o f F i sher Scor ing i t e r a t i o n s : 8

Start value of (1, 0, 0, 0, 0, 0) was provided out of necessity due to the de-
fault start value of (0, 0, 0, 0, 0, 0) would result in the log likelihood for the
starting value becoming infinite due to having a poisson process with zero
mean but non zero response.

The table below contains our selection criteria for each model (for counter
1):

model LogLik p AIC BIC

Model 1 -166152 2 332308 332323
Model 2 -166094 3 332194 332215
Model 3 -166088 4 332184 332212
Model 4 -166032 6 332075 332118
Model 5 -166040 5 332089 332124
Model 6 -166091 5 332193 332228
Model 7 -166094 4 332196 332225

One can see that the model for Counter 1 model 4 has the lowest AIC,
however since the model that doesnt take national holidays into account is
pretty close in AIC, one might consider to settle with model 5 and allow the
modeling to be more robust in terms of which network its implemented on.
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Lets take a look at counter 2

model LogLik p AIC BIC

Model 1 -45366 2 90736 90750
Model 2 -45354 3 90713 90734
Model 3 -45341 4 90690 90719
Model 4 -45324 6 90660 90702
Model 5 -45335 5 90679 90714
Model 6 -45338 5 90687 90722
Model 7 -45345 4 90699 90727

Just like Counter 1 we see that model 4 is still the most suitable model
for Counter 2. One can attribute the overall higher AIC for this counter in
part to systematic downshift last few weeks on Counter 2. Lets take a look
at Counter 3:

model LogLik p AIC BIC

Model 1 -214857 2 429717 429731
Model 2 -214834 3 429673 429694
Model 3 -214801 4 429609 429637
Model 4 -214774 6 429560 429603
Model 5 -214807 5 429625 429660
Model 6 -214804 5 429618 429653
Model 7 -214829 4 429667 429695

Again we see that Model 4 is the superior model for Counter 3, just like
it was for Counter 1 and Counter 2. Finally lets take a look at Counter 4:

model LogLik p AIC BIC

Model 1 -197722 2 395448 395462
Model 2 -197697 3 395401 395422
Model 3 -197685 4 395378 395406
Model 4 -197560 6 395132 395174
Model 5 -197577 5 395165 395200
Model 6 -197592 5 395194 395229
Model 7 -197603 4 395215 395243

Unsuprisingly Model 4 is once more proving to be the best model out of
the 7 at our disposal.

4.1 Improving on model 4 for counter 2

Model 4 performed uniformly best for all four of our chosen counters, lets
take a look at what happens if we expand the fourier series in model 4 for
counter 2. To this end we will compare the following, more elaborate models:
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Model 8

µt = β0 + β1Yt−1 + β2It + β3Ht + β4 sin

(
2πt

96

)
+

β5 cos

(
2πt

96

)
+ β6 sin

(
4πt

96

)
+ β7 cos

(
4πt

96

) (20)

Model 9

µt = β0 + β1Yt−1 + β2It + β3Ht + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
+

β6 sin

(
4πt

96

)
+ β7 cos

(
4πt

96

)
+ β8 sin

(
6πt

96

)
+ β9 cos

(
6πt

96

) (21)

Model 10

µt = β0 + β1Yt−1 + β2It + β3Ht + β4 sin

(
2πt

96

)
+ β5 cos

(
2πt

96

)
+

β6 sin

(
4πt

96

)
+ β7 cos

(
4πt

96

)
+ β8 sin

(
6πt

96

)
+

β9 cos

(
6πt

96

)
+ β10 sin

(
6πt

96

)
+ β11 cos

(
6πt

96

) (22)

model LogLik p AIC BIC

Model 4 -45324 6 90660 90702
Model 8 -45313 8 90641 90699
Model 9 -45298 10 90616 90687
Model 10 -45293 12 90610 90695

We can see here that of the 4 modesl, model 9 has the lowest BIC, while
model 10 has the lowest AIC, however since BIC is a harsher criteria for
large datasets such as ours, model 9 is the model we will settle for. Taking
a look at the the R - summary of said model:

1 > summary(mdl9 )
2
3 Ca l l :
4 glm ( formula = Counter2 [ 2 : numrow ] ˜ 1 + Counter2 [ 1 : trow ] +
5 nWeekend [ 2 : numrow ] + nHoliday [ 2 : numrow ] + s i n (2 /96 ∗ pi ∗
6 nTime [ 2 : numrow ] ) + cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) + s i n (4 /

96 ∗
7 p i ∗ nTime [ 2 : numrow ] ) + cos (4 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) +
8 s i n (6 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) + cos (6 /96 ∗ pi ∗ nTime [ 2 :

numrow ] ) ,
9 fami ly = po i s son ( l i n k = ” i d e n t i t y ” ) , data = xData , s t a r t = c

(1 ,
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10 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) )
11
12 Deviance Res idua l s :
13 Min 1Q Median 3Q Max
14 −32.141 −1.405 −0.303 0 .855 70 .143
15
16 Co e f f i c i e n t s :
17 Estimate Std . Error z value

Pr(>| z | )
18 ( In t e r c ep t ) 1 .327473 0.034532 38 .442

< 2e−16 ∗∗∗
19 Counter2 [ 1 : trow ] 0 .951151 0.002338 406.826 < 2e−16

∗∗∗
20 nWeekend [ 2 : numrow ] −0.311960 0.056404 −5.531

3 .19 e−08 ∗∗∗
21 nHoliday [ 2 : numrow ] −0.482402 0.104231 −4.628

3 .69 e−06 ∗∗∗
22 s i n (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.006681 0.036467 −0.183

0 .855
23 cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.218734 0.036448 −6.001

1 .96 e−09 ∗∗∗
24 s i n (4 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.174287 0.036328 −4.798

1 .61 e−06 ∗∗∗
25 cos (4 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.035751 0.036507 −0.979

0 .327
26 s i n (6 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.032317 0.036370 −0.889

0 .374
27 cos (6 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) 0 .197641 0.036351 5 .437

5 .42 e−08 ∗∗∗
28 −−−
29 S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’ 0 . 1 ’ ’ 1
30
31 ( Di spe r s i on parameter f o r po i s son fami ly taken to be 1)
32
33 Nul l dev iance : 196825 on 8680 degree s o f freedom
34 Res idua l dev iance : 54067 on 8671 degree s o f freedom
35 AIC : 90616
36
37 Number o f F i sher Scor ing i t e r a t i o n s : 8

We observe that both weekends (Estimate: -0.311960, p-value: 3.19e-08)
and national holidays have (Estimate: -0.482402, 3.69e-06) have a negative
effect on mut this is well in line with what we observed in chapter 2. Con-
versely the coefficients for some of the Fourier series part of the model,

namely sin

(
2πt
96

)
, cos

(
4πt
96

)
and sin

(
6πt
96

)
, have non-significant p-values,

for the test that the corresponding βj 6= 0, (0.855, 0.327, 0.374) suggesting
that changes in their value is not associated with a corresponding change
in the response mut. We will therefore omit these from the final model:
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Model 11

µt = β0 + β1Yt−1 + β2It + β3Ht + β5 cos

(
2πt

96

)
+β6 sin

(
4πt

96

)
+ β9 cos

(
6πt

96

) (23)

Implemented in R it becomes:

1 > summary(mdl11 )
2
3 Ca l l :
4 glm ( formula = Counter2 [ 2 : numrow ] ˜ 1 + Counter2 [ 1 : trow ] +
5 nWeekend [ 2 : numrow ] + nHoliday [ 2 : numrow ] + cos (2 /96 ∗ pi ∗
6 nTime [ 2 : numrow ] ) + s i n (4 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) + cos (6 /

96 ∗
7 p i ∗ nTime [ 2 : numrow ] ) , f ami ly = po i s son ( l i n k = ” i d en t i t y ” ) ,
8 data = xData , s t a r t = c (1 , 0 , 0 , 0 , 0 , 0 , 0) )
9

10 Deviance Res idua l s :
11 Min 1Q Median 3Q Max
12 −32.141 −1.404 −0.297 0 .855 70 .157
13
14 Co e f f i c i e n t s :
15 Estimate Std . Error z value

Pr(>| z | )
16 ( In t e r c ep t ) 1 .327506 0.034527 38 .448

< 2e−16 ∗∗∗
17 Counter2 [ 1 : trow ] 0 .951151 0.002338 406.840 < 2e−16

∗∗∗
18 nWeekend [ 2 : numrow ] −0.311726 0.056424 −5.525

3 .30 e−08 ∗∗∗
19 nHoliday [ 2 : numrow ] −0.484994 0.104404 −4.645

3 .39 e−06 ∗∗∗
20 cos (2 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.221211 0.036545 −6.053

1 .42 e−09 ∗∗∗
21 s i n (4 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) −0.177735 0.036079 −4.926

8 .38 e−07 ∗∗∗
22 cos (6 /96 ∗ pi ∗ nTime [ 2 : numrow ] ) 0 .195996 0.036255 5 .406

6 .44 e−08 ∗∗∗
23 −−−
24 S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’ 0 . 1 ’ ’ 1
25
26 ( Di spe r s i on parameter f o r po i s son fami ly taken to be 1)
27
28 Nul l dev iance : 196825 on 8680 degree s o f freedom
29 Res idua l dev iance : 54068 on 8674 degree s o f freedom
30 AIC : 90612
31
32 Number o f F i sher Scor ing i t e r a t i o n s : 8
33
34 > AIC(mdl11 )
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35 [ 1 ] 90611.71
36 > BIC(mdl11 )
37 [ 1 ] 90661.2
38 > l ogL ik (mdl11 )
39 ’ l og Lik . ’ −45298.86 ( df=7)

Noticeable is that model 11 has both a lower AIC (90611.71) and BIC
(90661.2) as well as all coefficients being significant with a p value lower
then 0.001. This will be the model we settle for in this thesis, as a final step
lets take a look at how model 11 are able to predict µt for counter 2:
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Figure 12: Dotted gray is predicted value, black circle is measured value at
time t
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Figure 13: Pearson Residuals
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As seen in figure 13, the our model does a really good job predicting
the behavior of the counter in question. With the residuals only jumping
at values that are outside of the main pattern and are usually classified as
anomalies at Ericsson. Looking at a 95% (Figure 14) prediction interval we
see that the model does a fine job of detecting anomalies. Noteworthy how-
ever is that the autoregression results in a ”normal” observation following
an anomaly falling outside the prediction interval as well.
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Figure 14: Gray area is the bounds for a 95% prediction interval for the first
day of Counter 2, circles are actual observations of counter 2
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5 Conclusion

We started out with data for four counters. After a short introduction in
chapter 1 to how the network functions we then delved into data in detail
trying to display both the uniqueness and similarities of each counter vis-á-
vis the others.

In chapter 2 we then covered generalized linear models and in particular
the Poisson model for count data that we intended to use for modeling. We
also covered Parameter estimation and criteria we then went on to use to
select the best possible model. We then choose between 7 models, finding
the most complete one (model 4) to be the best. Then we expanded model
4 into 3 more models attempting to model the daily cycle better by adding
more sin/cos terms. Choosing model 9 we then noticed that a few coeffi-
cients where non significant we omitted these eventually settling on model
11. We then took a look at how well model 11 would predict the first 3 weeks
worth of data for counter 2. Judging from figure 13, the models ability of
predicting µt was excellent.

The problem with the Poisson model for count data, is overdispersion,
meaning that the variability in data will be greater then expected given our
model. One way to deal with this is to use an alternative, more complicated,
model like the Negative-Binomial model or the Zeger-Qaqish model both of
which are discussed in Kedem and Fokianos (2002) and implemented in the
R package tscount.

Possible future expansion of this work would be to consider if the coun-
ters actually covariate, i.e. if a model for one counter using another counter
as a covariate would yield even better results. Furthermore considering not
just additive covariates, but multiplicative ones as well and past predictions
are both viable expansion of the current model (model 11) in this thesis.
Both of which I suspect would improve the fit.

From Ericssons point of view, implementing this work into an automated
anomaly detection scheme would prove very fruitful, at least based on our
experiments in chapter 4. In this case comparing the ability of the above
mentioned models ability to predict anomalies would again prove another
interesting extension of this thesis.
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