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Abstract

This thesis presents a study on the effects that demographic non-

economic factors such as crime, marriage and population density have

on the number of children born each year in Sweden based on data

from 2005 to 2014. It also serves as a guide on how to fit and compare

regression models of three different types, multiple linear, Poisson and

negative binomial, to find the one with best fit. The negative bino-

mial model proved to have the best fit, and after removing insignif-

icant parameters the proportion of refugees, crime, gender distribu-

tion and newlyweds all had positive effects on the birthrate. Given

a 1% increase from the median while all other variables where fixed,

the respective effects of these variables were estimated to be 0.004%,

0.0766%, 0.67% and 0.275%. There was also a significant positive in-

teraction between crime and population density. High education was

fitted with a spline function which resulted in a positive but dimin-

ishing effect on the number of children born.
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1 Introduction

In Sweden fertility rates have switched from increasing to decreasing and back

several times in the last 100 years and the question why has been studied over

and over by researchers such as Jan Hoem, a former professor in demometry

at Stockholm university who has published numerous articles on the impact

of social policies and family economics on fertility [9]. Even though there are

many other researchers who have devoted their time and effort to study this

question, they have done it, like Hoem, from an almost entirely socioeconomic

perspective. In this thesis I will instead study the effect of some demographic

non-economic factors on the birthrate in Sweden to try to get a different angle

on the matter, and provide a mathematical model to explain the relationship

between predictor variables and response. While there are many options on

how to construct our model, in this thesis we will utilize regression analysis as

it is a very simple tool to learn but hard to master, and is frequently used in

a wide variety of fields. It is a powerful tool to someone who uses it correctly,

but due the ”Simple to learn” nature it is often misused and misinterpreted by

people who cut corners and ignore theory without knowing it. For those people

this thesis should serve as an example of how to step by step examine data,

check assumptions, correctly fit different types of models, transform variables,

rank models within and between different types and finally interpret the results

correctly. The thesis will also cover some problems that might occur during the

fitting process and their solutions or workarounds.
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2 Theory

In this section the theory and foundation that the methods used are built upon

is described. The reference for each definition is listed before the definition.

2.1 Linear regression

Practical Regression and Anova using R by Julian J. Faraway [10]

Assume that we want to study the relation between a ’response’ variable y and

a set of ’predictors’ xj . We can do that using a multiple linear regression model

if a set of assumptions are met. With assumptions

1. Linearity: Assumed linear relation between predictors and response.

2. No Multicollinearity: predictor variables are assumed to be independent

of each other.

3. Normality: Errors are assumed to be normally distributed with mean zero.

4. Homoscedasticity: Errors are assumed to have constant variance.

we define a multiple linear regression model with the formula

yi = α+

n∑
j=1

βjxji + εi , εi ∼ N(0, σ2).

Given a ’response’ vector y and a set of ’predictors’ xj we can estimate the

’effects’ βj and the ’intercept’ α. Simple linear regression is a special case where

there is only one predictor, and thus the second assumption disappears.

2.2 Generalized linear models

This definition for the generalized linear model is from Nelder and Wedderburn

[8] but updated with more modern notations.

Suppose our observations y come from a distribution with probability mass

function

f(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
where a(φ) > 0 so that for fixed φ we have an exponential family. It can be

shown that

E(Y ) = µ = b′(θ),

V ar(Y ) = σ2 = b′′(θ)a(φ).
(1)
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Suppose also that we have a ’design’ matirx X where Xij is the value of the

j:th variable associated with the i:th observation, a parameter η = Xβ and

a function g linking µ and η by η = g(µ). Putting these three components

together gives us the foundation of the generalized linear model:

1. A response variable Y with distribution from the exponential family.

2. A set of predictor variables X and linear predictor η = Xβ.

3. A link function g where E(Y ) = µ = g−1(η).

Using a algorithm called ’Iterated Re-weighted Least Squares’ we can compute

the maximum-likelihood estimates of the effects β that the independent variables

X have on g(µ). This algorithm will be defined later on in this section.

2.3 Poisson regression

The Poisson distribution is a discrete distribution and has probability mass

function, mean and variance as follows:

f(k;λ) = P (X = k) =
λke−λ

k!
,

E(X) = V ar(X) = λ.

It can be shown that the Poisson distribution is part of the exponential family,

and given the natural logarithm as link function, the theory on generalized linear

model can be applied. The resulting regression formula is

log(µi) = α+

n∑
j=1

βjxji.

2.4 Negative binomial regression

The negative binomial distribution is also a discrete distribution, and has prob-

ability mass function, mean and variance

f(k; r, p) = P (X = k) =

(
k + r − 1

r

)
pk(1− p)r,

E(X) =
pr

1− p
, V ar(X) =

pr

(1− p)2
.

The ’glm.nb()’ function in R that fits a negative binomial regression model uses

the parameterization p = 1
1+µ

r
to get mean and variance

E(X) = µ , V ar(X) = µ+
µ2

r
.
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According to the R-documentation [6], an alternating iteration process is used

when fitting the model. For a given r a Poisson model is fitted, then for fixed

means r is estimated using score and information iterations. The process is

repeated until convergence in both iterations. Using the logarithm as link func-

tion, the regression formula is

log(µi) = α+

n∑
j=1

βjxji.

2.5 Iterated Re-weighted Least Squares algorithm

This explanation is from Nelder and Wedderburn [8] and describes the actual

algorithm but not the detailed theory behind it. The algorithm is also described

in Practical Regression and Anova using R by Julian J. Faraway [10].

Given a starting estimate β̂0 we can calculate η̂0 = Xβ̂0 and µ̂0 = g−1(η̂0).

Then we calculate the response and weight vectors

z0 = η̂0 + (y − µ̂0)g′(µ̂0)

w−10 = b′′(θ)a(φ)(g′(µ̂0))2
(2)

Lastly we calculate a new estimate

β̂1 = (X ′WX)−1X ′Wz0

where W is a matrix with diagonal w0 and rest zeroes. Given this new estimate

repeat the process from the start but using β1 instead of β0 until convergence

is achieved.

2.6 Splines

The following explanation of Splines is on purpose very brief and will only cover

the regression aspect of spline fitting. The reason for this is that the theory

behind the process can be complicated and requires a good amount of time and

effort to understand. The reference used is Regression: Models, Methods and

Applications by Fahrmeir, Kneib, Lang and Marx [12]

There are three things that characterize a B-spline function, a vector of values

called the ’knot’ vector t = (t0 < t1 < t2... < tm), a vector β = (β0, β1, β2..., βm)

with unknown values that will be estimated, and a degree n of which the ba-

sis functions will be. The B-spline function is continuous and has continuous

derivatives up to degree n−1. A B-spline function of a variable X is then given

6



by the sum of the weighted basis functions

Sn(x) =

m∑
i=0

βiBi,n(x)

where Bi,n(x) is calculated with Cox-de Boor recursion formula

Bi,n(x) =

1 if ti ≤ x < ti+1

0 otherwise
,

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1(x).

In this thesis we will use ’natural cubic’ B-splines, which are B-splines of degree

3 with the added requirement that the second derivative is equal to 0 at the

first and last knot. In regression the vector β is estimated along the coefficients

of the other variables in the regression.

We will not go into further details but if you wish to learn more about the topic

then read the referenced material.

2.7 Model selection algorithm

Due to the fact that there is no universal method to finding the best fitting

model, the method described below is my personal method, which is but one of

countless methods of finding a suitable model for a given data set. This method

is a mix of backward elimination on the normal variables and forward inclusion

on the interactions. The thought behind this process is that we want to have

as few variables as possible, but still retain a good fit. While it is possible that

there exists interactions between excluded variables and included ones, we want

as few interactions as possible to be able to interpret the model better.

1. Fit a model containing all variables/covariates but excluding all interac-

tions.

2. Look for possible transformations of the included variables.

3. With each new model, try to reduce it as much as possible while still

retaining a similar fit.

4. When no more reductions or transformations improve the model fit, start

introducing potential interaction terms between the variables.

5. When no more interactions improve the model fit, reduce the model as

much as possible.

6. We are now left with the final model.
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2.8 AIC and BIC

Practical Guide to Logistic Regression by Joseph M. Hilbe [11]

Akaikes Information Criterion(AIC) and the Bayesian information criterion(BIC)

are two alternative goodness of fit measurements based of log likelihood, and

are defined as

AIC = −2 log(L(M)) + 2k(M)

BIC = −2 log(L(M)) + 2k(M) log(obs)
(3)

where L(M) denotes the likelihood of model M , k(m) the number of parameters

in the model and obs the number of observations. For both these measurements

a lower value implies a better fit, but to compare two or more models they all

have to use the same data set or have the same response scale. From the defi-

nitions it is trivial to see that BIC penalizes larger models more than AIC.

Given two comparable models we define ∆i = AICi − AICmin and with the

rule of thumb described in ’Model Selection and Multimodel Inference’ [7] by

Kenneth P. Burnham and David R. Anderson, we can get an indicator of when

to choose one model over the other.

”As a rough rule of thumb, models having ∆i within 1–2 of the

best model have substantial support and should receive consid-

eration in making inferences. Models having ∆i within about

4–7 of the best model have considerably less support, while mod-

els with ∆i>10 have either essentially no support and might be

omitted from further consideration or at least fail to explain

some substantial structural variation in the data.”

This rule can be used for BIC in the same way and will be the basis of our

AIC/BIC related arguments.

2.9 Cook’s distance

Practical Regression and Anova using R by Julian J. Faraway [10]

Cook’s distance is a measurement of the influence of a given observation.

Faraway describes influence as follows: ”An influential point is one whose re-

moval from the dataset would cause a large change in the fit. An influential

point may or may not be an outlier and may or may not have large leverage

but it will tend to have at least one of those two properties.”. Therefore a high

Cook’s distance value does not imply that we should directly remove and label a

observation as a outlier, but rather investigate it further before continuing with
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the analysis. The Cook’s distance is given by

Di =
r2i
k

hi
1− hi

where ri is the i-th residual, k is the number of parameters in the model and hi

is the i-th diagonal element in the ’hat’-matrix H = X(XTX)−1XT . A Di > 1

suggests that the observation should be investigated.

2.10 VIF

Practical Regression and Anova using R by Julian J. Faraway [10]

The Variance Inflation Factor(VIF) is a measurement of multicollinearity, or

rather how much a variable can be explained by the other variables in the re-

gression model. A value above 4 indicates that further investigation is suggested,

and a value above 10 indicates that corrections are required. The VIF value of

variable xj is calculated by regressing xj on all other predictors, taking the

resulting coefficient of determination R2
j and using it on the formula

V IFj =
1

1−R2
j

.

2.11 Pearson dispersion statistic

Practical Guide to Logistic Regression by Joseph M. Hilbe [11]

The Pearson dispersion statistic is a measurement of the dispersion parameter

in a generalized linear model. It is given by dividing the sum of squared Pearson

residuals by the residual degrees of freedom. The Formula for this statistic is

therefore

φ =

∑n
i=1

(
(yi−µi)2
V (µi)

)
df(residal)

where V (µi) = b′′(θ) for distributions from the exponential family, and specif-

ically V (µi) = eθ = µi for the Poisson distribution. The dispersion parameter

itself is the relation between the mean and variance of the model distribution,

so a value larger than one indicates that the observed variance is larger than

the observed mean.

3 Data

To get a true comparison between the model fits, the data used is the actual

year by year data produced by the three public authorities Statistiska Cen-

tralbyr̊an(Statistics Sweden)[1], Brottsförebyggande r̊adet/BRÅ(The Swedish
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National Council for Crime Prevention)[2] and Migrationsverket(The Migration

Agency)[3]. The data was produced according to The Official Statistics Act[4]

and consists of one observation of each explanatory variable per municipality

and year during the period 2005-2014. Data was manually collected from each

source and then imported and processed in R[5].

3.1 Data set

The starting data set contains one observation of the following variables per

municipality.

Year : The year of data collection, 2005-2014.

Born : Number of successful childbirths.(SCB)

Marriage : Number of newlywed women between ages 20-39.(SCB)

Refugees : Number of received refugees.(MIG)

Density : Population per square kilometer.(SCB)

Crime : Number of committed crimes.(BRÅ)

HEducation : Number of citizens with a post tertiary education>3 years.(SCB)

GenderDist : The number of men divided by the number of women.(SCB)

Population : Population of the municipality.(SCB)

3.2 Data analysis

Before beginning with the analysis it is always a good idea to try and get an

overview of the data set. We do this mainly to detect faulty values, high corre-

lation and other problems that would disrupt model fitting.

When inspecting the mean, median, minimum and maximum for each variable

we do not find any anomalies in any of the variables, and apart from ’Refugees’

no variable has any missing values.

In the data file containing the number of received refugees per municipality

we find that not all municipalities are present in the table, in other words we

find out that the municipalities with missing values in our data set do not have

the value ’NA’ in the data file but are missing altogether. It is also discovered

that there are no observations equal to zero in the entire data file. These two
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discoveries combined strongly suggests that the data file is in fact a list of num-

ber of received refugees for each municipality that received at least one refugee,

meaning those that received no refugees have been left out. By using this in-

terpretation we simply replace all the missing values for the variable ’Refugees’

with zero.

The next step is to do a Matrix-Plot over our data set. A Matrix-plot is essen-

tially a matrix of all variables(including the response variable) plotted against

each other in pairs. The plots are found above the diagonal in Figure 1 below,

and as an addition the correlation coefficients of each pair have been listed below

the diagonal.

Figure 1: Plot of variables vs each other in pairs.

By examining the plots and the correlation coefficients we observe that there

seems to be a high to very high correlation between all the variables except for

’Year’ and ’GenderDist’. These correlations are to be expected due to all vari-

ables being based on the same concept of number of citizens that got married,

are refugees, have a high education etc. With this thought in mind when look-

ing at the correlation coefficients we come to the conclusion that the common

divisor of all the variables is ’Population’. We come to this conclusion due to

the fact that it has a correlation of around 0.99 with most other variables, and

that it is logical that things like number of highly educated citizens and number

of crimes etc. increase with the population size.
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To combat this correlation and get explanatory variables not directly de-

pendent on population size we divide all variables except for ’Year’, ’Born’ and

’GenderDist’ by the corresponding observation of ’Population’. We then create

another data set where we have divided ’Born’ by ’Population’ as well. This

is done due to Poisson and negative binomial models using count data and the

logarithm of ’Population’ as an added offset, whereas simple linear and multiple

linear models use continuous data and therefore can handle the divided response

variable.

To get an overview of the data set now that it has been modified we make

two matrix-plots, one for each data set. Figure 2 contains the plot for the

simple and multiple linear regression data set.

Figure 2: Plot of variables vs each other in pairs(divided data set).

4 Analysis

To avoid repetition we try to find the best fitting model in linear regression

and then fit models using the same variables for Poisson and negative binomial

regression. This gives a good comparison between the three model types but as

a consequence we might not end up with the overall best model for any given

type.

To make formulas more compact we will use the first letter in each variable as

notation for that variable, β for the effects, α for the intercept, ε for the error
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term and ’:’ to denote a interaction term.

4.1 Simple linear regression

To start off the regression analysis we apply the theory of Simple Linear Regres-

sion to see how well the covariates can explain the response one by one. When

fitting these regression lines we make three assumptions

1. Independent observations of the response(municipalities are independent).

2. Independent errors with constant variance, εi ∼ N(0, σ2).

3. E(Yi) is a linear function of the predictor Xi for all values xi.

When fitting simple linear model our goal is mainly to find out what variables

explain the response well on their own as well as finding possible variable trans-

formations that could be useful later in the analysis. Due to this and the fact

that these models will not be used for any predictions och explanations we will

not check the assumption of constant variance(homoscedasticity).

The models we fit are all of the form

B

P
= α+ βCovariate+ ε

where the transformation of the response is described at the end of the ’Data’

section. The results of these fitted regression models are presented in Table 1.

Table 1: Results of simple linear regression models

Variable Estimate P-value R2 AIC
Year 0.0230 0.06 0.0012 11993.77
Marriage 1.5680 <2e-16 0.4883 10054.30
Refugees 0.0148 0.19 0.0006 11995.54
Density 0.0690 <2e-16 0.1107 11656.97
Crime 0.0252 <2e-16 0.1581 11498.22
HEducation 0.0507 <2e-16 0.4161 10436.86
GenderDist -20.705 <2e-16 0.1153 11641.95
Population 0.0129 <2e-16 0.1894 11388.17

Reading the table we notice that ’Marriage’ and ’HEducation’ have the best

fits with R squared values of 48.8% and 41.6%. It is also noticed that the

variables ’Year’ and ’Refugees’ have coefficients not significantly different from

zero. To check if this logical we examine the respective plots in Figure 2 and

come to the conclusion that the statement is indeed logical due to the lack of a

close to linear relationship between the variables and the response.

While inspecting the other plots in Figure 2 we notice that both ’HEducation’
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and ’Population’ seem to have non-linear relationships with the response. To

analyze this further we enlarge the plots and add the simple regression line,

which can be seen in Figure 3 below.

Figure 3: Heducation(left) and Population(right) against response with added
simple regression points(orange).

Both relationships look logarithmic, so therefore we fit simple regression

models of the form

Response = α+ β log(Covariate) + ε

Table 2 consists of a comparison between the new log-models and the previous

ones.

Table 2: Simple regression with and without log transformed covariates.

Variable P-value R2 AIC
HEducation <2e-16 0.4161 10436.86
log(HEducation) <2e-16 0.4543 10240.78
Population <2e-16 0.1894 11388.17
log(Population) <2e-16 0.3446 10772.13

When examining the values in Table 2 we come to the conclusion that the log

transformed variables produce models with much better fits than their counter-

parts, but Figure 4 shows that the slope of the log-function still flattens quicker

than preferred.
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Figure 4: Heducation(left) and Population(right) against response with added
log(covariate) regression points(red).

In the theory section we introduces the concept of B-Splines, mainly the

R-function ′ns{Splines}′ which produces a B-Spline basis for fitting natural

cubic splines between knots. This theory is mainly used for fitting curves to

data with complex relationships between response and explanatory variables

not easily explained by relatively simple transformations like log(x), xa or ex,

but is still usable in rather simple cases like ours.

We fit two models using the function ’ns()’ on the explanatory variable and

increase the number of knots until the models have lower or the same AIC values

as the log-models. For both variables we stopped at four knots with AIC values

for ’HEducation’:10221.76 vs previous 10240.78, and ’Population’:10774.46 vs

previous 10772.13. For the ’Population’ models AIC of the log-model is still

lower than the other, but only by 2.33. Using the rule of thumb presented

in Section 2 both models of ’Population’ are assumed to be equal in terms of

AIC. The natural cubic spline fitting introduces five new polynomials to the

regression, which are extremely difficult to interpret. Below in Figure 5 we have

added the fitted values of the Spline regressions(blue) to the plots in Figure 4.

Now that we have some potential transformations for non-linear-fitting variables

we continue our analysis by moving on to multiple regression.
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Figure 5: Same as Figure 4 but with fitted values from spline regression(blue).

4.2 Multiple linear regression

When comparing models in multiple regression we have to take into account

the number of parameters in the models since we want a model as simple as

possible while still having a good fit. Because of that we will not only compare

AIC values but also BIC values since BIC penalizes large models more than

AIC, and the rule of thumb we will use in our decisions is defined in Section 2.

We start off by investigating models without interactions, and then include

them later on. The first step we take is to verify that the transformations of

’HEducation’ and ’Population’ made in the previous section result in a better

fit than regression with the normal non transformed variables and regression

with fitted natural cubic B-splines. In accordance with the theory section our

multiple linear regression models will be of the form

B

P
= α+

∑
βCovariate+ ε

where the transformation of the response is described at the end of the ’Data’

section. Table 3 consists of R2, AIC and BIC for seven different models, and

indicate that both log-transformations at the same time gives a better fit than

not transforming, but that the model with splines fitted to ’HEducation’ but

not to ’Population’ had the best fit of them all.
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Table 3: Results of fitted multiple linear regression models.

Transformed variable R2 AIC BIC
None 0.5855 9457.317 9517.042
log(HEducation) 0.6093 9285.876 9345.6
log(Population) 0.5914 9415.732 9475.456
log(Both) 0.6099 9281.202 9340.927
Spline(HEducation) 0.614 9254.438 9326.108
Spline(Population) 0.5864 9453.16 9518.857
Spline(Both) 0.6141 9256.178 9333.82

To check the assumptions of normality and constant variance of the residuals

we utilize a normal QQ plot and a residual plot. The QQ-plot on the right in

Figure 6 gives a perception of the normality of our standardized residuals by

plotting them and the corresponding residuals from a perfect normal distribu-

tion(diagonal dotted line) against the theoretical quantiles. It shows that the

points are aligned well will the diagonal and therefore that the assumption of

normality of the residuals seem to be fulfilled. The residual plot on the left in

the same figure indicates that apart from the interval 14-18, the assumption of

homoscedasticity is correct since the vertical spread of the points is even along

the x-axis. The specified interval does not interfere with the assumption be-

cause of the fact that the decrease in variance is almost certainly due to a lack

of observations in that interval rather than a sign of heteroscedasticity. Lastly

we check the Variance Inflation Factors(VIF) to make sure that we do not have

high levels of multicollinearity, and get no values above the threshold 4.

Figure 6: Residual-plots of the current model

The next step in our analysis is to discard insignificant or otherwise unnec-

essary variables from the model. Looking at the regression output from R, our
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model has no insignificant variables on level 5%, ’Year’ is the least significant

with a P-value of 0.0219. The result of reducing the model anyway is an increase

in AIC by 3.28 but a decrease in BIC by 2.69. Using our rule of thumb both

models are almost equal, but since we want to have as few variables as possible

we stick with the reduction and move on with the analysis.

Now we have reduced the model as much as possible while still retaining a

good fit. The next step is to introduce interactions between parameters. Due

to the lack of previous studies on this particular subject, we have no starting

ground or previous results to base our testing on. Apart from testing all combi-

nations of interactions, our only way of selecting which parameters might have

potential interactions is to construct personal hypotheses.

One hypothesis is that the effect of crime is increased in tightly populated areas

due to a greater awareness of the crime rates. An example is that given two

areas of different size but with the same crime per citizen ratio, the risk of a

crime being committed in a close vicinity of you is higher in the more densely

populated area than the other. Introduction of this interaction parameter re-

sults in a decrease in AIC and BIC by 32.02 and 26.05 respectively, and that

the parameter’s coefficient is positive, which is in line with the hypothesis.

We cannot come up with any arguments for investigation of other interactions,

but decide to test some interactions that, if proven to be significant, we would

find interesting. While testing we discover a strange behavior were AIC is

lowered after almost all new introductions, but as consequence the previously

included interactions and almost all main parameter effects shift between being

significant and not seemingly at random. We then look at the BIC values in-

stead and notice that they are all roughly the same or higher than that of our

current best model. This strange occurrence could be due to the larger models

over-fitting data and letting the interactions falsely try to explain random noise.

We cannot be sure that that is the case but after experimenting with different

interactions and not finding any pattern, it is my opinion.

Since no expansion, reduction or applied transformation results in a model with

better fit judging by AIC, BIC, residual normality and simplicity, we have found

the final multiple linear regression model to be

B

P
= α+βMM +βRR+βDD+βCC+βHS(H)+βGG+βPP +βDC(D : C)+ ε

In Figure 7 we have three plots, normal QQ, residual and Cook’s distance plot.
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With the same motivations as we had when we discussed Figure 6 our residuals

seem to fit the normality assumption well apart from the right tail(QQ plot),

and there seems to be no interference with the assumption of homoscedastic-

ity(residual plot). The Cook’s distance plot gives us an indication of how in-

fluential the observations are, and from it we conclude that there seem to be

no major outliers worth removing(Cook’s distance >1). Table 4 consists of the

regression coefficient estimate, standard error and P-value of each parameter

in the final model(except splined ’HEducation’), and will be compared to the

other models in Section 4.5.

Figure 7: Residual, normal QQ and cooks distance plots for the final model.

Table 4: Parameter summary for the final multiple linear model.

Parameter Estimate std.error P-value
Marriage 8.778e-01 3.476e-02 <2e-16
Refugees 2.487e-02 7.247e-03 0.0006
Density -3.284e-02 9.889e-03 0.0009
Crime 5.147e-03 9.689e-04 1.17e-07
GenderDist 5.462e+00 8.935e-01 1.11e-09
Population 2.029e-03 4.958e-04 4.39e-05
Density:Crime 3.977e-04 7.069e-05 2.02e-08
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4.3 Poisson regression

As previously stated we won’t repeat the process of finding a suitable model

due to the repetition not adding any valuable information and being a tedious

process to read through. Instead we will fit a model with the same parameters

as the final multiple linear model to analyze the fit and suitability of a Poisson

regression model on our data. Comparison between the models will be covered

in Section 4.5.

The reason behind us exploring the possibility of a Poisson regression model

is that we have count data, meaning that our response variable is discrete non

negative. While Poisson regression results in predictions that are possible in

the real world, i.e no 3.5 or 1.7 children born, we must however deal with the

strong assumption of equidispersion, which means that the mean should equal

the variance. While it is a strong assumption, in practice Poisson models are

often fitted even if the assumption does not hold completely. To check the as-

sumption we calculate the Pearson dispersion, which we explained in Section 2,

and check if it is 1. To get the desired count data we will, as stated in the last

paragraph of Section 3, counter the high correlation between population and

all other variables including the response by adding a offset parameter instead

of dividing all observation by the corresponding population value. From the

theory section we recall that a Poisson model with a added offset variable has

the formula

log(µ) = α+
∑

βCovariate+ offset

and therefore the model with the same parameters as the final multiple linear

model is given by the formula

log(µB) = α+βMM+βRR+βDD+βCC+βHS(H)+βGG+βPP+βDC(D : C)+log(P )

Now we can fit our model and while doing so we calculate the Pearson disper-

sion to be 2.5. Since it is considerably larger than 1 we have Over -dispersion,

which is described in detail in Section 2. Now that we know that the variance

is not equal to the mean we might find a negative binomial model to be more

suitable, and in the next section we will explore that option further. Moving on

we evaluate the fit and leave discussion on the topic to Section 5.

When looking at the parameter summary in Table 5 we note that all parame-

ters except the interaction ’Crime:Density’ and the main effect of ’Density’ are

significant on levels way below 5%. When we remove the interaction we get

an increase in AIC from 27715.46 to 27716 and decrease in BIC from 27781.16
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to 27775.36. Using the rule of thumb for delta AIC/BIC we do not favor the

smaller model at all for AIC(∆AIC = 0.54), but for BIC we might prefer the

smaller model(∆BIC = 5.8). Since ∆BIC < 7 and having the same set of

parameters makes comparison between model types easier, we simply note that

the interaction is insignificant, but stick to the non reduced model.

Table 5: Parameter summary for the Poisson model

Variable Estimate Std.error P-value
Refugees 3.666e-03 4.440e-04 <2e-16
Density 4.583e-04 5.072e-04 0.366195
Crime 8.768e-04 4.670e-05 <2e-16
Marriage 9.638e-02 1.898e-03 <2e-16
GenderDist 6.557e-01 4.913e-02 <2e-16
Population 2.800e-05 8.287e-06 0.000727
Density:Crime 5.135e-06 3.486e-06 0.140777

Looking at the parameter estimates in the same table it is necessary to keep

in mind that due to the different response structure in Poisson regression, we

cannot directly compare estimates with the ones acquired from linear regression.

What we can do and will do in Section 4.5 is to compare if the effects have

switched from positive to negative or the opposite.

The Cook’s distance plot in Figure 8 does not indicate that any potential outliers

should be removed since the all are well below the threshold Di > 1. Lastly

we check the VIF values and discover that we do in fact have medium amount

of multicollinearity(above 4), however none of the values are above 10, which is

the threshold for serious collinearity that requires immediate correction.

Figure 8: Cooks distance for the Poisson model.
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4.4 Negative binomial regression

Due to overdispersion in the case of Poisson regression we explore the possibility

that a negative Binomial regression model will fit data better. The reason for

this is that Negative Binomial models, unlike Poisson models, have a second

parameter that can be used to adjust the variance independently of the mean.

In theory this should be the best of two worlds since it is a count data model

and handles situations where it is not appropriate to assume equidispersion.

Just like in Poisson regression we use an added offset parameter and so our

model has the formula

log(µB) = α+βMM+βRR+βDD+βCC+βHS(H)+βGG+βPP+βDC(D : C)+log(P )

In Table 6 we list the coefficient estimate, standard error and P-value for each

parameter, and due to Poisson and negative binomial regression having the same

response scale, we can directly compare these estimates with those acquired from

Poisson regression, but not those from linear regression.

Table 6: Parameter summary for the negative binomial model

Variable Estimate Std.error P-value
Refugees 3.095e-03 7.036e-04 1.08e-05
Density -8.604e-04 8.295e-04 0.2996
Crime 6.930e-04 8.400e-05 <2e-16
Marriage 9.434e-02 3.194e-03 <2e-16
GenderDist 6.695e-01 8.308e-02 7.76e-16
Population 6.042e-05 3.163e-05 0.0561
Density:Crime 1.442e-05 5.797e-06 0.0129

We observe that the main effects of ’Density’ and ’Population’ are insignifi-

cant on level 5%. We research if it is possible and logical to remove a main effect

while keeping the interaction term, but come up with no serious mathematical

evidence that supports that decision, and therefore refrain from it. Removing

’Population’ increased AIC by 1.66 and reduced BIC by 4.31. This suggests

that we favor the reduced model only by a very small amount, but on grounds

of easy comparison we keep the non reduced model.

The Cooks distance plot in Figure 9 does not indicate that any major out-

liers exist and should be removed(Di > 1), and all VIF values are well below 4.

With that we end the sections about model fitting and move on to comparison

between model types.
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Figure 9: Cooks distance plot for the non-reduced negative binomial model.

4.5 Comparison

4.5.1 Effects

By examining Table 7 we get a clear view of any variables that switch effect

from positive to negative or the opposite between model types. We observe that

’Population’, ’Density’ and its interaction term with ’Crime’ all switch between

significance and not, but no variable changes sign between model types.

Table 7: Sign of estimated effects for each model.

Parameter Linear Poisson Neg.Bin
Refugees + + +
Density - 0 0
Crime + + +
S(HEducation)1 + + +
S(HEducation)2 + + +
S(HEducation)3 + + +
Marriage + + +
GenderDist + + +
Population + + 0
Density:Crime + 0 +
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4.5.2 Best model

Before we can decide on which model is the best we must take a closer look at

the definitions of AIC and BIC. By definition AIC is given by

AIC = −2 log(L(M)) + 2k(M)

where L(M) is the notation for the likelihood of model M , and k(m) is the

number of parameters in the model. Similarly BIC is given by

BIC = −2 log(L(M)) + 2k(M) log(obs)

where obs denotes the number of observations in the data set. Both these criteria

are based on the likelihood function, and therefore comparison of AIC or BIC

values require the response to be on the same scale. You can illustrate this by

yourself if you compare a multiple linear regression model with response Yi and

the multiple linear regression model with response log(Yi).

At the end of the ’Data’ section of this thesis we stated that the response in

our Simple and Multiple regression models was Yi/ni and that the response in

our Poisson and Negative Binomial regressions was Yi. Due to this we can only

directly compare our Poisson model to our negative binomial model, but with

some theory we can actually calculate the log likelihood that our multiple linear

model would have if it was on the same scale. In our multiple linear model the

response is distributed
Yi
ni
∼ N(µ, σ2)

which by properties of the normal distribution is

Yi ∼ N(µni, σ
2n2i )

which now is on the same scale as the other regression models. We now use

the general formula for calculating the log likelihood of a normal distribution to

scale AIC and BIC of our final multiple regression model and construct Table

8 with the values off all three final models.

Table 8: AIC and BIC comparison between the three models.

Model AIC BIC
Multiple Linear 26140.09 26307.43
Poisson 27715.46 27781.16
Negative Binomial 25788.69 25860.36
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5 Discussion

We will begin the discussion by deciding on which model is the best overall, and

then interpret the estimated effects in that model. After that we will bring the

thesis to a close by discussing some flaws and disadvantages with how our anal-

ysis was carried out as well as some potential improvements that could be made.

Since all models have the same number of parameters and observations, the

model rankings will be the same for AIC as for BIC. From Table 8 we get the

result that the negative binomial regression model has the best fit judging by

AIC/BIC, and we stated earlier that it fit well theoretically due to it being a

count data model. The conclusion we arrive at is that the negative binomial

model is the best, but since we could reduce that model and still get the same,

if not slightly better, fit we choose to do that. Therefore the best model is the

reduced negative binomial model with formula

log(µB) = α+βMM+βRR+βDD+βCC+βHS(H)+βGG+βDC(D : C)+log(P ).

In that model all significant estimated parameter coefficients are positive. ’Refugees’,

’Marriage’ and ’GenderDist’ are the only variables that are not involved in an

interaction or transformation, and are therefore the only ones that can be in-

terpreted in the normal way. The effect C of a 1% increase in a variable vi with

coefficient βi can be calculated as

C ∗Bornbefore = Bornafter

= e(
∑i−1 βjvj) ∗ eβi(1.01vi) ∗ e(

∑
i+1 βjvj) ∗ Population

= eβi0.01vi ∗ e(
∑
βjvj) ∗ Population

= eβi0.01vi ∗Bornbefore
C = eβi0.01vi

(4)

Where Bornafter and Bornbefore are the estimated number of children born

before and after the 1% increase. Applying the results from the equation and

choosing a baseline value for each variable, we calculate the effect of a 1%

increase in a variable while the others are fixed. As baseline value we choose the

median since the variables have some max or min values that skews the mean.

The results of the calculations are presented in Table 9. The interpretation

of the variable ’GenderDist’ is however a bit different from the others. A 1%

increase in that variable is interpreted as a 1% increase in the number of men,

given that the number of women stay the same, or that the fraction of the factor

increase in men divided by the factor increase in women is equal to 1.01.
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Table 9: Estimated effects of a 1% increase in a variable given a baseline value.

Variable Effect Baseline value
Refugees 0.004% 1.294
Marriage 0.275% 2.885
GenderDist 0.67% 1.0099

Regarding ’Crime’, ’Density’ and their interaction, we can rewrite the sum

βDD + βCC + βDC(DC) = (βC + βDCD)C + βDD

and observe that by thinking of βDD as an intercept, the interpretation of the

interaction coefficient is the change in slope of the effect of ’Crime’. By fixing

’Density’ at its baseline value we can calculate the effect of a 1% increase in

’Crime’ just as we did previously. The result we get is that a 1% increase in

crime translates to a 0.0766% increase in number of children born. If we do the

same for ’Density’ but using βD = 0 due to parameter insignificance, we get an

increase by 0.2036%.

The effect of ’HEducation’ is the only effect that we cannot calculate using

the same method. A 1 unit increase has different effects depending on the value

of the variable due to the non linear relationship with log(µ), and therefore a

1% increase given a baseline value would depend even more on the chosen value.

We can however inspect the spline-function and interpret its shape. In Figure

10 we have plotted the function given that all other variables are 0 except the

offset ’Population’ which we set to 1. This means that the numbers on the

Y-axis are the number of children born in an area with a population of 1000.

We can clearly see that the effect diminishes as ’HEducation’ increases.

Figure 10: Plotted exp(βHS(HEducation)) given a population of 1000.
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Moving on to disadvantages and flaws with the study, one is that there is

no included variable that takes into account geographic location or separates

urban and rural areas. The ’Density’ variable was intended to have a similar

effect, but due to it being continuous the clear lines between groups could not

be drawn. Another example of a missed effect is some kind of measurement of

religion, but it was excluded due to lack of easily obtainable data.

Due to the fact that it takes time between when a couple chooses to have a

child and when it actually is born, a time series analysis might have been a bet-

ter choice, but I personally wanted a practical test on regression analysis and

that is why I used it. With that said, perhaps fertility would be a more fitting

response variable, but based on a personal hypothesis that it would require data

on a individual level, I chose to study the number of children born instead.

Lastly, when fitting the Poisson model we encountered the issue of overdis-

persion and chose to fit a negative binomial model, but made no attempt to

adjust the Poisson model. While there are ’robust’ methods to work around

this problem using ’Quasi-Likelihood’, we deemed those methods to be beyond

the intended scope of this thesis, and instead chose to narrow our analysis down

to the three model types most people are familiar with.
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