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Abstract

This paper treats the dynamic modelling and forecast performance
for financial volatility of Hennes&Mauritz assets returns. The pres-
ence of volatility clustering within the returns series required the use
of the Autoregressive Conditional Heteroscedasticity (ARCH) model
to fit the financial data.

The ARCH(1)-GARCH(1,1) models have been applied to the financial
volatility of Hennes&Mauritz assets returns. The Akaike Information
Criteria indicates that GARCH(1,1) has a suitable number of lags.
The MinimumMean Square Error estimate (MMSE) shows that condi-
tional heteroscedastic variance approaches the unconditional variance.

Under the assumption of both normal and student’s t-distributions,
the fitted GARCH(1,1) with an assumed student’s t-distribution ap-
pears to be the best model in volatility forecasts.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: hamagni05@yahoo.fr. Supervisor: Mathias Lindholm, Karl Rökaeus and Joanna
Tyrcha.



Contents

0.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 Theory Background 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Characteristics of financial times series . . . . . . . . . . . . . . . . . 2

1.4.1 Asset Returns and Volatility . . . . . . . . . . . . . . . . . . . 3

2 Data and methodology 4
2.1 Test of independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Autocorrelation test . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Heteroscedasticity test . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Test of normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Skewness and Kurtosis . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Jarque-Bera Test . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Time series structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Dynamic modelling of financial volatility . . . . . . . . . . . . . . . 8
2.4.1 ARCH-GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Distribution of error terms . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Akaike Information Criterion . . . . . . . . . . . . . . . . . . 10

2.5 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 ARCH (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 GARCH(1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Minimum mean square error (MMSE) Forecasts . . . . . . . . 13

3 Data analysis 14
3.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 H&M Historical Stock Prices . . . . . . . . . . . . . . . . . . . 14
3.1.2 Descriptive Data . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Test of Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Jarques Bera test . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Histogram of returns and Normal QQ-plot . . . . . . . . . . . 17
3.2.3 Test of dependency . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Modelling financial volatility . . . . . . . . . . . . . . . . . . . 21

ii



3.2.6 Forecast Performance . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Chapter 1

Theory Background

1.1 Introduction

Financial markets cover periods of crisis followed by periods of calm.
During a crisis period the stock prices tend to fluctuate very much while in calm
period the stock prices remain stable. This phenomenon is known as volatility clus-
tering. Volatility describes the relative rate at which the stock prices move up and
down. This is measured by estimating the conditional standard deviation of the daily
change in price.

If the price of a stock moves up and down rapidly over short time-periods, it has
high volatility. If the price practically never changes, it has low volatility. When
volatility is high, the level of expected returns is greater as is the risk of loss.

It is in the light of economic development that several authors such as Robert F.
Engle, Tim Bollerslev and others have studied the relationship between the risk of
losses and the expectation of profitability. In their discussion, they have proposed
di↵erent autoregressive conditional heteroscedastic variance models, useful to model
volatility.

In this thesis volatility describes the conditional standard deviation of the asset
returns. In order to understand how volatility of the asset return changes over time,
we will study some methods and econometric models appropriate for modelling the
volatility of asset returns. The used volatility model will be able to forecast volatility
as required by financial theory. Forecasting volatility is needed in risk management,
asset allocation and precision for value of future volatility.

We will follow the volatility modelling hypothesis drafted 30 years ago by Robert
F. Engle. In 1982, Robert F.Engle introduced the Autoregressive Conditional Het-
eroscedasticity (ARCH) model. The ARCH model is used to model financial time
series with time-varying volatility, such as stock prices.

In 1986, Tim Bollerslev extended the ARCH process to the Generalized Autoregres-
sive Conditional Heteroscedasticity (GARCH). Both ARCH and GARCH models
are designed to model volatility clustering.
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By applying the ARCH-GARCH models on our data, we will test the goodness
of ARCH-GARCH models in forecast performance.

1.2 Data

The data used in this thesis is the stock prices of Hennes&Maurirz traded every day
on NASDAQ. There are 2767 trading days observed over 10 years (2004-2014), and
expressed as daily time series. The chosen period covers periods of high and low
volatility.

In 1947, the Hennes&Mauritz group opened their first women’s clothing store in
Väster̊as, Sweden. The store started by selling women’s wear and grew with a
reputation for quality, sustainability and high profitability, see [19]. Today the
Hennes&Mauritz group o↵ers fashion for every one and is growing with new stores
the world over and on line. There are six di↵erent brands: H&M, COS, Monki,
Weekday, Cheap Monday and &Other Stories in 3500 stores all around the World.
Periods of success and solid growth have resulted in a strong financial position. Since
1974 is Hennes&Maurirz listed on the Stockholm Stock Exchange.

In order to investigate the model of dynamic volatility, we will use Hennes&Maurirz’s
dairly closing price. The original data is available and has been downloaded from
the NASDAQ’s website.

1.3 Aim

This paper will focus on the dynamic modeling of financial volatility of H&M asset
returns. We start by analyzing the distribution of return series residuals. We will
check if there is variability within the return series and whether the required char-
acteristics are satisfied.

If the sampled data exhibits the non-constant variance known as the ARCH-e↵ect,
they will be suitable to fit the Autoregressive Conditional Heteroscedasticity (ARCH)
and the Generalized-ARCH models. By using the Akaike Criterion, we will deter-
mine the suitable number of lags needed to estimate the parameters of the ARCH
and GARCH models. The estimated model will be used to predict the absolute
magnitude of return series.

1.4 Characteristics of financial times series

Generally, financial time series are based on the theory and practice of asset valua-
tion over time. In this section we will describe di↵erent characteristics of financial
time series. These will be extracted from the data of the daily closing price of
Hennes&Mauritz’s stock. In a simple way, we will organize this data set and trans-
form the daily closing price in daily asset returns according to the linear financial
time series theory.
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1.4.1 Asset Returns and Volatility

We start by an overview of the statistical properties of the asset returns at a given
frequency. According to Tsay [16], the simple returns Rt, t = 1, 2...T at time t is
given by

Rt =
Pt � Pt�1

Pt�1
(1.1)

where Pt is the stock price at time t with T number of observations and Pt � Pt�1

the price change over the period t�1 to t. In the case of small relative price changes
the equation above will be defined as the log price change expressed by

rt = ln(1 + Rt) (1.2)

The measure of the relative changes during the time series period is called volatil-
ity and defined as an instantaneous deviation of stock returns. As mentioned in
Gulisashvil [3], during epochs of low volatility the stock price does not change much,
while large movements of the stock price may be expected during periods with high
volatility. In Höglund [8], volatility is estimated as the square root of the sample
variance.

� =

vuut 1

T

TX

t=1

(rt � µ)2 (1.3)

where µ stands for the mean of returns. In statistics, the standard deviation is used
to quantify the magnitude of variation or dispersion of a set of data values. When
the standard deviation is close to zero, the data points tend to be very close to
the mean value of the set, while a high standard deviation illustrates that the data
points are spread out over a wider range of values.
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Chapter 2

Data and methodology

This section covers the basic theory of some methods and econometric tools used
for modelling the volatility of asset returns. Volatility measures the variation of a
financial instrument over time. According to the theory of financial mathematics,
volatility is an important factor in option trading, portfolio and risk management.
It is predictable and does not change with time. It is assumed to be approximately
normally distributed if the time period is su�ciently large, rt are assumed to be a
purely random process with independent increments, see [16]. We have to investigate
if the used data meet these requirements.

2.1 Test of independence

We assume that rt represents the random process with independent increment, "t
the standard errors, independent, identically distributed random variables and t the
number of observations. We then define the following formula:

rt = µ+ "t (2.1)

where µ is the mean of rt and "t has the expected value zero and variance �2.

2.1.1 Autocorrelation test

The autocorrelation of a random process expresses the correlation between the val-
ues at di↵erent times. Autocorrelation occurs when the errors are correlated. The
serial correlation or lagged correlation describes the dependence between the obser-
vations of a series of numbers arranged in a time period of length l called lag.

Consider a return series rt, the lag autocorrelation of rt is the correlation coe�-
cient between rt and rt�l. The autocorrelation function for rt is denoted by ⇢l and
is estimated as follow with respect to [16].

⇢̂l =

PT
t=l+1(rt � µ)(rt�l � µ)
PT

t=1(rt � µ)2
(2.2)

where 0  l < T and µ stands for the expected value of rt. For a su�ciently large
sample, the estimated sample autocorrelation function is assumed to be asymptot-
ically normally distributed with mean zero and variance 1

T
for any fixed positive
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integer l.

The main important tools for assessing the autocorrelation of a time series are the
autocorrelation function (ACF) and the Partial autocorrelation function (PACF).
The ACF is important in linear time series analysis and is constructed to capture
the linear dynamic of the data. The PACF of stationary time series is a function of
its ACF and is a commonly used tool for identifying the order of an autoregressive
model, see [16].

The Ljung and Box test is also used to detect whether the autocorrelations in the
data are di↵erent from zero, see [16]. It suggests the null hypothesis that a serie
of residuals has no autocorrelation for a fixed number of lags, m, so that ⇢l = 0,
l = 1, 2, ...,m is equal to zero, against the alternative hypothesis that the correlation
coe�cient ⇢l 6= , l = 1, 2, ...,m is di↵erent from zero. The test statistic is defined
according to the following formula,

Q(m) = T (T + 2)
mX

l=1

⇢̂l
2

T � l
(2.3)

where T is the sample size, m is the number of autocorrelation lags, and ⇢̂l is the
sample autocorrelation at lag l. According to [16], Q(m) is asymptotically chi-square
distributed with m degrees of freedom.
As shown by Tsay, the valid way to choose m number of lags is to use the natural
log of the total number of the observations.
In our study, m ⇡ ln(T ) and corresponds to

ln(2767) ⇡ 7.9255 = 8

The same test is useful to detect if the sampled data have equal variance called
homoscedasticity.

2.1.2 Heteroscedasticity test

Consider the classical linear regression model defined as

Y = X� + " (2.4)

where Y = (Y1, Y2, ..., Yn)T , X is n ⇥m design matrix, � = (�1, �2, ..., �m)T stands
for the slope of the line, and " = ("1, "2, ..., "n)T represents the residuals.
The variance of "n is assumed to be constant and equal to �2. This assumption
is called homoscedasticity and applies the Ordinary Least Squares to estimate the
parameters �. Under homscedasticity the residuals are
uncorrelated with an expected value of

E[""T |X] = �2In (2.5)

where I is the identical matrix. If the variance of the residuals is non
constant or is heteroscedastic, then the Weighted Least Squares formula will be de-
sirable to estimate our parameters. The heteroscedastic variance of the conditional
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values of X is expressed in a matrix as follow:

E[""T |X] =

0

BBBB@

�2
1 0 ... 0
0 �2

2 ... 0
. . ... .
. . ... .
0 . ... �2

n

1

CCCCA

In order to check the heteroscedasticity, one can apply the test statistic introduced
by Ljung and Box and described by (2.3) and the Lagrange multiplier test of Engle
(1982).

The test of Engle (1982) recognized as the test of the ARCH-e↵ect, is equivalent to
the F statistic defined by [16] for testing homoscedasticity in the linear regression.
Under the assumption of E[""T |X] = �2In = ⇣2t , the
Lagrange multiplier test of Engle (1982), assesses the null hypothesis
H0 : ↵2

i = 0, i = 1, 2, ...,m
in the linear regression
⇣2t = ↵0 + ↵1⇣

2
t�1 + ...+ ↵m⇣

2
t�m + "t,

t = m + 1, ..., T , where "t denotes the error term, m is a specified positive integer,
and T is the sample size.
The test statistic is calculated as

F =
(SS0 � SSR1)/m

SSR1/(T � 2m� 1)
(2.6)

which is asymptotically distributed as a �-squared distribution with m degrees of
freedom under the null hypothesis.

2.2 Test of normality

2.2.1 Skewness and Kurtosis

Let {x1, ..., xN} be a random sample ofX withN observations. The sample skewness
is calculated as:

Ŝ(X) =
1

(N � 1)�̂3
x

NX

n=1

(xn � µ̂x)
3 (2.7)

This measures the symmetry of X in respect to its mean. The distribution of X
is said to be positively skewed, negatively skewed or zero depending on the sign of
estimated value (positive, negative or zero), i.e. if the distribution is positively
skewed then the probability density function has a long tail to the right, and if the
distribution is negatively skewed the probability density function has a long tail to
the left. Such distributions are called leptokurtic. A symmetric distribution has a
skewness equal to 0 and is said to be unskewed.

In order to provide information of the tail behaviour of X, we will introduce a
fourth central moment called Kurtosis. This is calculated as

K̂(X) =
1

(N � 1)�̂4
x

NX

n=1

(xn � µ̂x)
4 (2.8)
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The Kurtosis is a statical measure used to describe the distribution of observed
data around the mean. It measures the degree to which a distribution is more
or less peaked than a normal distribution. Positive kurtosis indicates a relatively
peaked distribution. Negative kurtosis indicates a relatively flat distribution. A
normal distribution has a kurtosis of 3.

2.2.2 Jarque-Bera Test

This test is known as the test of normality. Consider testing the null hypothesis:
H0: Ŝ(x) = 0 and K̂(x)� 3 = 0;
against the alternative hypothesis:
H1 : Ŝ(x) 6= 0 and K̂(x)� 3 6= 0
The Jarque-Bera test formula is:

JB =
Ŝ2(x)

6/N
+

(K̂(x)� 3)2

24/N
(2.9)

where N is the sample size, Ŝ(x) is the sample skewness, and K̂(x) is the sample
kurtosis. For large sample sizes, the test statistic is asymptotically distributed as
a chi-squared random variables with 2 degrees of freedom. The null hypothesis of
normality is rejected if the p value of Jarque Bera is less than the significance level.

2.3 Time series structure

In this section we will discuss the methods employed for analysing time series data
in order to extract meaningful statistics and other characteristics of the data.

2.3.1 Stationarity

Stationarity is the basic characteristic to consider in time series analysis. Referring
to [16], a stochastic process {X(t), t � 0} is said to be a strictly stationary process
if for all n, s, t, ..., tn the random vectors X(t1), ..., X(tn) and X(t1+ s), ..., X(tn+ s)
have the same joint distribution. This means that the joint probability distribution
remains constant when shifted in time. Consequently, parameters such as the mean
and the variance, if present, also do not change over time and do not follow any
trends. This property has been di�cult to verify empirically.

In case of time series {rt}, a weak stationarity is considered. This assumption
holds if both the mean of {rt} and the covariance between rt and rt�l are time in-
variant, and where l is an arbitrary integer. Statistically, the series {rt} is weakly
stationary if the first and the second moments are constant over time. This means
that E[rt] = µ and Cov(rt, rt�l) = l which only depends on l. The covariance l is
called the lag-l autocovariance of rt and the correlation coe�cient between rt and
rt�l is called the lag-l autocorrelation and is denoted by ⇢l.
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2.3.2 White Noise

A stochastic process {Xt} is called white noise if the sequence of independent and
identically distributed random variables with the finite mean µ, variance �2 and
covariance Cov(Xt, Xt+s) = 0 for s > 0. If such {Xt} is normally distributed with
mean zero and variance �2 it is recognized as Gaussian White Noise
In addition of those characteristics, there are many others properties of time series
to take into account in this study, such as trends and seasonality.

2.4 Dynamic modelling of financial volatility

2.4.1 ARCH-GARCH

The ARCH-GARCH models and their various extensions are mostly employed in
financial applications and may treat the financial data as return series in which the
variance of the errors terms is non-constant, while the expected value of assets re-
turns tends to fluctuate much for periods of turbulence and then revert to the same
value as at the periods before crisis, see [12].

Referring to [14], returns values are assumed to be unpredictable with fat tails and
volatility clustering. In order to meet this issues, Robert Engle (1982) introduced
the first model known as Autoregressive Conditional Heteroscedasticity (ARCH),
developed later by Bollerslev (1986) as a Generalized Autoregressive Conditional
Heteroscedastic model.

The ARCH-GARCH process was designed to model the conditional variance in
volatility. The process is valid when there are autoregressivity in squared returns
and the next period’s volatility is conditioned by information of the previous period.

Let It�1 denotes the information set of all information through time t� 1.
In order to put the volatility models in proper perspective, consider the conditional
mean µt = E[rt|It�1], variance h2

t = V ar(rt|It�1) and assume that rt follows a simple
time series model such as

rt = µt + ⇣t = µt + ht"t (2.10)

Returns are described by a mean equation and a volatility equation.
According to [16], the expected value µt could be equal to zero or follow an ARMA(p,
q) process. The best way to check the model of returns rt , is to test the assumption
that the expected value is zero. This will be done by using a t-test, see [2].

Under the assumption of µ = 0, the returns process would be
rt = ⇣t = ht"t
where ⇣t denotes the shock of an asset return which is assumed to be serially uncor-
related but dependent.

Referring to financial applications as described in [16], we will use the squared series
⇣2t to check the Conditional Heteroscedasticity recognized as the ARCH e↵ect.
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ARCH(q)

The autoregressive conditional heteroscedasticity process defines the conditional
variance as a linear regression model of lagged squared errors.

h2
t = ↵0⇣

2
t�1 + ...+ ↵q⇣

2
t�q (2.11)

where ↵0 > 0 and ↵i � 0 for i = 1, ..., q to ensure positive variance.

Generalized ARCH(p,q)

Bollerslev extended the ARCH model to a Generalized-ARCH and described it as
the sum of lagged squared errors and the lagged conditional variance.

h2
t = ↵0 + ↵1⇣

2
t�1 + ...+ ↵q⇣t�q + �1h

2
t�1 + ...+ �ph

2
t�p (2.12)

where ↵0 > 0 ↵i, �j � 0 for i = 0, 1, ..., q , j = 1, 2, ...p
and (↵i+�j) < 1 which implies that the unconditional variance of ⇣t is finite, whereas
the conditional variance h2

t evolves over time. "t is the sequence of iid random vari-
ables with mean 0 and variance 1 and is often assumed to follow a standard normal
or standardized Student-t distribution.

The GARCH model faces several limitations relative to the parameters estimation.
The parameters in GARCH models are required to be positive in order to ensure
that h2

t remains positive for all t with probability 1, see [12]. The GARCH model
is symmetric and assume that positive and negative shocks have the same e↵ect on
volatility.

2.4.2 Distribution of error terms

For conditional variance models, the innovation’s process is written

⇣t = ht"t

1. If the error terms "t are assumed to be identically distributed and independent
with mean zero and unit variance, then the "t are normally distributed with
the density function

f(⇣) =
1p
2⇡h2

e�
(⇣�µ)2

2h2

where µ is the mean value and h2 is the variance. Referring to probability
theory when µ = 0 and h2 = 1 the distribution is called Standard Normal
distribution.
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2. If the error terms "t are assumed to be indentically distributed and indepen-
dent with mean zero and unit variance, then "t are Student t-distributed with
the density function

f(⇣) =
�(⌫+1

2 )
p
⌫⇡�

(1 +
⇣2

⌫
)
�(
⌫ + 1

2
)

where ⌫ stands for the number of degrees of freedom and � is the gamma func-
tion. As the number of degrees of freedom grows, the Student t-distribution
approaches the normal distribution with mean 0 and variance 1 and is called
standardized Student-t distribution.

2.4.3 Akaike Information Criterion

In this study, we will use the Akaike information Criterion for two reasons. Firstly,
the AIC is useful in order to determine the suitable number of lags in Autoregressive
Heteroscdedastic Conditional Variance. Secondly, we will use it to identify the
goodness of models. The Akaike information criterion (AIC) for a parametric model
is defined as:

AIC(k) = �2 log(L) + 2k

log(L) is the log likelihood function for the model, L are the Maximum Likelihood
estimates for the parameters, and k is the number of parameters in the model. The
lower the AIC, the better the model class, see [7].

2.5 Model specification

In financial time series theory, see [16] return series are assumed to be stationary and
show no or little autocorrelation. Many financial data use the standard deviation
as the main descriptive tool. This is used to quantify the magnitude of variation or
dispersion of a set of data values.

2.5.1 ARCH (1)

ARCH models assume that the variance of the current error term is related to the
size of the previous periods’ error terms, giving rise to volatility clustering. This
phenomenon is widely observable in financial markets, where periods of low volatility
are followed by periods of high volatility and vice versa. The ARCH model describes
the forecast variance in terms of current observables.

Assume that

⇣t = ht"t

According to Engle (1992), the ARCH(1) model follows

h2
t = ↵0 + ↵1⇣

2
t�1 (2.13)
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where ↵0 > 0, ↵1 � 0 to describe a positive variance.
⇣t is the residual of the mean equation. The squared series ⇣2t is then useful to detect
the conditional heteroscedasticity which is also called the ARCH-e↵ect.

2.5.2 GARCH(1,1)

The GARCH(1,1) regression model developed by Bollerslev (1986) is given by

h2
t = ↵0 + ↵1⇣

2
t�1 + �1h

2
t�1 (2.14)

where ↵0 > 0, ↵1 > 0, �1 > 0 and ↵1 + �1 < 1, so that the next period forecast of
variance is a mix of the last period forecast and the last period’s squared return.
The unconditional variance of ⇣2t is equal to

V ar(⇣t) = E[⇣t]
2 � (E[⇣t])

2

= E[⇣2t ]

= E[h2
t "

2
t ]

= E[h2
t ]

= ↵0 + ↵1E[⇣2t�1] + �1h
2
t�1

and since ⇣t is a stationary process

V ar(⇣t) =
↵0

1� ↵1 � �1

the unconditional variance of returns becomes,

E[�2
t ] = E[⇣2t ] =

↵0

1� ↵1 � �1
(2.15)

The GARCH(1,1) modell provides a simple parametric function useful to describe
the volatility evolution. It is often useful to forecast the next period’s variance of
returns. Assume that the forecast origin is t with l steps to expiration, see [ A.2].

For l-step-ahead forecast, we have

h2
t+l !

↵0

1� ↵1 � �1
(2.16)

as l ! 1,
From the above equation one can see that h2

t+l ! h2
t as l ! 1, then the variance

forecast approaches the unconditional variance of ⇣t, see [5].
Looking at the l-step ahead variance forecast, we observe that (↵1 + �1) determines
how quickly the variance forecast converges to the unconditional variance.
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2.5.3 Parameters estimation

The GARCH(1,1) regression model includes some unknown parameters (↵0,↵1, �1),
which will be estimated. We are interested in the best estimate to use in forecasting
the variance. The statistical theory supplies various methods applicable in parame-
ters estimation such as OLS (Ordinary Least Squares), Moment Method and MLE
(The Maximum Likelihood Estimation).

In this study, we will use The Maximum Likelihood Estimation method. Accord-
ing to [16], several likelihood functions are commonly applied in ARCH- GARCH
estimation, depending on the distributions assumption of "t.

Under the normality assumption of "t, the likelihood function of an ARCH(m) model
is

L = f(⇣m+1, ..., ⇣T |↵, ⇣1, ..., ⇣m) =
TY

t=m+1

1p
2⇡h2

t

exp

✓
�⇣2t
2h2

t

◆
(2.17)

where ↵ = (↵0,↵1, ...,↵m)0 and f(⇣m+1, ..., ⇣T |↵) is the joint probability density
function of ⇣1, ..., ⇣m, see [16]

The log likelihood function is

l = ln(L) = �1

2
ln(2⇡)� 1

2

TX

t=m+1

ln(h2
t )�

1

2

TX

t=m+1

⇣2t
h2
t

(2.18)

we plug in GARCH(1,1) and we get

IGARCH(1,1) = �1

2
ln(2⇡)�1

2

TX

t=1

ln(↵0+↵1⇣
2
t�1+�1h

2
t�1)�

1

2

TX

t=1

⇣2t
(↵0 + ↵1⇣2t�1 + �1h2

t�1)

(2.19)

Under the assumption of Student t-distribution of "t , the likelihood function of
ARCH(m) is

L = f(⇣m+1, ..., ⇣T |↵, ⇣1, ..., ⇣m) =
TY

t=m+1

�[(⌫ + 1)/2]

�(⌫)/2)
p

(⌫ � 2)⇡

1

ht


1 +

⇣2t
(⌫ � 2)h2

t

��(⌫+1)/2

(2.20)

and the loglikelihood function is

l = (T�m) ln

 
�[(⌫ + 1)/2]

�(⌫)/2)
p

(⌫ � 2)⇡

!
�1

2

TX

t=m+1

ln(ht
2)�(⌫ + 1)

2

TX

t=m+1

ln

✓
1 +

⇣2t
(⌫ � 2)h2

t

◆

(2.21)
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The loglikelihood function for GARCH(1,1) is

IGARCH(1,1) = T ⇤ ln
 

�[(⌫ + 1)/2]

�(⌫)/2)
p
(⌫ � 2)⇡

!
� 1

2

TX

t=1

ln(↵0 + ↵1⇣
2
t�1 + �1h

2
t�1)

� (⌫ + 1)

2

TX

t=1

ln(1 +
⇣2t

(↵0 + ↵1⇣2t�1 + �1h2
t�1)

2.5.4 Minimum mean square error (MMSE) Forecasts

A common objective of conditional variance modeling is generating forecasts for
the conditional variance process over a future time horizon. We assume the condi-
tional variance process h2

1, h
2
2, ..., h

2
T , a forecast horizon l, and generate predictions

for h2
t+1, h

2
t+2..., h

2
T+l.

Let ĥ2
t+1 denote a forecast for the variance at time t+ 1, conditional on the history

of the process up to time t, It see[23]. The minimum mean square error (MMSE)
forecast is the forecast ĥ2

t+1 that minimizes the conditional expected square loss,

E(h2
t+1 � ĥ2

t+1|It)

Minimizing this loss function yields the MMSE forecast,
ĥ2
t+1 = E(h2

t+1|It) = E("2t |It)
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Chapter 3

Data analysis

3.1 Result

3.1.1 H&M Historical Stock Prices

The aim of this study is to fit the ARCH(1) and GARCH(1,1) models on the data
set from Hennes&Mauritz historical stock prices over 10 years. There is a large num-
ber of observations so that our calculations will be made by running the numerical
functions from the Matlab Software. We start by plotting the daily closing price.

Figure 3.1: H&M Daily Closing Price

Figure 3.1 illustrates the stock price for each trading day. We observe that the
stock price varies between 164 and 496.50. The observed data show that there are
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periods with higher fluctuations, followed by periods with lower movements. Over
the period 1396-1613 days, we see that the stock price fluctuates very much and
doubles in value. After 1613 days the stock price moves down rapidly and falls to
half. This event occurred June 1, 2010 when H&M implemented the share split in
which each share was split into two shares of the same class.

As mentioned in [6], we consider the returns instead of the stock price. The main
reason is that prices are non-stationary, whereas returns are stationary. As defined
by [9] asset returns have attractive statistical properties with respect to financial
time series.

Figure 3.2: Returns value

Figure 3.2 This plot reveals returns values with respect to the confidence inter-
val of [-10,10]. We observe periods of low movement followed by periods of significant
fluctuation. There is variability within the return series. The share split has no im-
pact on our data. We see that large changes in the returns tend to cluster together
and similarly small changes cluster together. This property indicates the presence of
a non constant variance called heteroscedastic variance. We continue by examining
the distribution of rt.
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3.1.2 Descriptive Data

Table 3.1: Descriptive Data

Returns Estimate

Mean 0.0483
Variance 2.4136

Std 1.5536
Kurtosis 7.2237
Skewness 0.0607

Table 3.1 shows statistics values of rt useful to estimate the parameters in the
financial volatility model. The daily mean value of rt equal to 0.0483 is significant
with 95% significance level.

The kurtosis is strictly positive and thus indicates if the data is flat or top with
respect to the normal distribution. The kurtosis of H&M daily returns is 7.2237
exceeding twice the theoretical value for the normal distribution of 3. Data volumes
with high kurtosis tend to have a distinct peak near the mean, to decrease fairly
rapidly, and to have heavy tails .
A large kurtosis indicates that the time series data have a sharper peak and flatter
tails character.

The skewness measures the symmetry with respect to the mean value of the data.
A skewness with a value equal to 0.0607 describes a positively skewed distribution.
This means that the sample distribution is not symmetric around zero, thus the
distribution expresses the non-normality in the return series.

3.2 Test of Normality

3.2.1 Jarques Bera test

The Jarque-Bera test asseses the null hypothesis of normally distributed return se-
ries against the alternative hypothesis of non normality within return series, see
formula (2.9)

Table 3.2: Jarque Bera Test

h p-value jbstat critval

1 1.0000e-03 2.0577e+03 5.9717

Table 3.2 indicates the result of a Monte Carlo simulation. With the Jarques Bera
test we obtain a Jbstat much larger than the critical value with a p-value close to
zero. The h value equal to 1 indicates that the jbtest rejects the null hypothesis of
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normality at the 5% significance level.

3.2.2 Histogram of returns and Normal QQ-plot

Figure 3.3: Histogram of daily returns and Normal QQ-plot

Figure 3.3 This plot describes a data set with high kurtosis. The histogram
shows a distinct peak around zero, which subsides fairly quickly and has a heavy
tail to the right. There is a sharp peak which is di↵erent from the density function
of a normal distribution.

We now check the distribution of rt by using the graphical technique called Quantile-
Quantile Plot. If our data is normally distributed, then the plot will show that all
observations lie on the straight line.

In the figure, the Normal QQ-plot presents some extreme values which deviate from
the straight line. This suggests that the sampled data violate the assumption of
normally distributed serial residuals and that the assumption of independence and
non-symmetric distribution is appropriate to our data.

3.2.3 Test of dependency

Autocorrelation as a measure of dependence between the value today and the value
some days ago occurs when errors are correlated. In this section, we apply the Au-
tocorrelation Function of assets returns on our data.
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Model of returns

Let rt = µt + ⇣t be the mean equation for the return process rt
We assume that rt could be represented by a mean model expressed in µt and a
volatility model. We assume that the returns are normally distributed and test the
null hypothesis that H0 : µ = 0 against H1 : µ 6= 0.

We get a test statistic equal to 1.6354 with 2765 degrees of freedom, a confidence
interval (�0.0096, 0.106) and a p-value equal to 0.102. The returned value of h = 0
indicates that the t-test does not reject the null hypothesis at the 5% significance
level.
The result indicates that rt = ⇣t, thus the squared series ⇣2t would be used to check
the conditional heteroscedasticity.

Autocorrelation Function of Returns

Figure 3.4 shows both the estimated autocorrelation of the returns and the auto-
correlation of the squared returns. We observe that the return series indicates that
few of the values outrun the confidence interval at the 5% significance level, while
the squared returns show a significant dependency in the second moment of returns.
All the estimated values are positive and significant.

Figure 3.4: Sample autocorrelation function of return series/Sample autocorrelation
of squared returns
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Ljung-Box Q-test

The Ljung-Box Q-test tests the null hypothesis that there is no autocorrelation
within return series, against the alternative hypothesis that there is autocorrelation
within return series. The Q-statistc of Q(8) is 16.6322 with a p-value of 0.03325 less
than 5%.

We then run the same test with the squared return series. We obtain a Q-value of
381.9427, with a P-value equal to zero and a corresponding critical value of 15.5073.
According to financial theory, both of these test statistics are asymptotically chi-
squared distributed with m = 8 degrees of freedom. The result shows that both
Q-values are larger than the critical values. We get h = 1 with a p-value close to
zero. This a�rms that both the squared returns and the returns are significantly
autocorrelated at the 5% significance level.

3.2.4 Heteroscedasticity

As defined by [16], the squared series ⇣2t is used to check for conditional heteroscedas-
ticity, which is also known as the ARCH e↵ect. TSAY suggests two tests for the
ARCH e↵ect, the Ljung-Box Q-test and the Lagrange multiplier test . The result
of Ljung-Box Q-test applied on the squared returns indicates that there are ARCH-
e↵ect within return series.

Figure 3.5: ARCH-E↵ect

19



Figure 3.5 illustrates the estimated ACF and PACF of the squared residuals. They
illustrate significant autocorrelation in the series and thus, the presence of volatility
clustering within the residuals series.

We also check the ARCH-e↵ect with the Lagrange multiplier test called Engle’s
ARCH test. The Lagrange multiplier tests the linear model for residuals defined in
(2.6)
⇣2t = ↵0 + ↵1⇣

2
t�1 + ...+ ↵l⇣

2
t�l, then t = l + 1 + ...T

l is a positive integer and T is the sample size.

We will test the null hypothesis homoschedasticity against the alternative hypothe-
sis conditional heteroscedasticity up to lag 8 .

The series has significant serial correlation so that it can be directly used to test
the ARCH-e↵ect. As seen earlier, the Q(m) statistics of the return series give
Q(8) = 16.7798 with a p-value =0.0325 and h = 1 indicates a strong serial correla-
tion in the data.
The Lagrange multiplier test shows a strong ARCH-e↵ect with the F statistic equal
to 213.7592, much larger than the critical value of the �2 distribution with eight
degrees of freedom, 15.5073 and a p-value equal to zero. This result suggests that
the null hypothesis of homoscedasticity is rejected in favour of the alternative hy-
pothesis conditional heteroscedasticity. The result confirms that the volatility of the
returns is heteroscedastic.

We then determine the suitable number of lags for the model. This is done by
fitting the model over m = 1, 2..., 8 lags and then compare the fitted models by
using the AIC method.

Table 3.3 indicates that lag 1 has the smallest AIC. It is then reasonable to conduct
the ARCH test using lag one.

Table 3.3: Suitable Number of Lags

Smallest AIC

Lag 1 2 3 4 5 6 7 8
AIC 9.9250 9.9270 9.9290 9.9310 9.9330 9.9350 9.9370 9.9390

We run the same test by using lag 1. The F statistic for the test is 78.9770, much
larger than the critical value of the �2 distribution with one degree of freedom,
3.8415. This result suggests that the null hypothesis of homoscedasticity can be
rejected. This means that the volatility of return is heteroscedastic.

We conclude that there is significant volatility clustering in the residual series and
that the ARCH(1) and GARCH(1,1) processes can be applied to model returns
volatility.
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3.2.5 Modelling financial volatility

The observed test statistics suggest the presence of volatility clustering. This is
an important property required by financial theory relative to the conditional vari-
ance models. Engle’s test shows that lag 1 is suitable for the conditional variance
model. The GARCH(1,1) model includes ↵0, ↵1 which are also the components in
the ARCH(1) linear model. The first number in parentheses refers to how many au-
toregressive lags, or ARCH terms appear in the equation, while the second number
refers to how many moving average lags are specified or the number of GARCH, see
[12]. Both ARCH(1) and GARCH(1,1) are able to predict the financial volatility.
Thus we decide to fit the GARCH(1,1) on our data. By using the Matlab-Software,
we maximize the log likelihood function of the GARCH(1,1) model.

GARCH(1,1)

Table 3.4 shows the estimated GARCH(1,1) values under the assumption of Gaus-
sian and Student-t distributions. The Student t-distribution expresses the smallest
AIC .

Table 3.4: GARCH(1,1)

Parameter Gaussian Student-t

↵0 0.0533252 0.0305644
↵1 0.0446668 0.0470664
�1 0.931613 0.940584

DoF 4.81434
AIC 103⇤ 9.8463 9.5582
(↵1 + �1) 9.9763 0.9877

h2
t 2.2481 2.4749

The result illustrates that both Q-statistics are less than the critical value and
h= 0 suggests that we can not reject the null hypothesis of no autocorrelation within
the stantardized residuals.

Model checking

For GARCH(1,1), the standardized residuals are calculated as

⇣̂t =
⇣t
ht

, where ⇣̂t is a sequence of iid random variables. We can check the adequacy

of the fitted GARCH(1,1) model by analyzing the series ⇣̂t, see[16]. We use Ljung-
Box statistics of ⇣̂t to check the adequacy of the mean equation and, ⇣̂t, to check the
validity of volatility equation. The Q-statistics of ⇣̂t test the null hypothesis of no
autocorrelation in the standardized residuals series.

Table 3.5 shows the result of the Ljung-Box test applied on standardized residu-
als with normal distribution and on standardized residuals with normal Student’s
t-distribution. One can see that both Q-statistics are less than the critical value
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Table 3.5: GARCH(1,1)

⇣̂t Gaussian Student-t

h 0 0
p 0.8295 0.8199

Qstat 0.0474 0.0518
Critical value 3.8415 3.8415

and h= 0 indicates that we can not reject the null hypothesis of no autocorrelation
within the standardized residuals.

Figure 3.11-3.12 illustrate ACF of GARCH(1,1) model with normal distributed
standardized residuals, respectively Student’s t-distributed standardized residuals.
The figures indicate that there is no autocorrelation in the standardized residuals
series. See [A.1].

We now use the ⇣̂2t to test the null hypothesis that there are homoscedasticity within
the squared standardized residuals series with assumed normal distribution and the
squared residuals with Student’s t-distribution.

Table 3.6: GARCH(1,1)

⇣̂2t Gaussian Student-t

h 0 0
p 0.8438 0.9878

Qstat 0.0388 2.3266e-04
Critical value 3.8415 3.8415

Table 3.6 illustrates the result of the Ljung-Box test applied on squared stan-
dardized residuals with normal distribution and standardized residuals with normal
Student’s t-distribution. Both Q-statistics are less than the critical value and h= 0
indicates that we can not reject the null hypothesis of homoscedasticity within the
squared stantardized residuals.

Figures 3.13-3.14 show ACF of GARCH(1,1) model with normally distributed
squared standardized residuals, resprctively Student’s t-distributed squared stan-
dardized residuals. The figure a�rm that there is homoscedasticity in the squared
standardized residuals series. See [A.1].

Figure 3.6 shows the standardized residuals including the conditional variance
with an assumed normal distribution. We observe more large values than expected
in a standard normal distribution. The financial time series is not white noise. This
suggests that a non symmetric distribution might be more appropriate for the resid-
uals distribution.
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Figure 3.6: Standardized residuals with GARCH(1,1), Normal distribution

Figure 3.7: Standardized residuals with GARCH(1,1), Student’s t- distribution
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Figure 3.7 illustrates the standardized residuals including the conditional vari-
ance with an assumed Student’s t- distribution. We also observe more large values
than expected in a standard student’s t-distribution.

In order to identify the validity of the distribution assumption for GARCH(1,1)
models, we analyze the QQ-plots of standardized residuals with assumed normal
distribution and standardized residuals with assumed Student’s t-distribution.

Figure 3.8: QQ-plot of standardized residuals with GARCH(1,1), Normal distribu-
tion

Figure 3.8 We see that the standardized residuals series does not follow the dashed
straight line marked in the figure. There are many observations which deviate from
this line. The standardized residuals form an s-shape di↵erent from normally dis-
tributed standardized residuals series.

Figure 3.9 indicates that the standardized residuals series follows the dashed
straight line marked in the figure.The standardized residuals with assumed Stu-
dent’s t-distribution seem to be more linear. There are few points which diverge
from the dashed straight line. By combining the results from table 3.4 and this plot,
GARCH(1,1) with assumed Student’s t-distribution is adequate to model volatility
of return series.
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Figure 3.9: QQ-plot with standardized residuals with GARCH(1,1), Student’s t-
distribution

3.2.6 Forecast Performance

Time series forecasting implies the use of a model to predict future values based
on previously observed values. The aim of this study has been to provide some
knowledge about the goodness of the fitted model.
GARCH(1,1) and assume that the forecast origin is t = 1 day-step-ahead. As de-
fined by (3.4), the 300-step ahead volatility at the forecast origin t corresponds to

ĥ2
t+300 = h2(↵̂1 + �̂1)

300(h2
t � h2)

ĥ2
t+300 ! h2 =

↵̂0

1� ↵̂0 � �̂1

= 2.4749

as l ! 1 . This is the theoretical or unconditional variance.
By using the Minimum Mean Square Error(MMSE) forecast over the 300 days-
period horizon ,we get the following plot.

Figure 3.15 indicates that conditional variance converges to the unconditional
variance as l ! 1. See [ A.1]
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3.3 Conclusion

This paper discusses modelling and forecasting the financial volatility of H&M stock
prices, by using the ARCH(1)-GARCH(1,1) models. The sampled data includes
daily return series of Hennes&Mauritz stock prices over a period of 10 years be-
tween 2004-2014.

In 2010 the return series indicate extreme values di↵ering from the expected value of
the observed returns. This event was caused by the share split in which each share
was split into two shares of the same class.

We found that the share split had no great impact on the returns series analysis
so that we could use our data to investigate the distribution of the returns residuals
series. We have reviewed the properties of the returns series by applying di↵erent
statistical methods.

The estimated kurtosis and skewness values exceed more the theoretical value of
the normal distribution. The QQ plot, histogram and Jarque Bera Test suggest
that there is non-normality within the returns values.
The Autocorrelation function of the returns series illustrates a significant depen-
dency in the second moment of returns. In accordance to financial theory, we choose
the natural logarithm of the observed days as reference degree of freedom. The Q(8)
test suggests that the squared returns and the returns are significantly autocorre-
lated at the 5% significance level.

The Autocorrelation function and the Partial Autocorrelation of the squared returns
indicate some volatility clustering. This feature requires the use of an autoregressive
conditional heteroscedastic process to model the volatility of returns.

By comparing the AIC values for a di↵erent number of lags, we see that GARCH(1,1)
has a suitable number of lags. The first number in parentheses refers to how many
autoregressive lags, or ARCH terms appear in the equation, while the second number
refers to how many moving average lags are specified or the number of GARCH.[12]

As is well known the GARCH(1,1) model imposes some limitations which can lead
us to underestimate the sampled data. Sometimes models with more than one lag
are desirable to estimate good variance forecasts. The GARCH model is symmet-
ric and assumes that positive and negative shocks have the same impact on volatility.

Financial time series include periods characterized by good and bad news, i.e. finan-
cial crises, wars or natural disasters. A period of bad news would negatively a↵ect
the stock price. The change in stock price tends to be negatively correlated with
the change in volatility, the so called Leverage e↵ect, see[6]. In order to capture this
feature, it would be better to use the extended Exponential GARCH model of Nel-
son(1991) or the GJR-GARCH model of Glosten, Jagannathan and Runken(1993).
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In our study, we have used the GARCH(1,1) model and found that the esti-
mated ↵1 + �1 < 1 which means that distant horizon forecast is the same for all
time periods. The MMSE method shows that the conditional heteroscedastic vari-
ance converges towards the unconditional variance as the lag number goes towards
infinity. This means that the model has the property to forecast the development
of future volatility. According to financial theory, a good volatility model must be
able to forecast the future volatility. The plot of standardized residuals including
conditional variance indicates that returns series are not a white noise.

By comparing the GARCH(1,1) model with an assumed Gauss distribution and
a Student’s t-distribution, we see that GARCH (1,1) with an assumed Student’s
t-distribution has the smallest AIC value, and that the QQ-plot of standardized
residuals series seems to be more linear.
Finally we find that the GARCH(1,1) model with assumed Student’s t-distribution
is adequate to model volatility of return series.
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3.4 Appendix

3.4.1 A.1

Figure 3.10: Autocorrelation Function of ⇣̂t normal distribution
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Figure 3.11: Autocorrelation Function of ⇣̂t , Student’s t-distribution

Figure 3.12: Autocorrelation function of ⇣̂2t , normal distribution
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Figure 3.13: Autocorrelation function of ⇣̂2t , Student’s t-distribution

Figure 3.14: Forecast Conditional variance over 300 days-period
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3.4.2 A.2

1. Forecasting GARCH(1,1)
Assume that the forecast origin is t with l steps to expiration.

For 1-step-ahead forecast, we have

h2
t = ↵0 + ↵1⇣

2
t�1 + �1h

2
t�1

h2
t+1 = ↵0 + ↵1E[⇣2t |It�1] + �th

2
t

= ↵0 + ↵1h
2
t + �1h

2
t

= ↵0 + (↵1 + �1)h
2
t

= h2
t+1 + (↵1 + �1)(h

2
t+1 � h2

t )

ht+2 = ↵0 + ↵1E[⇣2t+2|It�1] + �1E[h2
t+1|It�1]

= ↵0 + (↵1 + �1)h
2
t+1

= h2
t+2 + (↵1 + �1)

2(h2
t+2 � h2

t+1)

.

.

.

For l-step-ahead forecast, we have

h2
t+l = ↵0 + (↵1 + �1)h

2
t+l�1

= h2
t+l + (↵1 + �1)

l(h2
t+l � h2

t+l�1)

where l > 1
and

h2
t+l !

↵0

1� ↵1 � �1
(3.1)

as l ! 1,
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