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Abstract

This study aims to identify factors that are associated with stu-

dents’ time-to-degree, such as gender, age and grade in Mathematics I,

as well as to build a model for predicting students’ degree completion

within a time period. The sample subjects are first-time, full time

undergraduate programme students who entered the Department of

Mathematics at Stockholm University between autumn 2007 and au-

tumn 2013. Binary logistic regression analysis is implemented to study

whether students obtained a bachelor degree within three years or not.

We utilize also ordinal logistic regression analysis to study students’

time-to-degree more specifically, which means that we are not only

interested in students’ degree completion within three years, but also

students’ degree completion within seven terms as well as within eight

terms. A binary logistic regression model and a proportional odds

model have been developed. The results have shown that gender, pro-

gramme, grade in Mathematics I and that whether students finished

Mathematics I within the same term are highly associated with stu-

dents’ time-to-degree in both models. That whether students finished

Mathematics I within the same term has the strongest effect in terms

of an odds ratio. The discussion focuses on explaining the effects of

the influential factors and giving suggestions for future studies.
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1 Introduction

The Bachelor’s Programme in Mathematics and the Bachelor’s Programme
in Mathematics and Economics are two Bachelor’s degree programmes (com-
prise three years of full-time studies) with the most applications and admis-
sions in a mathematical subject at Stockholm University. The number of
applications increases almost every year. According to the Swedish Higher
Education Authority (UKÄ)[1], universities have to report the number of
registered full-time students and the number of completed credits (converted
to students’ annual performance equivalent) each year in order to get the
funding cap from the government. Besides, universities should bear the re-
sponsibility for improving and assuring the quality of their work by doing a
self-evaluation, which will be needed to be submitted to allow the UKÄ to
perform evaluations of programmes of higher education in Sweden.

Thus, the administration of the Department of Mathematics has an obli-
gation to evaluate their work after each year’s graduation. Assessing stu-
dents’ performance becomes one of the most important evaluation processes
as graduated students can be indicators of institutional quality and institutes
are partially responsible for the lower rate of degree graduates. Therefore, it
would be essential for the department to know how many of the new admit-
ted students will graduate on time each year or how many terms students
need to obtain their degree. Answering these questions will not only help the
administration to see how successful they were in accepting new students but
also help them to see how successful they were in spending budgets. Having
students who do not complete their programme of study on time certainly
puts a burden on the department’s next year’s budget. Accordingly, the
administration expects the students to complete their degree on time and
they may want to predict the probability of students’ time-to-degree. Based
on the reasons above, this paper is conducted to build a tool to address such
kinds of situation.

1.1 Aim

The aim of this paper are to identify factors that are associated with stu-
dents’ time-to-degree, for instance age, gender and study programme, as well
as to develop a model that can be used to predict the probability of students’
degree completion. Early prediction of students’ time to graduation near the
beginning of the degree programme will not only help the administration of
the Department of Mathematics to make a better plan and manage their
budget for the following year but also help the department to promote more
students to complete their degree on time and provide immediate support
for those whose graduation might be delayed.
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1.2 Disposition of the paper

In section 2, we describe how we process the data and present all potential
variables. In section 3, the reader is introduced to the statistical concepts
and methods needed for the whole paper. Section 4 presents the statistical
analysis and section 5 interprets results of fitted models. Conclusion will
be made in section 6. Discussion of the models and suggestions for future
studies can be found in the last section.

2 Data Description

The sample of the study was generated from seven years’ data files which
were obtained from Ladok - A national system for study administration
within higher education in Sweden. Subjects were the first-time undergrad-
uate students who entered in the Department of Mathematics at Stockholm
University between autumn 2007 and autumn 2013 and they registered full-
time for the first term. The total number of subjects is 665. Notice that first-
time students who registered full-time for an independent course (frist̊aende
kurs) during this time period were not included because we do not know
if these students planned to obtain a degree within a period of three years
from the day when they registered for an independent course. Based on pre-
vious experience, we know that many students who register for independent
courses at the department do not continue their studies after a few terms. It
is hard to know their persistence to degree completion. If they were included
in the study but it turns out that they only wanted to take a few courses
from the beginning for some reasons or that they initially had not planned
to obtain a degree, then this would have led to misinterpretation.

One of our goals is to identify factors that may have impacts on raising
or declining the probability of degree completion directly or indirectly. We
have three data files which enable us to build up a desirable data set and
to extract as many potential variables as possible. The extracted variables
are presented in table 1 below. In Appendix A.1, the detailed information
of each data file is presented.
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Table 1: Potential Variables

Variables Description

Age A student’s age when he/she registered for a programme
Gender Gender of a student
Maths1sameterm If a student passed Mathematics I within the same term
Grade Grade from A to E that a student received in Mathematics I
Programme Study programmes
Regyear The calender year when a student registered for a programme
Within3Years If a student obtained a degree within three years or not
TimetoDegree The number of terms a student needed to obtain a degree

However, when we looked through the subjects, we found that as many
as 389 subjects missed a grade in Mathematics I (the first mandatory math-
ematical course) and did not obtain a degree. It is very possible that they
have already dropped out of the programme at the very beginning of the
term when studied Mathematics I. This will result in a large number of miss-
ing data if we consider the grade in Mathematics I as an influential factor,
which we actually will do in this study. Since we do not know if they have
planned to obtain a degree and we want to avoid the missing data problem,
we decided to exclude those subjects from the data set. The study data set
ends up with 276 subjects. We should note that the exclusion leads to a
limitation of our study, that is, we study students’ time-to-degree given that
students have passed Mathematics I. Before performing our analysis, let us
consider some descriptive statistics. The statistical software SAS was used
to process the data.

2.1 Response variables

In this paper, time-to-degree is defined by the number of academic terms
enrolled between the time of entering the university and of the degree com-
pletion. Students who received a degree certificate are referred to as students
who graduated or obtained their degree. Those who meet the general re-
quirements for obtaining the degree but have not applied for the certificate
are not counted as students who completed their degree. A binary variable
Within3Years was created to describe whether a student obtained a de-
gree within three years or not. It will be used as our main response variable.
Among 276 students in the data set 33 (12%) obtained a degree within three
years. We have another variable which describes specifically the number of
academic terms students needed to complete a degree is called TimetoDe-
gree. This variable can be treated as an ordinal response and we will discuss
it further in the Analysis section.
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2.2 Explanatory variables

As mentioned previously, the data was obtained manually. We select the
variables Age, Gender, Programme, Maths1sameterm, Grade and Regyear
as our explanatory variables. We should mention clearly that there are
other variables that may have impacts on the degree completion length,
but we stick to what we are given. Now we study some basic features of
the given explanatory variables and understand their relationship with the
main response variable.

2.2.1 Age

For the calculation of the variable Age, registration year of the study pro-
gramme and student’s birthday were used, for example a student who was
born in 1992 and registered for autumn 2012 is 2012 − 1992 = 20 years
old. Table 2 shows descriptive statistics for Age. We see that students who
obtained a degree within three years are slightly younger than students who
did not obtain a degree within three years.

Table 2: Descriptive statistics for Age

Within3Years Mean Median Std Dev Minimum Maximum

276 21.92 21 3.99 18 46

No 21.97 21 4.14 18 46

Yes 21.55 21 2.67 19 28

2.2.2 Gender

The data set contains 174 females and 102 males. Table 3 shows that females
are more likely to graduate sooner than males.

Table 3: Table of Within3Years by Gender

Within3Years Male Female

No 159 (91.4%) 84 (82.3%)
Yes 15 (8.6%) 18 (17.7%)

Total 174 (100%) 102 (100%)

2.2.3 Programme

Study programmes included in the study are the Bachelor’s Programme
in Mathematics and Economics (denote by M+E) and the Bachelor’s Pro-
gramme in Mathematics (denote by M). The Department of Mathematics
offers two more study programmes in Mathematics, which are the Bachelor’s
Programme in Mathematics and Philosophy and the Bachelor’s Programme
in Biomathematics and Computational Biology, but they were not included
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in the study because very few students applied for these programmes and
we have substantial interest in those popular programmes with the most ap-
plications. Table 4 shows that students who study M+E seem to graduate
earlier.

Table 4: Table of Within3Years by Programme

Within3Years M + E M

No 104 (83.9%) 139 (91.4%)
Yes 20 (16.1%) 13 (8.6%)

Total 124 (100%) 152 (100%)

2.2.4 Grade in Mathematics I

Mathematics I is the first compulsory course in mathematics within both
programmes. Our study is conditioned on students who have received a
passing grade in the course. Passing grades are designated on a five-point
scale : A, B, C, D or E with A as the highest grade and E as the lowest.
So the variable Grade has ordered categories. From Table 5, we see that
students who received a higher grade in Mathematics I seem to finish early.
Grade in Mathematics I will be written as Grade for simplification in the
following context.

Table 5: Table of Within3Years by Grade

Within3Years A B C D E

No 44 (74.6%) 38 (84.4%) 48 (94.1%) 71 (94.7%) 42 (91.3%)
Yes 15 (25.4%) 7 (15.6%) 3 (5.9%) 4 (5.3%) 4 (8.7%)

Total 59 (100%) 45 (100%) 51 (100%) 75 (100%) 46 (100%)

2.2.5 Maths1sameterm

The variable Maths1sameterm describes whether a student passed Mathe-
matics I within the same term or not. One term is set to from January to
August and from September to January in order to allow students have an-
other chance to retake the exam without taking one more term. Reported in
Table 6, 15.9% of students who finished the Mathematics I within the same
term graduated on time while only 2.5% of students who failed to pass the
course within the same term graduated on time. Students who finished the
first mathematical course on time seem to be much more likely to obtain a
degree within three years.
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Table 6: Table of Within3Years by Maths1sameterm

Within3Years No Yes

No 79 (97.5%) 164 (84.1%)
Yes 2 (2.5%) 31 (15.9%)

Total 81 (100%) 195 (100%)

2.2.6 Regyear

The variable Regyear describes the registration year which extends from
2007 to 2013. It seems that the number of students who graduated on time
follows some trend, but meanwhile we cannot discern any pattern in Table
7.

Table 7: Table of Within3Year by Regyear

Within3Years 2007 2008 2009 2010 2011 2012 2013

No 21(87.5%) 22(100%) 36(87.8%) 26(74.3%) 45(97.8%) 41(74.6%) 52(98.1%)
Yes 3(12.5%) 0(0%) 5(12.2%) 9(25.7%) 1(2.2%) 14(25.5%) 1(1.9%)

Total 24(100%) 22(100%) 41(100%) 35(100%) 46(100%) 55(100%) 53(100%)

3 Theory

In this section, we will present the theory needed throughout the paper. A
large majority of theories are cited in Agresti(1) Categorical Data Analysis
[2], Agresti(2) Analysis of Ordinal Categorical Data [3] or Hosmer et al.
Applied Logistic Regression [4]. The theory about odds ratio and binary
logistic regression is retrieved from Chapter 2 and 5 of Agresti(1). The
theory about ordinal logistic regression and proportional odds assumption is
taken from Chapter 3 of Agresti(2). Two model selection methods: stepwise
selection and purposeful selection are taken from Chapter 4 of Hosmer et al.
And most of the model fit and diagnostic tests can be referred to Chapter
5 and 6 of Agresti(1).

3.1 Odds and Odds ratio

Odds express the probability of an event occurring relative to the probability
of an event not occurring. Mathematically, the odds are defined as

Ω =
π

1− π

where π is the probability of success. The odds always have values greater
than zero since π must fall in the (0, 1) range. If the odds are greater than
one, then a success event occurs more likely than a failure event. On the
contrary, if the odds are less than one, then a failure event is more likely to
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happen than a success one.

An odds ratio is used to compare the odds for two groups. It is the ra-
tio of the odds of an event occurring in one group to the odds of an event
occurring in another group. Mathematically, the odds ratio is defined as

θ =
Ω1

Ω2
=
π1/(1− π1)
π2/(1− π2)

where Ω1 and Ω2 are the odds for group 1 and group 2 respectively and π1
and π2 refer to the probability of success in group 1 and group 2 respectively.

Just as the odds, the odds ratio is always positive. If the odds ratio is
greater than one, then subjects in group 1 are more likely to have success
than subjects in group 2. If the odds ratio is smaller than one, the interpre-
tation holds in a opposite way. If the odds ratio equals one, then there is
no difference between the two groups and subjects of odds for both groups
will be equally likely to occur.

3.2 Logistic regression

Logistic regression modelling has a wide variety of applications in many ar-
eas, including clinical studies, social science research, engineering and mar-
keting. Binary logistic regression was developed to describe the relation
between a binary response variable and a set of continuous and/or cate-
gorical explanatory variables. So when a response variable is dichotomous,
which means that it can only take two values (an success event and a fail-
ure event), the binary logistic regression model is usually appropriate and
useful.

Suppose a binary response variable Yi has success event coded as 1 for
each observation i = 1, ..., n and p explanatory variables xi = (xi1, ..., xip).
Denote the probability of success by πi = Pr(Yi = 1), then the binary
logistic regression model is written as

logit(πi) = log(
πi

1− πi
) = α+

p∑
j=1

βjxij = α+ β1xi1 + ...+ βpxip, (1)

which is also called logit model in a linear relationship.
If we rewrite Equation (1) by exponentiating both its sides, we can see

that the odds are an exponential function of xi. The expression is given as
follows:

πi
1− πi

= exp

α+

p∑
j=1

βjxij

 . (2)

This expression enables us to interpret the βj in a basic way. That is, for
every one-unit increase in the predictor variable xj , the odds are expected

7



to increase multiplicatively by eβj , given the other predictor variables in the
model are held constant.

In fact, we can express the logit in terms of the probability of success πi
by solving Equation (2). We obtain

Pr(Y = 1|X = x) = πi =
exp

(
α+

∑p
j=1 βjxij

)
1 + exp

(
α+

∑p
j=1 βjxij

) . (3)

3.3 Ordinal Logistic regression

Although binary logistic regression is most common, logistic regression is
extensible to more than two response levels. Based on differences in which
and how the response levels are compared, several types of cumulative logits
can be used to describe the relationship between an ordinal response variable
and one or more explanatory variables. The most popular one is probably
the cumulative logits which will be described below in detail. Other types of
cumulative logits such as adjacent-categories logits and continuation-ratio
logits is referred to Chapter 3 of Agresti(2) for those of you who are inter-
ested.

For c outcome categories response variable Y with probabilities π1, · · · , πc,
the cumulative logits are defined as

logit[Pr(Y ≤ j)] = log
Pr(Y ≤ j)

1− Pr(Y ≤ j)
= log

π1 + · · ·+ πj
πj+1 + · · ·+ πc

(4)

for j = 1, · · · , c− 1. Then each cumulative logit can be defined as

logit[Pr(Y ≤ 1)] = log
π1

π2 + π3 · · ·+ πc
(5)

logit[Pr(Y ≤ 2)] = log
π1 + π2

π3 + π4 · · ·+ πc
(6)

... (7)

logit[Pr(Y ≤ c− 1)] = log
π1 + π2 + · · ·+ πc−1

πc
. (8)

Now we present a model for the cumulative logits which incorporates
explanatory variables. The model is usually called the proportional odds
model and it is the most frequently used ordinal logistic regression model in
practice. It compares the probability of an equal or smaller response with
the probability of a larger response.

For subject i, let yi denote the outcome category for the response vari-
able, and let xi = (xi1, · · · , xip) denote p explanatory variables. The model
simultaneously uses all c− 1 cumulative logits and it is formalized as

logit[Pr(Yi ≤ j|xi)] = αj +β′xi = αj + β1xi1 + · · ·+ βpxip. j = 1, ..., c− 1
(9)
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In model (9), the logit for each cumulative probability j has its own intercept,
αj , but common slopes, β:s. The {αj} are increasing in j and the logit is
an increasing function of this probability. In the following context, we call
the logit for cumulative probability j with the corresponding intercept αj a
cumulative logit function. Note that the slope for each explanatory variable
stays the same across different cumulative logit functions. For simplicity
of notation, we write Pr(Y ≤ j) instead of Pr(Yi ≤ j|xi) in the following
context.

3.4 Variable Selection

There are many variable selection methods for finding a ”best” model. In
this paper, we will apply two methods which are Stepwise Procedures and
Purposeful Selection. Stepwise procedures are probably the most commonly
used and simplest of all variable selection procedures. They are more au-
tomated and statistical driven. Purposeful selection is introduced by Hos-
mer, Lemeshow and Sturdivant (Hosmer et al. 2013). They point out that
mechanical selection procedures, such as stepwise procedures have its limi-
tations to scrutinize the results carefully. They prefer purposeful selection
since it gives the analyst control over every step of the selection process and
can identify confounders correctly. For large sample size different methods
perform roughly the same but purposeful selection is in favour when the
sample size is smaller (Bursac et al. 2008)[5].

3.4.1 Stepwise Procedures

Stepwise procedures usually refer to forward selection, backward elimination
and stepwise selection.

Forward selection starts with the intercept in the model. For all ex-
planatory variables not in the model, their p-value will be checked to see if
they can be added to the model. The one with the lowest p-value that is
lower than the required cut-off such as 0.05, is chosen. This process contin-
ues until no new variables can be added.

Backward elimination reverses the forward selection. It starts with all
the explanatory variables. The variable with the highest p-value greater than
the required cut-off will be removed. This process will stop until all p-values
are lower than the given cut-off. Note that using this method a problem
of quasi-complete separation, that is, no overlap of sample points is likely
to occur when there is a relatively small sample size[6]. More information
about this problem can be found in Agresti(2) (p.64, 2010).

Stepwise selection is a combination of forward selection and backward
elimination and there are several ways to do. One way is to start with a
model containing only the intercept. The variable with the lowest p-value
that is less than the required cut-off will be added to the model. And then
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it will be checked if it should be removed based on the given cut-off. These
two steps will be repeated until no variables can be added or removed.

3.4.2 Purposeful Selection

Purposeful selection is presented rigorously in Chapter 4 of Hosmer et al.(2013).
It is a procedure that contains 7 steps and is summarized below.

Step 1: Purposeful selection starts with a careful univariale analysis of
each explanatory variable. We select the variables that have a p-value for
the likelihood ratio statistic less than 0.25 as candidates for developing a
first multivariable model later. A higher significance level rather than the
standard level (such as 0.05) is used here. This is because we do not want to
exclude variables which are not significant alone, but might be when other
variables are in the model.

Step 2: Use all selected variables from step 1 to fit a multivariable lo-
gistic regression model and check the significance of each variable using the
Wald statistic. Variables that have a p-value larger than the level 0.05 are
excluded and a new/smaller model fits. The new, smaller model is compared
to the previous, old, larger model by performing a likelihood ratio test.

Step 3: Compare the values of the parameter estimates in the smaller
model with the ones in the larger model. We are particularly interested in
any variable whose coefficient has changed remarkably in magnitude. An
indicator ∆β̂i = |(θ̂i − β̂i)/β̂i| is used to assess whether a parameter esti-
mate has changed ”too much”, where β̂i denotes the parameter estimate
for variable i in the larger model and θ̂i denotes the parameter estimate
for variable i in the smaller model. A value of ∆β̂i > 0.2 implies that the
excluded variable(s) should be added back into the model because they are
needed to adjust the effect of other variables.

Step 4: Add each variable not selected in Step 1 one at a time to the model
obtained from Step 3 and check its significance by the Wald statistic p-value.

Step 5: In this step we examine more carefully the variables in the model
obtained from Step 4. The level of the categorical variables should be rea-
sonable and the continuous variables should have a linear relationship with
the logit. We refer the model at the conclusion of this step as the main
effects model.

Step 6: Now consider all possible interactions among the variables in the
model. We add all possible interactions one at a time to the main effects
model and check the significance at the standard level. All significant inter-
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actions are then added to the model at the same time and we investigate
if some of them can be removed by following Step 2. No main effects are
removed at this step and we refer the model at the end of this step as pre-
liminary final model

Step 7: Assess the adequacy and check the goodness of fit of the pre-
liminary final model (see section 3.5 below).

3.5 Model fit and diagnostics

3.5.1 Proportional odds assumption

When fitting a proportional odds model, we need to check the proportional
odds property of the model. Some software, such as SAS reports a score
test of the proportional odds assumption, for example, a test for whether
the slopes of the explanatory variable are equal across the cumulative logit
functions. The proportional odds model which has one parameter for each
explanatory variable

logit[Pr(Y ≤ j)] = αj + β′x, j = 1, ..., c− 1

is compared to a more complex model which has different parameter for
each explanatory variable,

logit[Pr(Y ≤ j)] = αj + β′jx, j = 1, ..., c− 1.

The null hypothesis is that the proportional odds model is true, and the al-
ternative is that the more complex model holds, in other words, that different
slops are needed. The test statistic (not showing here, see (Agresti(2),p.70)
for details) can be shown to be approximately chi-squared distributed with
degree of freedom p(c−2), where p is the number of the explanatory variables
in the proportional odds model. The test statistic that is not significant at
a standard level (such as 0.05) indicates that the proportional odds assump-
tion of the model holds, otherwise we need to justify the proportional odds
assumption (See (Agresti(2), p.70) for more information).

3.5.2 Likelihood-ratio test

A likelihood-ratio test is used to compare the goodness of fit of two nested
models, a smaller model M0 and a larger model M1 with one or more pa-
rameters compared to M0. A hypothesis test between M0 and M1 can be
formalized as follows:

H0 : M0 holds

H1 : M1 holds but not M0.
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Let L0 be the maximized likelihood under the null hypothesis and L1 be
the maximized likelihood under the alternative hypothesis. Let l0 and l1 be
the corresponding maximized log-likelihoods. The form of the test statistic
is namely the ratio of two likelihood functions and given as follows:

−2 · log
(
L0

L1

)
= −2(l0 − l1)

Asymptotically, the likelihood ratio test statistic is distributed as a chi-
squared random variable under the null hypothesis, with a degree of freedom
equal to the difference in the number of parameters between two models.

−2(l0 − l1)
H0≈ χ2

df

3.5.3 The Hosmer-Lemeshow test

When the data is ungrouped or when there is at least one continuous vari-
able, traditional goodness-of-fit test such as the Deviance or the Pearson
χ2 are not valid since they do not have limiting χ2 distribution (Hosmer
et al, p.155-157). Hosmer et al. introduce a more suitable test for these
situations, usually called the Hosmer-Lemeshow test. It is a χ2 test formed
by partitioning the data according to the estimated probabilities and then
dividing them into g approximately equal sized groups. One usually forms
10 groups and from these one can create a Pearson statistic Ĉ for compar-
ing the observed and estimated values. Asymptotically, Ĉ is chi-squared
distributed with (g − 2) degree of freedom under the null hypothesis that
the model is true. If the Ĉ is significant at a given level then the model in
question does not fit the data well. More details regarding this test can be
found in Chapter 5.2.2 of Hosmer et al (2013).

3.5.4 AIC

Akaike information criterion(AIC) is probably the best known criteria that
can help select a good model in terms of estimating quantities of interest.
It is used to compare different models within the same data set. The AIC
is defined as

AIC = −2(log(L)− k)

where L is the maximized likelihood function and k is the number of pa-
rameters in the model. Given a collection of candidate models for the data,
the preferred model is the one with the minimum AIC value.
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3.5.5 ROC, AUC and Concordance Index

A common way of judging predictive power of a binary logistic model is to
create a Receiver Operating Characteristic (ROC) curve. Let

ŷi =

{
1 if π̂i > π0
0 otherwise

where ŷi is the predicted values of yi for some cutoff π0. The following
definitions are given in Agresti(1) (p.228, 2002):

sensitivity = P (ŷi = 1|y = 1) and specificity = P (ŷi = 0|y = 0).

A ROC curve with a concave shape is then obtained by plotting sensitivity
against 1-specificity for all the possible cutoffs. The area under the ROC
curve (AUC) is a measure of predictive power. A high area under the curve
indicates a good prediction ability. Hosmer et al.(p.177, 2013) provide rough
guidelines on how to evaluate the AUC:

if =


0.5 < AUC < 0.7 Poor
0.7 < AUC < 0.8 Acceptable
0.8 < AUC < 0.9 Excellent

0.9 < AUC Outstanding

If one wants to validate the predictive power of an ordinal logistic regres-
sion, the above-mentioned ROC analysis is not appropriate as the method
has not been extended to the ordinal logistic regression model (Hosmer et
al, p.289). Nevertheless, one can check for an index of predictive power,
called the concordance index (Agresti(2), p.65). Here all possible pairs of
subjects having different response values are considered. The concordance
index is the probability of concordance, between predicted probability and
response, that is, that an observation with a large y-value also has a higher
predicted probability. A value of the concordance index of 0.5 suggests that
the predictions of a model are no better than random guessing and a value
of 1 indicates perfect predictions. The higher the value of the concordance
index, the better the predictive power.

3.5.6 Cross Validation

When assessing predictive power of a model comes into question, the data
used to evaluate how well one can predict the response variable based on
the explanatory variables is usually the data used to fit a model. If fitting
the model and assessing its statistical performance are on the same data,
the assessment of a model can be optimistically biased. One way of dealing
with this situation is cross validation, discussed by Feng Zhang in Chapter 3
of his doctoral dissertation [7]. Cross validation is an algorithm to estimate
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predictive errors and it is often used as a model validation technique. There
are several types of cross validation and the one we will use in this paper
is called ”leave-one-out”. It is done by omitting one observation at a time
and then predicting on the observation and measuring the predictive error
after fitting a model without that observation. An unbiased assessment can
therefore be achieved.

As described in the previous section, the area under the ROC is a mea-
sure of predictive power. We can create a ROC curve using cross validation
in SAS. This is done by fitting the model to the complete data set and us-
ing the cross validated predicted probabilities to provide a ROC curve[8].
The idea behind this is ”The cross validated predicted probability for an ob-
servation simulates the process of fitting the model ignoring the observation
and then using the model fit to the remaining observations to compute the
predicted probability for the ignored observation.”[8]. Note that the AUC is
lower when cross validation is used.

4 Analysis

In this section, the model selection process is described in details. We will
select and evaluate fit of the final model. Binary logistic regression will be
used to analyse the data since the main response variable Within3Years is di-
chotomous. The other response variable TimetoDegree which has the ordinal
property will be studied after fitting a binary logistic regression model. Six
explanatory variables which are Age, Gender, Programme, Maths1sameterm
and Grade and Regyear were presented in section 2.2. Gender, Programme
and Maths1sameterm are categorical variables with two levels. Age and
Regyear will be treated as continuous variables in the first place since the
observations are taking values between a certain set of real numbers and we
do not have proper reasons to treat them as categorical. The variable Grade
is yet to be discussed whether to be treated as categorical or continuous
since it has ordered categories, from the lowest grade E to highest grade
A. A simple model treats this variable as continuous and grade is assumed
to have a linear effect for a set of monotone scores such as 1, 2, 3, 4, 5. A
complex, larger model treats this variable as categorical with five levels. Ei-
ther model may be adequate but we will choose the one that we deem most
useful to us.

All the analysis will be performed in the statistical software SAS (Uni-
versity Edition).

4.1 Degree Completion Within Three Years

The event ”A student obtained a bachelor degree within three years given
that the student has finished the Mathematics I” is modelled. Male of
Gender, M of Programme and No of Maths1sameterm are specified as the
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reference levels. We want to find a model that is able to predict the data
well, while still being parsimonious and easy to interpret.

4.1.1 Fitting the binary logistic regression model

We utilize first purposeful selection and then some stepwise procedures. We
treat grade as continuous here and discuss its feasibility at a later step of
the selection procedure.

Step 1: We start with a careful univariable analysis of each explanatory
variable. The results of this analysis are shown in Table 8.

Table 8: Results of Fitting Univariable Logistic Regression Models

Parameter Coeff. SE P -value

Age -0.0301 0.0524 0.5499
Gender 0.4102 0.1874 0.0284

Programme 0.3804 0.1896 0.0541
Maths1sameterm 1.0051 0.3711 0.0004

Grade 0.4688 0.1441 0.007
Regyear -0.0849 0.0974 0.9307

Table 9: Results of Fitting the Multivariable Model with All Variables Sig-
nificant at the 0.25 Level in the Univariable Analysis

Parameter Coeff. SE P -value

Gender 0.9658 0.4045 0.0170
Programme 1.1903 0.4278 0.0054

Maths1sameterm 1.6856 0.7714 0.0289
Grade 0.5396 0.1683 0.0013

Step 2: We now include all variables that are significant at the 0.25
level from step 1 to fit our first multivariable model. We examine the Wald
statistic for each variable. Variables that have p-value over the standard
level 0.05 are excluded from the model. Table 9 shows that all variables are
significant in the fitted model. There is no model comparison between a
smaller one and a larger one here. So we jump over step 3 and move on to
step 4.

Step 4: Now it is time to revisit the insignificant variables in Step 1.
We add Age (p = 0.6386) and Regyear (p = 0.9464) to the multivariable
model one at a time but they do not show any significance at level 0.05.
Since Regyear only takes 7 values, we tried to include it as a categorical
variable in the model. However, it did not become significant and quasi-
complete separation of data points was detected. Thus, the model at this
step is remained the same as the first fitted multivariable model.
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Step 5: In this step we examine the variables from step 4 closely.
We have three categorical variables which are Gender, Programme and
maths1sameterm. From Table 9, we see that parameter estimates of these
variables are positive, which is reasonable regarding the level of the cate-
gories. We must also check whether the variable Grade has a linear rela-
tionship with the logit since we treated it as continuous. We do this by
comparing the current model having grade treated in a continuous manner
to a more complex model having grade treated in a categorical manner. We
present the results of fitting the multivariable model when treating grade as
categorical in Table 10.

Table 10: Results of Fitting the Multivariable Model having treated Grade
as categorical

Parameter Coeff. SE P -value

Gender 1.1174 0.4181 0.0075
Programme 1.2937 0.4484 0.0039

Maths1sameterm 1.7800 0.7834 0.0231
Grade2 -0.6501 0.7671 0.3967
Grade3 -0.8807 0.8374 0.2929
Grade4 0.6971 0.7309 0.3402
Grade5 1.4138 0.6901 0.0405

From Table 10, we can see that grade has 4 parameters and two of
them have a negative sign. The parameters do not seem to follow a linear
trend when plotted against the grade scores (see Figure 1). However, the
parameter estimates contain some uncertainties as the standard errors are
quite large. We may be mistaken if we think that the current simple model
does not hold because we do not see a linear trend from the plot. Thus, we
examine more closely these two models.
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Figure 1: A plot of the parameter estimates for Grade against the grade
scores

First, we check the AIC for comparing two models. We find that AIC
values for the two models are approximately equal. The simple model has
AIC value equal to 178.370 and the complex model has AIC value equal
to 178.057. Still, we cannot tell which model fits the data substantially
better. So we perform a likelihood-ratio test to compare the fit of these two
models. Denote the simple model by M0 and the complex model by M1.
The maximized log likelihood for the two models are 168.370 and 162.057
respectively. As discussed in Section 3.5.2, the likelihood-ratio statistic for
comparing models M0 and M1 is

G2(M0|M1) = −2(l0 − l1) = 168.370− 162.057 = 6.313 < χ2
0.05(3) = 7.8147

The likelihood-ratio test statistic 6.313 does not exceed the chi-square value
with a degree of freedom 3 (P -value = 0.0973). This supports that the simple
model having Grade treated as continuous is adequate. Besides, tests of the
Grade effect are more powerful when it has a single parameter rather than
several parameters. Reported in SAS, the p-value of the Wald χ2-test is
0.0013 for continuous grade while the p-value of the Wald χ2-test is 0.0038
for categorical grade. For all the reasons mentioned above, we decide to
keep treating grade as continuous in further analysis. We refer the model at
this step as our main effects model.

Step 6: This step in the analysis is to select interactions. With only
four main effects, we consider all 6 two-way interactions between the selected
variables. We add all of them to the model one by one and check the
significance at level 0.05. We find that none of these interactions became
significant. The resultant model is then referred as our preliminary final
model, denote Mb. Parameter estimates of Mb can be found in Table 9.

Step 7: In this step we assess the fit of the preliminary final model.
Before testing how well Mb fits the data, we consider other models using
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some stepwise procedures.

Three stepwise procedures presented in section 3.4.1 will be implemented.
We use all six explanatory variables as well as two-way interaction terms
between all of them. The variables are treated in the same way as with
the purposeful selection and the cut-off of 0.05 is chosen to allow a variable
enter or stay in the model. We found that all three procedures gave the
same final model as the purposeful selection when taking grade as continu-
ous. However, a quasi-complete separation of data points was detected when
running the method of backward elimination and validity of this model fit
is therefore questionable.

Summarizing the analysis above, we choose Mb as our final model despite
the fact that the same model chosen by the backward elimination is ques-
tionable. We evaluate the goodness of fit of the model. Because the model
contains a continuous variable, normal global fit statistics such as the De-
viance or Pearson χ2-test are not appropriate. The Hosmer-Lemeshow test
as introduced in section 3.5.3 was proposed to deal with such case. For Mb,
the Hosmer-Lemeshow statistic with g = 9 groups equals 9.0247, with df
= 7 and p-value of 0.2509. This indicates that the difference between the
observed counts and fitted values is quite small. In other words, the model
fits the data quite well.

4.2 Time to Degree

In the previous section, we focused on identifying the factors that are associ-
ated with students’ degree completion within three years. A binary logistic
regression model was fitted. Using this model we could easily estimate the
probability of degree completion within three years. However, we cannot
estimate the probability of degree completion more than that time period.
Among students who could not obtain a degree within three years, quite
many students successfully graduated by the seventh term or the eighth
term. It would also be interesting to find out how likely these students
graduated within those time periods. So in these section, we perform a
more detailed analysis and try to develop a model that can be used for esti-
mating the probability of students’ degree completion within three years as
well as for estimating the probability of graduation within seven terms and
within eight terms.

To obtain a model mentioned above, another response variable Time-
toDegree with four categories can be used here. It is extent of students’
time-to-degree: less than or equal to six terms, seven terms, eight terms
and more than eight terms. Thus, the response variable can be treated as
ordinal here. When a response is ordinal, one can consider a proportional
odds model, described in section 3.3.
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Before performing the analysis, we should note that the data of 2013 was
excluded. The study sample only consists of 223 subjects. Table 11 shows
the frequency of each response level. Descriptive tables for the explanatory
variables can be found in Appendix A.2.

Table 11: Summary of the ordinal response

TimetoDegree Frequency Percent
Cumulative
Frequency

Cumulative
Percent

≤ 6 terms 32 14.35 32 14.35
7 terms 9 4.04 41 18.39
8 terms 14 6.28 55 24.66
≥ 8 terms 168 75.35 223 100.00

4.2.1 Fitting the proportional odds model

In our study sample, a proportional odds model, which has a different in-
tercept for each cumulative logit function but with the same slopes is:

logit[Pr(TimetoDegree ≤ j)] = αj + β′x. j = 1, ..., 3

Since our response has four levels, we will have three cumulative logit func-
tions. We choose to compare less time-to-degree levels to more time-to-
degree levels, for instance, the first cumulative logit function compares time-
to-degree less than or equal to 6 terms to time-to-degree more than 6 terms
(combined equal to 7 terms, equal to 8 terms and more than 8 terms cate-
gories). The cumulative logit functions are formalized as follows:

logit[Pr(TimetoDegree ≤ 6 terms)] = α1 + β′x

logit[Pr(TimetoDegree ≤ 7 terms)] = α2 + β′x

logit[Pr(TimetoDegree ≤ 8 terms)] = α3 + β′x.

Our goal here is to obtain a model that could be used for estimating the
cumulative probabilities of the ordinal response, as well as, to some extent,
for quantifying the effect of individual factors. Hosmer et al. point out that
the method of purposeful selection can also be applied to develop an ordinal
logistic regression model (p.305, 2013). Therefore, we use this method to
find a proper proportional odds model as well. Treatment of the explanatory
variables are the same as in the binary logistic regression model. The steps
are presented as follows:

Step 1: We fit a univariable proportional odds model for each variable.
The results of this fit are shown in Table 12. Three intercepts for each
univariable model are not showing here.
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Table 12: Results of Fitting Univariable Proportional Odds Model

Parameter Coeff. P -value

Age -0.0667 0.0459 0.1144
Gender 0.6753 0.3109 0.0300

Programme 0.3314 0.3081 0.2820
Maths1sameterm 1.2881 0.4403 0.0010

Grade 0.3571 0.1140 0.0015
Regyear 0.2082 0.0988 0.0321

Step 2: We now fit our first multivariable proportional odds model
(denoted by M1) using all the significant variables from step 1. We find
that the Wald test for the coefficient for Regyear is not significant with
p = 0.1016. We exclude this variable and denote the simple model by M0.
A test similar to the Wald test, the likelihood ratio test (P -value = 0.099)
also suggests that the simple model excluding Regyear is adequate. So we
continue the analysis with model M0. The results of these two fitted model
can be found in Appendix A.3 (Table 24 and Table 25).

Step 3: In this step we compare the parameter estimates of M0 and
M1. In results not shown, we find that the largest percent change is 9.27%
for the coefficient of Grade. This does not exceed our criterion of 20%. So
we continue our analysis using M0.

Step 4: On univariable analysis the variables Age and Programme were
not significant. When each of these variables is added, one at a time, to M0,
the coefficient of Programme became significant. The results of this fitted
model is shown in Table 13. Denote this model by Mp. With a p-value of
0.1205, Age was not shown to be significant.

Table 13: Results of the fitted model at the end of Step 4

Parameter Coeff. SE P -value

Gender 0.7639 0.3263 0.0192
Maths1sameterm 1.0269 0.4669 0.0279

Grade 0.4025 0.1324 0.0024
Programme 0.7240 0.3440 0.0353

Step 5: Now it is time to examine more closely the variables in Mp. The
positive sign of parameter estimates shows that categories for the categorical
variables are appropriate. For the continuous variable Age we must check its
linear relation with the logit. As we did in the previous section, we develop
a more complex model having treated grade as categorical (denoted by Mc)
and compare its fit to Mp. We find that the AIC value for Mp (341.846) is
clearly smaller than the AIC value for Mc (343.617). The likelihood-ratio
statistic for comparing Mc and Mp equals 4.229, with df = 3, suggesting
also that the simple model Mp is adequate. Thus, based on the AIC and
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the likelihood ratio test, we choose to continue treating grade as continuous
in further analysis. Mp is referred as our main effect model.

Step 6: Once we have obtained the main effect model, we check for all
possible interactions among the variables in Mp. Since we only have four
main effects, we add each of the 6 two-way interaction terms one at a time to
the model. We find that no interaction became significant at the 5% level.
Hence, Mp become our preliminary final model.

Step 7: In this step the fit of our preliminary final model needs to be
evaluated. Before assessing the goodness of fit, we should check for the pro-
portional odds assumption since the proportional odds model only applies to
data that meet the assumption. We look at a score test which is reported by
SAS (see section 3.5.1). A chi-square test statistic equal to 7.1244 with df =
8 (P -value = 0.5233) indicates that the proportional odds assumption holds.

As for the binary logistic regression model, global goodness-of-fit tests such
as the Deviance and the Pearson χ2-test are not valid for proportional odds
model when the model contains at least one continuous variable. Hosmer
et al (2013) introduces several alternative tests in Chapter 8 for such cases,
for example a Lipsitz test proposed by Lipsitz et al (1996), a Pulkstenis and
Robinson test suggested by Pulkstenis and Robinson (2004) and an exten-
sion of the Hosmer-Lemeshow test for the multinomial logistic regression
model developed by Fagerland and Hosmer (2012b). However, they have
not been widely used and do not seem to be available in the current statisti-
cal software (Agresti(2), 2010). Due to time limitation and considering the
difficulty of implementation of these methods in practice, we do not check
the global goodness-of-fit of Mp.

5 Results

5.1 Interpretation of the binary logistic regression model

Using binary logistic regression we identified the factors that are related to
student’s degree completion within three years and we developed a model
that could be used to predict degree completion within three years. Pur-
poseful selection and stepwise procedures gave us the same final model Mb.
We checked the predictive power of Mb by assessing the area under a ROC
curve (AUC) without and with cross validation. We found that the AUC
for Mb is 0.7888 without cross validation. With cross validation, the AUC
estimate drops slightly to 0.7345. Two values of AUC indicate that our
model has an Acceptable predictive capacity (see section 3.5.5). The small
drop suggests that Mb predicts the data well when cross validation is used.
The corresponding ROC curves can be found in Appendix 3.
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5.1.1 Example

Analysis of maximum likelihood estimates of Mb is presented in the follow-
ing table.

Table 14: Analysis of Maximum Likelihood Estimates of Mb

Parameter Coeff. SE P -value

Intercept -6.2498 1.0071 <.0001
Gender Male 0 - -

Female 0.9658 0.4045 0.0170
Programme M 0 - -

M+E 1.1903 0.4278 0.0054
Maths1sameterm No 0 - -

Yes 1.6856 0.7714 0.0289
Grade 0.5396 0.1683 0.0013

We use an example to illustrate our final model Mb. To estimate a
student’s probability of completing a degree within three years using Gen-
der, Programme, Maths1sameterm and Grade, Equation (1) (see section 3.2)
would be applied as follows:

logit[Pr(Obtained a degree ≤ 3 years)] = α+
∑4

j=1 βjxij

= α+ βGender ∗GenderF/M + βProgr ∗ ProgrM+E/M + βMaths1 ∗Maths1Y/N + βGrade ∗Grade

A number of variable combinations or student groups can be made among
the four significant variables. One of them can be that a female student stud-
ies the Bachelor’s programme of Mathematics, has finished Mathematics I
within the same term and obtained a B. The equation would be:

logit[Pr(Obtained a degree ≤ 3 years)] =

= −6.2498 + 0.9658 + 0 + 1.6856 + 0.5396 ∗ 4

= −1.44

Using the Equation (2) presented in section 3.2 we can calculate the esti-
mated probability of degree completion within three years:

Pr(Obtained a degree ≤ 3years) =
e−1.44

1 + e−1.44
= 19.2%

This yields a three-year degree completion probability of 19.2% for this
student and students in the same group have the same probability to grad-
uate on time. The corresponding 95% confidence interval for the estimated
Pr(Obtained a degree ≤ 3 years) is (0.102, 0.332). The full calculation is
omitted here but can be found in Appendix A.4.
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5.1.2 Interpretation of the Odds Ratio

Table 15 shows the odds ratio estimates for Mb.

Table 15: Odds Ratio Estimates of Mb

Parameter
Point

Estimate
95%

Confidence
Wald
Limits

Gender Female vs Male 2.627 1.189 5.804
Programme M+E vs M 3.288 1.422 7.605

Maths1sameterm Yes vs No 5.396 1.190 24.472
Grade 1.715 1.233 2.385

Gender: The odds ratio estimate of Gender shows that the odds of
obtaining a degree within three years is 162.7% (CI, (1.189, 5.804)) higher
for a female student than for a male student if all of the other variables in
the model are held constant. This means that females are more likely to
graduate within three years than males given that all of them have passed
the Mathematics. In the example shown above, the estimated probability of
degree completion within three years was 19.2%. If it is a male student in
the same situation, the estimated probability will drop to 8.3%. The odds
ration between these two events is 0.192/(1−0.192)

0.083/(1−0.083) = 2.63, which corresponds
to the odds ratio stated in Table 14.

Programme: There is a quite large difference between students who
study the programme in Mathematics and Economics and those who study
the programme in Mathematics. The odds that a student obtained a de-
gree within three years given that the student studied the programme in
Mathematics and Economics is 3.3 times (CI, (1.422, 7.605)) as high as
the odds that a student obtained a degree given that the student studied
the programme in Mathematics. If we control the other variables, the esti-
mated probability of degree completion within three years will increase to
43.8% if the student studied the Bachelor’s programme in Mathematics and
Economics.

Maths1sameterm: The factor that describes whether a student passed
the first mathematical course, Mathematics I within the same term has a
strongest effect on students’ timely degree completion compared to effect of
the other factors. The odds that a student obtained a degree within three
years when the student finished Mathematics I within the same term is 5.4
times as high as when a student did not finish Mathematics I within the same
term. In other words, students who passed Mathematics I on time are more
likely to complete a degree on time compared to those who did not. Using
the example in section 5.1.1 again, and controlling for the other variables, a
student who did not finished Mathematics I within the same term has only
a probability of 4.2% to obtain a degree within three years. However, the
level of precision of the odds ratio is quite low as the confidence interval is
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really wide (1.190, 24.472). When the uncertainty in the odds ratio estimate
is large, we cannot be reasonably sure that the true effect actually lies.

Grade in Mathematics I: The variable grade in Mathematics I was
treated as continuous and there was no direct statistical evidence of nonlin-
earity in the logit. For each one level increases in the grade in Mathematics
I, the odds that a student obtained a degree within three years multiply
by 1.7 (CI, (1.233, 2.385)), that is, there is a 70% increase in the odds of
obtaining a degree. Students who received a better grade in Mathematics I
are more likely to graduate sooner.

5.2 Interpretation of the proportional odds model

We applied the method of purposeful selection and obtained a model con-
taining the following variables: Gender, Programme, Maths1sameterm and
Grade. We summarize how well the response can be predicted by checking
the concordance index, presented in section 3.5.5. The estimated concor-
dance index for Mp reported by SAS is 0.699. Based on the given guideline
that a value of 0.5 indicates random predictions and that a value of 1.0 in-
dicates perfect predictions, we would say that the predictive power of Mp

is fairly poor.
Table 16 provides the maximum likelihood estimates of model Mp.

Table 16: Analysis of Maximum Likelihood Estimates of Mp

Parameter Coeff. SE P -value

Intercept ≤ 6 terms -4.6306 0.6802 <.0001
Intercept 7 terms -4.2974 0.6690 <.0001
Intercept 8 terms -3.8797 0.6557 <.0001
Gender Male 0 - -

Female 0.7639 0.3263 0.0192
Programme M 0 - -

M+E 0.7240 0.3440 0.0353
Maths1sameterm No 0 - -

Yes 1.0269 0.4669 0.0279
Grade 0.4025 0.1324 0.0024

5.2.1 Example

Now let us also use an example to illustrate the proportional odds model Mp.
By analogy with the binary logistic regression model, we can exponential the
cumulative logits to produce the cumulative odds for the proportional odds
model, and then we can solve the cumulative logit probabilities. Let θj
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denote the cumulative probabilities Pr(TimetoDegree ≤ j), then

logit(θj) = αj + β′x→ θj
1− θj

= eαj+β′x → θj =
eαj+β′x

1 + eαj+β′x

For the cell probabilities themselves,

Pr(TimetoDegree = j) =
eαj+β′x

1 + eαj+β′x
− eαj−1+β′x

1 + eαj−1+β′x

We use the same example from the previous section 5.1.1. A female stu-
dent studies the Bachelor’s Programme of Mathematics, has finished Math-
ematics I within the same term and obtained a B grade. Then we can obtain
the estimated cumulative probabilities:

Pr(TimetoDegree ≤ 6 terms) = 22.6%

Pr(TimetoDegree ≤ 7 terms) = 29.0%

Pr(TimetoDegree ≤ 8 terms) = 38.3%

We see that in this model the estimated probability of obtaining a bachelor
degree within three years is 22.6%, which is roughly similar to the value of
the estimated probability using the binary logistic regression model (19.2%).
The probability of completing a degree within seven terms and within eight
terms are 29.0% and 38.3%, respectively.

From these, we can even obtain the estimated cell probabilities.

Pr(TimetoDegree ≤ 6 terms) = 22.6%

Pr(TimetoDegree = 7 terms) = 28.97%− 22.62% = 6.4%

Pr(TimetoDegree = 8 terms) = 38.25%− 28.97% = 9.3%

Pr(TimetoDegree ≥ 8 terms) = 1− 38.25% = 61.8%

5.2.2 Interpretation of the Odds ratio

Table 17 displays the estimated odds ratio of model Mp.

Table 17: Odds Ratio Estimate of Model Mp

Parameter
Point

Estimate
95%

Confidence
Wald
Limits

Gender Female vs Male 2.147 1.132 4.069
Programme M+E vs M 2.063 1.051 4.048

Maths1sameterm Yes vs No 2.792 1.118 6.974
Grade 1.496 1.154 1.939
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The interpretation of these proportional odds ratios is pretty much the
same as the interpretation of odds ratios from a binary logistic regression.
For gender, we would say that the odds of obtaining a degree within six
terms versus more than six terms (the combined equal to 7 terms, equal to
8 terms and more than 8 terms categories) are 115% higher for a female
student compared to a male student given that all of the other variables
in the model are held constant. Likewise, the odds of obtaining a degree
within seven terms (the combined less than or equal to 6 terms and equal
to 7 terms categories) versus more than seven terms (the combined equal to
8 terms and more than 8 terms categories) are 115% higher. The odds of
obtaining a degree within eight terms versus more than eight terms are 115%
higher. That is, female students are more likely to spend less time to obtain
a degree than male students. Similarly, students who study the Bachelor’s
Programme in Mathematics and Economics are more likely to complete a
degree on time compared to students who study the Bachelor’s Programme
in Mathematics. Students who finished Mathematics I within the same term
are more likely to graduate earlier compared to those who failed to pass the
course within the same term. Grade was treated as continuous and there was
no direct statistical evidence of nonlinearity in the logit. The interpretation
is that for one level increase in grade in Mathematics I, the odds of obtaining
a degree within six terms versus more than six terms are 1.5 times higher,
given the other variables in the model are held constant. Because of the
proportional odds assumption, the same increase is found between within
seven terms and more than seven terms, as well as between within eight
terms and more than eight terms.

6 Conclusion

Before making conclusions, we must remember the limitations of this study.
It is based on the information that is available to obtain from Ladok. Fur-
thermore, we have only analysed the subjects who have passed Mathematics
I. Subjects who have met the general requirement for obtaining a degree but
have not applied for it did not appear in the study.

Our goals were to identify factors that were associated with students’
time-to-degree, as well as to build a model that could be utilized to predict
the probability of students’ degree completion at the Department of Math-
ematics at Stockholm university. A binary logistic regression model with
Within3years as response variable was obtained through both purposeful
selection and stepwise procedures. While this model is parsimonious, it still
has an adequate fit and an acceptable predictive ability. It could be used to
predict the probability of an individual student’s degree completion within
three years. Variables that are highly associative with the response are gen-
der, programme, that whether a student finished the Mathematics I within
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the same term and grade in Mathematics I. Among all the statistically sig-
nificant variables, that whether a student finished Mathematics I within the
same term has the strongest effect while its estimate contains the largest
uncertainty in terms of odds ratio effect.

After obtaining the binary logistic regression model, we built a propor-
tional odds model with a four-level response variable, which was not intended
to be compared with the binary logistic regression model in the first place.
We wanted to provide an alternative method that enabled us to study stu-
dents’ time-to-degree more specifically. Since we could make full use of the
data, the proportional odds model contains actually more information. Us-
ing also the purposeful selection, we obtained a model that could be able to
use for predicting degree completion within three years, within seven terms
and within eight terms, as well as to some extent, for quantifying the ef-
fect of individual factors. The model consists of the same variables as in
the binary logistic regression model. It is simple but the predictive power
is relatively weak and we could not assess the fit of the model due to the
difficulty of implementation of the methods in reality.

7 Discussion

In both studied models, the variable that describes whether a student has
finished the Mathematics I within the same term has the strongest effect in
terms of the odds ratio among all the influential variables. Those who passed
Mathematics I on time have a higher probability to graduate on time. I per-
sonally do not find it surprising because Mathematics I offers fundamental
knowledge in mathematics and it is a prerequisite for higher level courses
in mathematics. Not having passed the Mathematics I on time certainly
makes students spent more time to pass higher level courses. Programme
directors and the administration of the department may want to emphasise
the importance of passing Mathematics I on time on the introduction day
of Mathematics I.

Programme has the second strongest effect. Students who study the
Bachelor’s Programme in Mathematics and Economics (M+E) are more
likely to complete their degree on time compared to those who study the
Bachelor’s Programme in Mathematics (M). Personally, I did not expect that
there was such a large difference between the two programmes regarding its
association with degree completion length, since students who applied for M
had a higher level of mathematics knowledge. The prerequisite for entering
M+E is Mathematics D while for entering the M+E is only Mathematics C.
One of the reasons that could be possible is that students who study M can
only specialize in a mathematics subject while students who study M+E can
not only specialize in a mathematics subject but also an economics subject.
Mathematics subjects are often considered as difficult subjects. If a student
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who studies M+E and has chosen a mathematics subject as he/her major,
he/she still has another option to choose if he/she finds it hard to complete
the programme and wants to change his/her specialization. Another reason
could be that students are motivated to finish the programme earlier due
to more job opportunities in the mathematical, statistical and economical
labour market

We suspected that older students were less able to graduate on time, but
it was shown that age was not a significant factor at 0.05 level in both mod-
els. It may be interesting to investigate why we did not see any significant
impact. Would it become significant if our study sample had been larger?

Remember that grade in Mathematics I is an ordered variable. We exam-
ined whether the model having treated grade as continuous was substantially
better than the model having treated grade as categorical. We found that
the model having treated grade as continuous was adequate, and consider-
ing also other reasons we decided to treat grade as continuous in both final
models. However, we could not really say that grade had a positive linear
relationship with the responses. We could have tried to add a quadratic
term of grade and checked if such model would perform better after we had
decided to treat grade as continuous. Though we have already presented
our results, it is still interesting to find out if adding a quadratic term really
improves the performance of the final models. We add a quadratic term of
grade to the final binary logistic regression model. We find that the model
containing a quadratic term of grade performs actually better. It has a
lower value of AIC (175.695), a higher value of AUC (0.8055 without cross
validation and 0.7626 with cross validation) and a better goodness of fit
(p-value of the HL test = 0.5460). However, due to time limitations, we do
not analyse this model in more detail. Based solely on the above-mentioned
advantages, the model containing a quadratic term of grade can be used as
a new working model. Nevertheless, more analysis and further discussion
on this model are needed and readers are encouraged to study the model
further.

For future studies on the same subject, I would suggest using a larger
sample size in order to quantify the effects precisely. The 95% confidence
intervals for the odds ratios in both models are very wide. This is because
we have a small sample size. Furthermore, other factors such as high school
performance, admittance group, marital status can be taken into consider-
ation if the information is available. Including such kinds of variables may
describe students’ time-to-degree in a better way. And last but not least, I
would recommend that one can try to assess the global fit of a proportional
odds model by hand. A few tests were listed at the end of section 4.2.1 and
readers are encouraged to read Chapter 8 of Hosmer et al.(2013) for detailed
information.
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Appendix

A.1 Description of the data files from Ladok

Data file Variables in the data files

All registered full-time students in programmes
from autumn 2007 to autumn 2013
N = 665

Birthday
Gender
Study programme code
Registration year of the study programme

All students who obtained a bachelor degree
from 2008.05 to 2016.09
N = 161

Birthday
Gender
Study programme code
Degree code (type of degree)
Specialization
ECTS-Credits for the programme
The date when the degree certificate was issued
The date when the study programme was finished

All students who passed Mathematics I
from autumn 2007 to spring 2016
N = 1298

Birthday
Gender
Study programme code
Registration term
ECTS-Credits for the course
The date when students passed the course

A.2 Frequency tables for the second data set

Table 18: Summary of Age

N Mean Median Std Dev Minimum Maximum

223 22.08 28.5 4.22 18 46

Table 19: Table of TimetoDegree by Gender

Gender
TimetoDegree Male Female Total

1 15 17 32
2 5 4 9
3 7 7 14
4 110 58 108

Total 137 86 223
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Table 20: Table of TimetoDegree by Programme

Programme
TimetoDegree M+E M Total

1 19 13 32
2 5 4 9
3 5 9 14
4 77 91 108

Total 117 106 223

Table 21: Table of TimetoDegree by Maths1sameterm

Maths1sameterm
TimetoDegree No Yes Total

1 2 30 32
2 1 8 9
3 4 10 14
4 56 112 168

Total 63 160 223

Table 22: Table of TimetoDegree by Grade

Grade
TimetoDegree A B C D E Total

1 15 6 3 4 4 32
2 4 0 1 4 0 9
3 3 1 6 2 2 14
4 29 30 32 46 31 168

Total 51 37 42 56 37 223

Table 23: Table of TimetoDegree by Regyear

Regyear
TimetoDegree 2007 2008 2009 2010 2011 2012 Total

1 3 0 5 9 1 14 32
2 1 1 2 1 1 3 9
3 0 1 2 3 5 3 14
4 20 20 32 22 39 35 168

Total 24 22 41 35 46 55 223
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A.3 Tables and figures for the fitted models

Table 24: Results of the first fitted multivariable model using all the signif-
icant variable from step 2, -2log(L) = 329.573

Parameter Coeff. SE P -value

Gender 0.7849 0.3273 0.0165
Maths1sameterm 1.0038 0.4654 0.0310

Grade 0.2899 0.1259 0.0214
regyear 0.1680 0.1026 0.1016

Table 25: Results of the fitted multivariable model with exclusion of
Regyear, -2log(L) = 332.295

Parameter Coeff. SE P -value

Gender 0.8164 0.3248 0.0119
Maths1sameterm 1.0057 0.4628 0.0297

Grade 0.3168 0.1241 0.0107

Figure 2: ROC Curve for Mb
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Figure 3: ROC Curve for Mb with cross validation

Figure 4: ROC Curve for Mb with and without cross validation
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A.4 Full calculation of the 95% confidence interval for logit[Pr(Obtained
a degree ≤ 3 years)]

The formulae for calculating a 100(1−α)%confidence interval for a true logit
is given by (Agresti(1), p194)

CI = logit[π̂(x)]± zα/2
√

x ˆcov(β̂)x′

where x = (1, x1, · · ·xp−1) = dummy variable 1 for intercept and values

of the p − 1 explanatory variables, ˆcov(β̂) is the estimated covariance ma-
trix of the parameter and zα/2 is the percentile point of a standard normal
distribution.

That logit[Pr(Obtained a degree ≤ 3 years)] = -1.44 was calculated and
zα/2 = 1.96, x = (1, 1, 0, 1, 4). The covariance matrix was obtained by SAS
(see Figure 5).

Figure 5: Estimated Covariance Matrix

Plugging in the values in

√
x ˆcov(β̂)x′ we obtain 0.3770. Plugging the

values in the formulae, the corresponding confidence interval for logit[Pr(Obtained
a degree ≤ 3 years)] is

CI = (a, b) = −1.44± 1.96 · 0.377 = (−0.701, 0.101).

Transforming back to the original probability scale, we finally obtain a 95%
confidence interval

(0.1017, 0.3316)

for logit[Pr(Obtained a degree ≤ 3 years)].
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