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Abstract

Deregulation changed the dynamics of the Swedish power market.

The deregulated market opened up for the power exchange, Nord Pool.

In this thesis we will examine if a dynamic regression model including

daily temperature data provides a more powerful model in terms of

forecasting than a univariate time series model solely based on the

electricity spot price. In this thesis a SARIMA model is deemed suit-

able due to the weekly seasonality found in the electricity spot price

data. The analysis indicates that a dynamic regression model with

the inclusion of an exogenous variable can provide a more powerful

model, in terms of forecasting.
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1 Introduction

In today’s western society we are all dependent on electricity, without a prop-
erly working power market parts our infrastructure would collapse. The power
markets impact on our infrastructure is believed to be one of the reasons why
it was kept a government owned monopoly for so long. However a new political
era with new ideas arose during the 90’s and the Swedish power market was
deregulated. A deregulated market with different market participants with dif-
ferent motives creates a dynamic market where estimates about future prices
becomes increasingly important. This has lead to a upswing in electricity price
forecasting, resulting in different modeling techniques with varying degree of
complexity. Many models are stochastic time series models in the core with
additionally modifications such as jump-diffusion [10] or regime switching and
stochastic volatility models [11]. In this thesis we will limit ourselves to the
use of more traditional univariate time series models and then allow for the
inclusion of exogenous variables. The purpose of this thesis is to answer the
question ”Does a model with a exogenous variable predict the future spot price
better than a model without?”, even though many potential suitable exogenous
variables exists only historical temperature data will be used. Previous work
suggests that temperature has a significant impact on the electricity price and
SMHI provides reliable temperature data from 1756 [9]. In warm areas the use
of electricity should reach it’s peak during summer time when extensive use of
air condition is utilized, in the Nordics the opposite relation exist due to ex-
tensive use of heating during winter time. As this relationship is assumed to
exist in our data a model with temperature data included should have stronger
forecasting abilities.

2 Background

2.1 Deregulation of the Swedish Power Market

During the 1990’s a wave of deregulation swept through the Nordic countries,
and the power markets was not unaffected. The electricity market was deregu-
lated in 1991 in Norway, 1995 in Finland, and the Swedish market was dereg-
ulated in 1996 [3]. Deregulation changed the dynamics of the Swedish power
market as production and sale became an open, competitive market. However,
transmission and distribution continued to be a monopoly market. As a result
of the deregulation, companies that conducted business in both areas were di-
vided into separate entities. The deregulation of the power market was seen
as a natural step after the successful deregulation and privatization of telecom,
postal, domestic aviation, taxi and railway markets. These political acts were
carried out in the belief that it would lead to greater social benefit, an idea
known already from the 18th century when Adam Smith coined the phrase ”the
invisible hand” in his famous book ”The Wealth of Nations” from 1776. The
deregulations later lead to the establishment of Nord Pool, the Nordic power

1



exchange [3].

2.2 Nord Pool

The power exchange was established in 1992 after the deregulation of the power
markets in Norway and in 1996 the exchange became a mutual market place for
Norway and Sweden under the name Nord Pool. Today Nord Pool is a multi-
national platform where countries such as Norway, Sweden, Denmark, Finland,
Latvia, Estonia, and Lithuania participate. At Nord Pool there’s a market
for physical delivery (Elspot and Elbas) and financial derivatives, e.g. futures
and options with cash settlement (Eltermin). The marketplace consists of ap-
proximately 360 participants, such as producers, brokers, large consumers, and
TSOs (Transmission System Operators). During 2016 a total amount of 505
TWh were traded on Nord Pool [3].

2.3 Elspot

Elspot is Nord Pool’s instrument that enables market participants to buy phys-
ical electricity with Day Ahead delivery. Every day until 12 o’clock hourly bid
and offer prices are sent in by the participants interested in buying or selling
electricity at a certain price the next day. The hourly bid and offer prices are ag-
gregated into supply and demand curves, the intersection of the curves becomes
the equilibrium price for each respectively hour, and this is shown graphically
in Figure 1. Since this method is applied, it’s theoretically possible that the
supply and demand curves do not have an intersection which would lead to an
absence of price, this has so far never occurred for this market.
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Figure 1: Aggregated supply and demand curves. Figure taken from Løkken
Walter [4].

There are three different order types available for the participants active on
Elspot. The most common order type is hourly orders where the participant
sends in bids/offers and desired volume for each hour of the day. Another type
of order is Block orders which means that the participant sends an order for
at least 1 MW during minimum three consecutive hours. Block orders are of
the type fill-or-kill, which means that the order only is executed if the whole
specified volume can be filled. The third order type is called flexible sell orders,
this order type uses a complex algorithm in order to achieve an optimal solution
for the participant where price has the highest priority and time is second.

2.4 Local Pricing

The notion that different countries have different prices on electricity is easy to
accept, demand and supply drives the prices and these might differ throughout.
The idea of different prices within a country sounds more distant, however this
is sometimes the case. This market dynamic can be explained with Sweden as
a base case. Sweden’s power grid is divided into four main areas; SE1 - Lule̊a,
SE2 - Sundsvall, SE3 - Stockholm and SE4 - Malmö. It is not always in the
interest of the power generators to supply electricity. For example a company
that generates electricity via hydropower might be better off by refraining to
generate power and instead let the water reservoir levels rise, which in fact is one
of the few ways to ”store” electricity in an effective manner. As hydropower is
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an important part of the power ecosystem in Sweden, this might lead to different
pricing. Another reason for local pricing are bottle necks in the power grid, for
example when cheaper electricity from one area might be blocked due to finite
capacity in the grid transmission which leads to different pricing. This inherent
feature of the electricity price makes it an interesting commodity to model, this
thesis will however only use data collected from SE3 - Stockholm, making the
prices comparable.

3 Theory

3.1 Time Series

This section is written in order to make this thesis more accessible and under-
standable for readers, the following theory is gathered from [1] unless stated
otherwise. Time series are defined as observations of a variable, often at equally
spaced time points, examples of common time series are the hourly air tempera-
ture, the daily closing price of a stock, or the monthly revenue of a grocery store.
In this thesis, we will focus on time dependent times series, i.e. observations
at time t are correlated with the previous observations. The end goal of time
series analysis is often to be able to forecast the future in a sufficient manner.
Companies could for example use reliable estimates about the future in order
to optimize their revenues and earnings.

3.2 Stationarity

Stationarity is an important concept in time series analysis. A time series yt
is said to be strictly stationary if (yt1 ,...,ytn) has the same joint distribution as
(yt1+s,...,ytn+s), ∀s where n > 0. That is (yt1 ,...,ytn) is required to be time-
invariant. This requirement is however hard to prove in practice and a weaker
form of stationary is defined. A time series yt is said to be weakly stationary
if E[yt]=µ and Cov(yt,yt+s) does not depend on t. From the definitions we see
that if yt is strictly stationary with finite first- and second moment yt is also
weakly stationary, however the converse is not true in general [2].

3.3 Backshift Operator

The Backshift Operator is a mathematical operator often used to transform non-
stationary series. The process of transforming time series using the backshift
operator is referred to as differencing. We define the first order differencing as

∆yt = yt − yt−1 = (1−B)yt .

Where B is the backshift operator. Differencing can be applied multiple times to
obtain a stationary time series, but sometimes differencing of higher order, i.e.
with lag > 1, is needed to handle seasonality in the data. Seasonal differencing
is defined as

∆syt = yt − yt−s = (1−Bs)yt .

4



3.4 Autocorrelation Function

The Autocorrelation Function (ACF) is defined as the linear dependency be-
tween yt and its past value yt−s

ρs =
Cov(yt, yt−s)√
var(yt)var(yt−s)

.

Under the assumption of weak stationarity this becomes

ρs =
Cov(yt, yt−s)

var(yt)
.

With −1 ≤ ρs ≤ 1. For a given sample series, the Sample Autocorrelation
Function for yt with lag=s is defined as

ρ̂s =

∑T
t=s+1(yt − ȳ)(yt−s − ȳ)∑T

t=1(yt − ȳ)2
.

3.5 Partial Autocorrelation Function

The Partial Autocorrelation Function (PACF) gives the correlation of different
lags for the times series conditioned on the shorter lags. We will allow ourselves
to introduce this concept through a AR(p) model, analogously with the descrip-
tion in [1]. We have the following set of AR(p) models, with increasing quantity
of parameters.

yt = φ0,1 + at + φ1,1yt−1

yt = φ0,2 + a2t + φ1,2yt−1 + φ2,2yt−2

yt = φ0,3 + a3t + φ1,3yt−1 + φ2,3yt−2 + φ3,3yt−3

yt = φ0,4 + a4t + φ1,4yt−1 + φ2,4yt−2 + φ3,4yt−3 + φ4,4yt−4

...

The equations above are in the form of linear regression and can be estimated
through the least square method. Furthermore the estimate of φ̂i,i is called the
lag-i PACF sample of yt. This can be interpreted as that the lag-i PACF is the
added contribution of yt−i to yt in an AR(i-1) model. Therefore φ̂i,i should be
close to zero for all i > p for an AR(p) process. This can be used to determine
the order of an AR model.

3.6 AR

A simple model that functions as a building block for more complex models is
the Autoregressive (AR) model. The AR(1) model can be written as

yt = φ0 + φ1yt−1 + at ,
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where at is a white noise series. Generalized, the AR model of order p can be
written as

yt = φ0 +

p∑
i=1

φiyt−i + at .

3.7 MA

Another building block for more complex models is the moving average model.
In its simplest form, the MA(1) model can be written as

yt = φ0 + at − θ1at−1 ,

where at is a white noise series. Generalized, the MA model of order q can be
written as

yt = φ0 + at −
q∑

i=1

θiat−i .

3.8 ARMA

The ARMA model combines the Autoregressive and Moving Average models
into one model, one benefit of this idea is that the number of parameters in the
model can be kept small. A time series yt is said to be a ARMA(1,1) model if
it satisfies

yt − φ1yt−1 = φ0 + at − θ1at−1 ,

where at is a white noise series. The left-hand side of the equation is the AR
component of the model and the right-hand side is the MA component. The
model can be re-written as

yt = φ1yt−1 + φ0 + at − θ1at−1 .

The general ARMA(p,q) can be written as

yt = φ0 +

p∑
i=1

φiyt−i + at −
q∑

i=1

θiat−i ,

where at is a white noise series and p and q are non-negative integers.

3.9 ARIMA

ARIMA model is an extension of the ARMA model where I stands for integrated.
The model takes care of time series that needs to be differenced before any model
can be applied. By utilizing the backshift operator the general ARIMA(p,d,q)
can be written as

(1−
p∑

i=1

φiB
i)(1−B)dyt = (1−

q∑
i=1

θiB
i)at ,

where at is a white noise series.
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3.10 SARIMA

SARIMA stands for Seasonal Autoregressive Integrated Moving Average. The
model is useful when modeling data that exhibits seasonal effects, i.e. when
the data is differenced with a lag greater than one. The SARIMA model there-
fore has a set of parameters for the seasonal and the non-seasonal components.
SARIMA(p,d,q)(P,D,Q)s can be written as

(1−
P∑
i=1

φiB
si)(1−Bs)D(1−

p∑
i=1

φiB
i)(1−B)dyt = (1−

q∑
i=1

θiB
i)(1−

Q∑
i=1

θiB
si)at ,

where at is a white noise series and p,q,P and Q are non-negative integers. Since
the model handles seasonal effect it can be useful in modeling the electricity
price. As spot prices in the Nordic are said to exhibit seasonal effects on a
daily, weekly and yearly basis, where the weekly effect is the most pronounced
[4] [7].

3.11 Dynamic Regression

The univarite time series above play an important role in time series analysis,
however they do not allow for the inclusion of exogenous variables that could
influence the spot price such as consumption of electricity, temperature, water
levels in reservoirs for hydropower generators etc. In order to include these
variables that might influence the price we define a family of models called
dynamic regression models, in this thesis we will limit ourselves to only discuss
regression models with time series errors, a generic model can be written as

yt = βxt−1 + et ,

where et follows a time series model, such as ARIMA and SARIMA defined
above.

3.12 AIC

There are several ways to determine the suitability of an estimated model, one
of which is the Akaike Information Criterion (AIC). A good model should have
as low AIC-value as possible, even though aspects such as over fitting always
should be kept in mind when choosing a model. AIC is defined as

AIC = 2k − 2ln(L̂) .

Where k is the number of free parameters and ln(L̂) is the maximised value of
the log-likelihood function.

3.13 MAPE

Since our end goal is to answer the question ”does a model with a exogenous
variable predict the future spot price better than a model without?” we need
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one, or more, metrics to determine forecasting capabilities. The first metric that
we will introduce is mean absolute percentage error (MAPE). MAPE, which is
usually expressed in terms of percentage, can be defined in the following way

MAPE =
100

n

n∑
t=1

| yt − ft
yt

| ,

where n is the number of point forecasts, yt is the actual value and ft is the
forecasted value. One limitation of MAPE is that division by zero can occur if
yt = 0, however we will not run into this problem since all our observation is
non-zero.

3.14 MPE

Another useful forecasting metric is mean percentage error, which is defined as

MPE =
100

n

n∑
t=1

yt − ft
yt

.

Since MPE does not use absolute values positive and negative forecasting errors
will cancel each other out, making MPE a complementary metric to MAPE and
a good way to evaluate bias in the forecast.

3.15 ADF

In order to verify the existence of a unit root in an AR(p) process, one may
perform a test known as Augmented Dickey Fuller (ADF). This is done by test
of H0 : β = 1 against H1 : β < 1 using the regression

Xt = ct + βXt−1 +

p−1∑
i=1

∆Xt−i + et

where ct is a deterministic function of the time index t and ∆Xj = Xj −Xj−1

is the differenced series of Xt. Therefor the t-ratio of β̂ − 1 is known as the
ADF-test. Mathematically this is expressed as

ADF-test =
β̂ − 1

std(β̂)

where β̂ is the least-squares estimate of β. The results of a ADF-test is easily
interpreted. If H0 : β = 1 is rejected, the times series is considered stationary.

4 Data

This thesis aims to answer questions regarding if time series models through
inclusion of exogenous variables can improve the prediction of the electricity
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spot price. The main data series considered is therefore the historical electricity
spot prices from 01/01/1996 to 31/12/2016 on a daily resolution, gathered from
Nord Pool [3]. More specifically it is the historical SE3 spot price, i.e. the price
from the Stockholm region in Sweden. The data provided by Nord Pool can be
seen in Figure 2. At first glance the spot price seems to endure high volatility
and volatility clustering. In matter of fact electricity is indeed highly volatile
compared to other commodities such as gold or oil, this makes the power market
dynamics complex and a challenge in terms of modeling procedures. From
Figure 2 we also draw the conclusion that the spot price is far from stationary,
which is an assumption for the models described in the theory section. We
make a remark and conclude that we need to achieve stationarity before any
modeling work can begin. Regarding seasonality no strong assessments can be
made ocular and thus statistical methods will have to be applied later to discover
for which time frame seasonality can be found, if any.

Figure 2: Daily electricity spot closing prices.

The exogenous data series to be included in a dynamic regression model is
temperature data from the Stockholm region in Sweden. The data was gathered
from the website of SMHI [9]. The data contains historical daily mean tempera-
tures at the Stockholm Old Astronomical Observatory between 1756-2015. Data
from 2015 and later are obtained from SMHI ”Öppna Data” [9]. The data was
adjusted in order to stretch from 01/01/1996 to 31/12/2016; the data is plotted
in Figure 3 below.
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Figure 3: Daily mean temperatures at the Stockholm Old Astronomical Obser-
vatory.

The temperature data oscillates in a tight range between -10 and 20 Celsius.
Furthermore, one can see clear seasonal effects, mainly on a yearly basis. But
our knowledge about temperature data tells us that seasonality should be found
on an hourly an monthly basis as well.

4.1 Data Preprocessing

Before any models can be fitted to the underlying data, the basic assumptions of
normality and weakly stationarity has to be assessed. The spikes in electricity
spot price data (see Figure 2) could be viewed as outliers because price spikes
could be a result of non-recurring events such as transmissions congestions in
the power supply, however removing data point is never desirable due to loss of
useful information. Instead a logarithmic transformation is applied to the data
in order to control the spikes. The impact of the transformation is examined by
plotting the sample quantiles of the data against the theoretical normal quantiles
for both the spot price and the transformed spot price in Figure 4. As expected
the transformation handles the heavy tails created by the price spikes in such a
manner that the transformed data can be viewed as normally distributed, even
though some heavy tails still persist.
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Figure 4: Q-Q plot for Spot Price and Logarithmic Spot Price.

After normality can be assumed, tests are performed to evaluate if the data
can be considered stationary. Via an ACF plot and augmented Dickey–Fuller
test it can be concluded that the time series is not stationary [Figure 19 in
Appendix]. Previous work demonstrates that the spot price data usually show
clear signs of weekly seasonality. The weekly effect could be derived from the
fact that large electricity consumers, e.g. industry, use significant less electric-
ity during the weekend and since electricity cannot be stored in a scalable way,
prices should drop. The data is therefore differenced with a lag of seven. Elec-
tricity spot price often also shows signs of daily and yearly effects, however clear
signs of this could not be found and therefore only weekly seasonality was taken
into consideration. The transformed data are again evaluated with respect to
stationarity. The null hypothesis is H0: = non-stationary against H1: = sta-
tionary, our significance level is set to 0.05, i.e. the p-value has to be lower than
0.05 for the data to be considered stationary.
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Figure 5: Augmented Dickey-Fuller Test for differenced logarithmic Spot Price.

With a test value of −21.324 and a p-value of 0.01, the differenced data
passes the augmented Dickey–Fuller test and graphically it also seems stationary.
Since the data through logarithmic transformation and seasonal differencing now
fulfills the assumptions, a model can be fitted to the data.

5 Analysis

5.1 Model

The logarithmic and seasonally differenced data passes the model assumptions
and suitable models that explain the dependencies in the data can be fitted.
In Figure 6 the ACF of the processed data is plotted, the pattern in the ACF
exhibits exponentially decreasing lags, a feature that is typical for AR models.
Since the ACF exhibits these features it can be concludes that the transformed
data is not white noise. It therefore contains stochastic dependencies that need
to be modeled.
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Figure 6: Autocorrelation Function for transformed data.

Due to the seasonal differencing a SARIMA(p,0,q)(P,1,Q)7 model is initially
chosen, where adequate non-negative integers for p,q,P, and Q needs to be
found. A simple SARIMA(1,0,0)(0,1,0)7 model without any seasonal terms
is fitted based on the AR behavior found in Figure 6 and in order to examine
if the seasonal effect can be detected in the data. Since the model doesn’t
include any seasonal terms we expect a spike at every 7th lag in the ACF and
PACF plots. The residuals of SARIMA(1,0,0)(0,1,0)7 model display spikes at
every 7th lag, which confirms the weekly seasonality in the data [Figure 20 in
Appendix]. Due to the AR-like behavior in Figure 6 and the detected weekly
seasonality a SARIMA(1,0,0)(0,1,1)7 model is fitted. The model is chosen due
to its simplicity, and we want to examine how much of the dependencies in the
data that can be captured with it.

13



Figure 7: Autocorrelation Function and Partial Autocorrelation Function for
model 1.

The residuals of the model are plotted in an ACF and PACF plot in Figure
7. The plots show that model captures most of the dependencies, especially the
seasonality is taken care of through the seasonal MA term in the model. The
residuals are accepted as white noise even though some significant lags do exist.
Therefore we test other models to find a model that explains dependencies in
an even more satisfactory manner. All the contemplated models are summed
up in Table 1 where they are sorted based on their AIC values.

SARIMA(p,d,q)(P,D,Q)s AIC

(2,0,2)(1,1,2)7 -10448.48
(2,0,2)(0,1,2)7 -10370.79
(1,0,1)(1,1,1)7 -10123.71
(1,0,1)(0,1,1)7 -10076.86
(2,0,0)(0,1,2)7 -10028.79
(2,0,0)(0,1,1)7 -9996.81
(1,0,0)(0,1,1)7 -9871.88

Table 1: AIC value for the contemplated models.

The model with the lowest AIC value is SARIMA(2,0,2)(1,1,2)7. Since the
AIC is designed to penalize models with extra parameters we draw the conclu-
sion that the model is indeed interesting for further analysis, we keep both
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SARIMA(1,0,0)(0,1,1)7 and SARIMA(2,0,2)(1,1,2)7 as possible options for the
final model. The ACF and PACF for the residuals of SARIMA(2,0,2)(1,1,2)7
are plotted below, the model seems to explain all the dependencies in the data
and the remaining residuals are considered to be white noise.

Figure 8: Autocorrelation Function and Partial Autocorrelation Function for
model 2.

When examining the residual plots [Figure 21 in Appendix] of the models
above tendencies of spikes and volatility clustering appear. This is clear signs
of GARCH effects, however this is determined to be outside of the scope of this
thesis and we move on to model validation.

5.2 Model Validation

From the modeling procedure two models that explain the electricity spot price
in a sufficient way is developed. In order to continue this process in a prudent
manner the models has to be validated. The models should have variables with
significant coefficients, and the residuals should follow a symmetric distribution
such as the normal or t-distribution. Model 1 is SARIMA(1,0,0)(0,1,1)7, i.e. a
model with one AR term and a seasonal MA term. In order to test the signifi-
cance of the coefficients a z test is performed. The z test evaluates if respective
coefficient is non-zero, thus the null hypothesis is H0 := Coefficienti = 0
against the alternative hypothesis H1 := Coefficienti 6= 0. As displayed in
Figure 9 both estimated coefficients for model 1 has a p-value < 0.01 and the
null hypothesis is rejected.
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Figure 9: Z test for model 1.

We therefore move on and examine the residuals. Firstly a Q-Q plot with the
residuals quantiles versus the theoretical normal quantiles is plotted. The plot
show signs of heavy, yet symmetrical, tails and we conclude that the residuals
are not normally distributed. As the tails are to be considered symmetrical a
t-distribution is considered instead. Empiricism concludes that a t-distribution
with three degrees of freedom is the most suitable candidate and the Q-Q plot
is deemed satisfactory even though some deviant and heavy tails persists.

Figure 10: Q-Q plots for the residuals of model 1.

The second model, model 2, is SARIMA(2,0,2)(1,1,2)7 which was selected
because it yielded the lowest AIC value of all the contemplated models. The
model consists of two AR terms, two MA terms, one seasonal AR terms, and
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two seasonal MA terms. We start by conducting a z test to test the null hy-
pothesis is H0 := Coefficienti = 0. All coefficients are significant on a 0.05
significance level, however the p-value of the second AR terms is 0.042 which
means its significance would be rejected on a chosen significance level of < 0.4.
Since we try to avoid over fitting and unnecessary complexity by inclusion of
extra parameters, the second AR term is excluded from the model. Model 2 is
then SARIMA(1,0,2)(1,1,2)7 where all parameters are significant on a signifi-
cance level of 0.01. In accordance with the procedure for model 1, the sample
quantiles for the residuals of model 2 are plotted against the theoretical nor-
mal quantiles. As with model 1 the residuals have heavy tails and we draw
the conclusion that the residuals are not normally distributed. The theoretical
quantiles of the t-distribution with three degrees of freedom leaves us with a
more satisfactory result as shown below in Figure 11, we accept that the resid-
uals can be considered to be t-distributed and the models are deemed good
enough to continue the modeling procedure.

Figure 11: Q-Q plots for the residuals of model 2.

5.3 Exogenous Variable

The main question we want answer with this thesis is if the inclusion of exoge-
nous variables, here through a regression model with time series errors (dynamic
regression), creates a model with stronger predicting power. In practice, we will
keep our two models and extend them by adding the exogenous variable as
an explanatory variable. Possible exogenous variables that could increase the
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prediction power of the models include, but are not limited to, electricity con-
sumption, electricity production, water reservoir levels, and temperature. In
this thesis only temperature data will be considered in the question if exoge-
nous variable can improve the model in terms of forecast ability. In order to
extend the model, the lag number and the number of terms to include should
be determined. For the sake of simplicity and to avoid the common pitfall of
over fitting, which would lead to a model with low predicting power, the number
of additional terms is simply set equal to one. In order to determine the lag
number to be used for the exogenous term we study the cross-correlation func-
tion between the electricity spot price and the temperature data. Electricity
spot price is set as xt and the temperature as yt. The cross-correlation function
shows the dependencies between x and yt for different time lags t. Below, in
Figure 12, the cross-correlation function between the endogenous and exogenous
variable is plotted for different lags, bear in mind that each lag represent a time
jump of one day. The correlation function reaches its peak at lag equal to zero,
i.e. the spot price correlates best with the temperature the same day. However,
in a forecasting procedure inclusion of an exogenous variable with lag zero is
not possible since that value itself is unknown. A possible remedy for this is to
forecast the exogenous variable or to set the lag equal to one. In this thesis, the
second option is chosen and the lag is set equal to one.

Figure 12: Cross Correlation Function between electricity Spot Price and mean
Temperature.

We therefore choose to include one exogenous variable to model 1 and model
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2 and to set the lag equal to one, this gives us two new models in the form of

yt = βxt−1 + et ,

where et is the time series error. When et is modeled the order of model 1
and 2 is used to make the models comparable, the coefficients are however re-
estimated.

The two new models, from here on referred to as model 3 and model 4, also
have to be validated before we can move on to forecasting. We will start with
model 3, that is the SARIMA(1,0,0)(0,1,1)7 model with the inclusion of an
explanatory variable for temperature. Model 3 ACF and PACF show similar
behavior as for model 1, we therefore conclude that model 3 according to the
ACF and PACF explains the dependencies in the data in a sufficient way [Fig-
ure 22 in Appendix]. The Q-Q plots also follow the same pattern as for model
1, a t-distribution with three degrees therefore is fitted and seems to describe
the residuals in a sufficient manner. Furthermore a z test of the coefficients for
model 3 are performed in order to evaluate the significance of the coefficients,
the null hypothesis is H0 := Coefficienti = 0. The result of the z test is
summarized in Figure 13, all coefficients are significant on a significance level of
0.01 and the model explain the variations in the spot price well.

Figure 13: Z test for model 3.

The fourth model, model 4, is SARIMA(1,0,2)(1,1,2)7 with the inclusion of
an explanatory variable for temperature. We begin the model validation by
studying the ACF and PACF of the residuals. The inclusion of the exogenous
variable doesn’t change pattern of the ACF and PACF notably with respect
to the ACF and PACF of model 2. Therefore it’s concluded that the model
is satisfactory given our data. Examining the residuals gives the same results,
the Q-Q plot with residuals quantiles versus theoretical quantiles is far from
satisfactory and instead a t-distribution with three degrees therefore is fitted
and seems to describe the residuals in a sufficient manner. Additionally in
accordance with previous models a z test is performed to test the significance
of the coefficients
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Figure 14: Z test for model 4.

Figure 14 shows that all coefficients, including the exogenous coefficient, are
significant on a significance level of 0.01 and the model seems to explain the
variations in the spot price well. All four models have residuals that can be
considered white noise and significant coefficients, it is therefore time to put the
models to test through forecasting.

5.4 Simulation

A complementary model validation method to the ones used above is simula-
tion. Via simulation from a specified model it can be determined if a model
is suitable given the underlying data and if the coefficient estimate seems rea-
sonable. To demonstrate this procedure we will simulate from model 2, i.e.
SARIMA(1,0,2)(1,1,2)7. When the coefficients are estimated with the loga-
rithmic spot price as underlying data the following estimates are obtained:
AR1 = 0.97, MA1 = −0.246, MA2 = −0.188, Seasonal AR1 = 0.82, Sea-
sonal MA1 = −1.718, and Seasonal MA2 = 0.72. 1000 time series are then
simulated, each series containing 10000 data points. The specified model, i.e.
SARIMA(1,0,2)(1,1,2)7, is fitted for each simulation. The coefficient estimates
of this procedure is summarized below in Figure 15.
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Figure 15: Simulated coefficients from model 2.

As this process is computer intensive only 1000 time series are simulated.
At 1000 estimated coefficients per histogram the plots appear to be normally
distributed and centered around the estimates obtained with the logarithmic
spot price as underlying data. However it is noted that the seasonal histograms
do endure a mild skewness, this could be a result of the estimation process used
which is to use conditional-sum-of-squares to find starting values, and then
maximum likelihood. We conclude that our estimated coefficients are indeed
reasonable. In order to examine the trajectories of the simulated time series, 10
series are plotted below beside the trajectory of the observed spot price.
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Figure 16: Observed trajectory (left) and Simulated trajectories from model 2
(right).

The simulated time series moves in a range in-line with the observed values,
furthermore the trajectories exhibit features that reminds of the ones found in
the underlying data. Our conclusion from the simulations is that the fitted
model describes the dynamics of the data in a adequate manner.

6 Forecast

In order to answer the question ”does a model with an exogenous variable pre-
dict the future spot price better than a model without?” we have to forecast
electricity spot prices for each model respectively and compare them with ade-
quate metrics. In the modeling procedure, we divided our data in to two parts.
One part for training and estimating the parameters and one part for testing the
models predicted values against observed values. The total dataset consist of
7671 data points, we will somewhat arbitrary use 7000 observations for training
and 671 for forecasting. The forecasting period is therefore from 2nd of March
2015 to and including 31st of December 2016. The length of the testing period
is from our point of view long enough to test the models under different market
conditions, seasons, temperatures etc. The models have coefficients estimated
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based on the logarithmic spot price and the forecasted values therefore has to
be transformed back by taking the exponential function of each value. The
forecasting technique used will be limited to day ahead point forecast, i.e. the
models will be feed with the last days true closing price and temperature in the
case of model 3 and model 4. To compare and draw conclusion from the fore-
casting procedure we will mainly use MAPE and MPE as metrics for evaluation.
We believe that MAPE and MPE are good complements where MAPE will be
used to compare forecasting precision and MPE will be utilized in order to spot
eventual bias, i.e. if the models systematically are over or under-predicting rel-
ative to the true value. To create a valid reference point the models will be
compared to the Näıve approach. In Näıve forecasting the true value from time
t will be used as a forecasted value for time t + 1, even though this approach
may seem simplistic it is quite powerful, however for the models to be useful in
practice they should be able to forecast the spot price in a more sophisticated
manner [8]. The result of the forecasts is summarized in Table 2 below.

Model MAPE MPE

Näıve model 14.06963 -2.31758
SARIMA(1,0,0)(0,1,1)7 12.65822 -1.48914

SARIMA(1,0,0)(0,1,1)7+Temp 12.62637 -1.44148
SARIMA(1,0,2)(1,1,2)7 11.99884 -2.04787

SARIMA(1,0,2)(1,1,2)7+Temp 11.92454 -2.01045

Table 2: Result of forecasting in terms of MAPE and MPE.

All four developed models perform better than the Näıve model with re-
spect to MAPE, this tells us that the models do capture dependencies in the
data in a sufficient manner. Also by including temperature as an exogenous
the MAPE value was lowered both between model 1 and model 3, and be-
tween model 2 and model 4. Our conclusion from this is that the inclusion
of exogenous variables does generate a model with higher forecasting abilities.
Comparing SARIMA(1,0,0)(0,1,1)7 to SARIMA(1,0,2)(1,1,2)7 we observe a dif-
ference of 0.56 in MPE, and the same behavior is observed when adding a
exogenous variable to respectively model. As MPE can be seen as a metric of
bias SARIMA(1,0,2)(1,1,2)7 is to be viewed as a more conservative model in the
sense that it seems to underestimate the price systematically even though the
model is more precise in absolute terms given our test data. To give the reader
a more non-mathematical, and therefore more intuitive to some, sense of the
models predicting power predicted values are plotted against observed values.

23



Figure 17: Forecasted Spot Price versus observed Spot Price.

Figure 17 show predicted values versus observed values for
SARIMA(1,0,2)(1,1,2)7+Temp, the model is able to predict the true values well
except when it comes to sudden price spikes. Furthermore, we are interested to
view the difference between observed and predicted values on a more granular
level, Figure 18 displays the two lines for the last 70 data points of the time
series.
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Figure 18: Forecasted Spot Price versus observed Spot Price.

7 Conclusion

The purpose of this thesis was two conduct a thorough analysis of the dy-
namics of the Swedish power market and to investigate if the inclusion of an
exogenous variable could improve the predicting power of our models. Via the
data management and modeling procedure four adequate models where found,
validated and subsequently applied trough forecasting. The vision throughout
the modeling process was to keep the model simple, and minimize the num-
ber of parameters to avoid over fitting and potential autocorrelation. Table 2
showed that the inclusion of temperature data indeed lowered the MAPE values
and we therefore consider this to be a more powerful model from a forecasting
point of view. Furthermore, we conclude that AIC value was a good indica-
tion of the model even though one parameter was dismissed due to insignifi-
cance. The top performing model in the forecasting procedure is considered
to be SARIMA(1,0,2)(1,1,2)7 + exogenous variable with the estimated coeffi-
cients AR=0.9743, MA1=−0.2790, MA2=−0.1820, Seasonal AR=0.7982, Sea-
sonal MA1=−1.6981, Seasonal MA2=0.7014 and Temperature=−0.0095, where
the coefficients are estimated based on the logarithmic price. We also concluded
during the model validation that none of the models residuals were to be con-
sidered normally distributed and a t-distribution with three degrees of freedom
was used as a substitute and accepted as satisfactory although the fit was not
perfect and some deviant tails persisted for all model residuals. When plotting
the residuals of the final model [Figure 24 in Appendix] the residuals exhibit
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spiky behavior, which indicates that some effect is not taken into account during
the modeling work. This type of spikes and volatility clustering often is a sign
of GARCH effects, however this was considered outside the scope of this thesis
and is left as a possible option for further analysis.

8 Discussion

While we arrived at a well performing final model, with a MAPE of 11.92 per-
cent it does have its flaws. In the conclusion section we argued that during
the model validation the residuals were accepted as being t-distributed even if
further investigation might be in place. The residuals also exhibit GARCH type
of effects that were not included in the modeling procedure, instead this was
deemed to be outside the scope of the thesis, we do however believe that the
inclusion of this type of model might lead to a more robust and precise model
in terms of forecasting. With that being said price spikes in the electricity spot
price is often an effect of non-recurring events such as grid congestion, which
is hard to anticipate and therefore model. During the data management, the
data was transformed through applying the logarithm of base 10 to the data,
this procedure was applied as an alternative to outlier management techniques
discussed in other papers [5] [6]. The benefit of this alternative is that none of
the data points were altered or removed and we make use of all the information
in the original dataset. Seasonality is often a hot topic in papers regarding
electricity price modeling, in the Nordics the spot price is said to exhibit sea-
sonality on a daily, weekly, and yearly basis [7]. In this thesis where our data
solely was on a daily resolution only a weekly effect were considered. We did
however end up with a model that performed well in forecasting and seemed to
explain the dependencies in the data with regards to the ACF and PACF and
therefore it was concluded that seasonality on a yearly basis could be ignored.
The main question of this thesis was to examine if our potential models would
benefit in terms of predicting power by the inclusion of an exogenous variable.
In the ”Conclusion” section we argued that by including a variable for the local
temperature in the Stockholm region a higher predicting power was achieved.
This result could be extended by inclusion of other variables that might have
an impact on the electricity price, one popular exogenous variable used in other
papers is the electricity consumption in the relevant area. Further studies could
therefore be to include more exogenous variables that correlate with the elec-
tricity spot price and to take volatility clustering into account in the modeling
process.
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10 Appendix

Figure 19: ACF plot for the logarithmic electricity spot price. The plot displays
non-stationary data.

Figure 20: ACF and PACF plot for the model residuals. The plot displays
seasonality on a weekly basis.
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Figure 21: Residual plots for the contemplated models. Both models endure
spikes and volatility clustering which typically is signs of GARCH effects.

Figure 22: ACF and PACF plot for model 3. The model explains the dependen-
cies in the data in a sufficient way, even though some significant lags persists.The
residuals are considered white noise.
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Figure 23: ACF and PACF plot for model 4. The model explains the depen-
dencies in the data in a sufficient way. The residuals are considered white noise.

Figure 24: Residual plot for model 4. The plot exhibit spiky behavior, which
indicates that some effect is not taken into account during the modeling work.
This type of spikes and volatility clustering often is a sign of GARCH effects.
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