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Abstract

This thesis examines three commonly used forecasting models, the

GARCHmodel, the EGARCHmodel and the TGARCHmodel. Three

main themes will be covered throughout this paper. The evaluation

of time horizons that creates the best conditions for future forecasts,

determining which distribution suits the error term and the evaluation

of which GARCH model provides the best sample-fit in terms of AIC

and BIC. The results indicated that both EGARCH and TGARCH

that are more complex models outperformed the symmetric GARCH.

When it comes to the distribution term it was quite evident that

the Student-t distribution provided better sample-fit compared to the

Gaussian distribution. This was quite expected given the fact that

negative shocks tend to have larger impact on the volatility market

compared to positive shocks, resulting in heavier tails in the distribu-

tion.
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1 Introduction

The study of financial markets often exhibits volatility clustering with pe-
riods of high and low volatility. This is often interpreted in financial time
series models that captures the nonconstant volatility. GARCH models are
commonly used time series models especially when the volatility is randomly
varying in the stock market. It has been shown that negative shocks have
a larger effect on stock pricing than positive shocks of the same magnitude.
The stock market have shown indications of a longer recovery from the neg-
ative skocks, resulting in a long lasting impact. This also indicates that a
symmetric distribution is not always a realistic assumption. Tsay[2] argues
that the extended GARCH models captures the asymmetric effects between
negative and positive asset returns. In this paper three different GARCH
models will be evaluated. First, the symmertric GARCH model and then
the asymmetric EGARCH and TGARCH that account for the asymmetric
effects in the financial market.

In this paper there will be three main themes being studied. First, the
evaluation of which time interval creates the best conditions for future fore-
cast in terms of AIC and BIC. The second theme will be to determine which
distribution for the error term give the best sample-fit and the third theme
will be to evaluate and find a model from the GARCH family models that
have the best sample-fit in terms of AIC and BIC.

The first part of this paper will cover the theoretical framework which ex-
plaines the background of the analysis. Terms and definitions will be ex-
plained in order to increase the understanding behind the results and the
analysis. The second part of this paper will cover the methodology frame-
work. Carnegie Strategyfund is the sample data used in this paper and will
be used as the basis for the analysis throughout this paper. The method-
ology framework will also contain different figures and plots that describe
different characteristics of the sample data. Afterwards the results will be
concluded where the different time horizons will be evaluated together with
the evaluation of the GARCH models chosen in this paper. This paper will
end with a discussion part where all the results are processed and concluded
with the most important highlights from the results.
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1.1 Aim

The aim of this thesis is to evaluate three different GARCH models in order
to find the best fit for sample data. The time horizons will also be eval-
uated to determine which interval creates the best conditions for volatility
forcasting performance, but also to find which distribution creates better
sample-fit.

2 Theoretical framework

In this section the theoretical framework will be presented. Terms, defini-
tions and statistical tests that are used for the analysis will be explaind in
order to understand the background of the analysis and the methodology.

2.1 Return and Volatility

Let the asset return at time t and a price index Pt be defined as:

Rt =
Pt − Pt−1

Pt−1

where Rt corresponds to a one-period simple return, see Tsay[2]. Taking the
logarithm the equation follows:

rt = log
Pt
Pt−1

= µt + at

where at = σtεt, µ is the mean value of returns, σ is the standard deviation
and ε is the error term. Return of an asset is the most common measure
for investors when analyzing financial stocks. The return measures the gain
or loss of an asset given a particular time period. A common rule is that
the more risk an investor takes, the greater the potential for higher returns
and losses. The greater the risk of an asset there is, the higher the volatility
clustering becomes. Standard deviation is the measure for stock volatility,
defined as:

σ̂ =

√√√√ 1

n

n∑
t=1

(rt − µ)2

where µ is the mean value of returns and t = 1,2,3,...,n with n observations.

2.2 Normal distribution and Student-t distribution

When estimating different GARCH models it is important to determine
which distribution of the error term ε that fits data. An inappropriate dis-
tribution for the model may lead to either overestimation or underestimation
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of future risk. Different distributions of GARCH may also lead to different
results regarding option pricing. It is therefor important to find the best fit
of the distributions term for the different GARCH models, see Zhou[5]. In
this paper two of the most commonly used distributions will be presented
and examined. The first one is the Gaussian (or Normal) distribution, de-
fined as follows:

f(xt) =
1√

2πσ2
e−

(xt−µ)
2

2σ2

where µ is the mean value and σ2 is the variance.

The second one is the Student-t distribution which captures the heavy-tails
in financial time series, given by:

f(xt) =
Γ(v+1

2 )

Γ(v2 )
√

(v − 2)π
(1 +

x2
t

v − 2
)−

v+1
2

where Γ is the usual Gamma function and v > 2 is the number of degrees
of freedom, see Tsay[2].

2.3 GARCH

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) is the
extension of the ARCH process allowing for a more flexible lag structure.
The ARCH process was first introduced in Engle (1982) and later extended
in Bollerslev[1] (1986) with the GARCH process which recognizes randomly
varying volatility that occurrs in the financial markets. The GARCH process
often provides a more real-world context compared to the ARCH process
when dealing with prediction of prices of financial instruments. Hence, if
at = σtεt, the GARCH(p,q) follows:

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j ,

where α0 > 0, αi ≥ 0, βj ≥ 0 and
∑max(q,p)

i=1 (αi + βi) < 1, p ≥ 0, q > 0 and
εt is a sequence of iid random variables. αi is referred as ARCH parameters
while βj is referred as GARCH parameters.

In this paper the GARCH(1,1) process will be implemented. It is the sim-
plest process but often very useful. GARCH(1,1) is given by:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

GARCH(1,1) represents how many ARCH terms appears in the model which
is represented by the first notation in GARCH(1,1), the second notation in-
dicates how many GARCH terms are included in the model, also known as
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moving average lags.

GARCH(1,1) is set up to forecast for one period ahead which in turn can
forecast a two-period forecast. By using this technique, it has been shown
that long-horizon forecasts can be constructed when based on the one-period
forecast.

2.4 EGARCH

Tsay[2] argues that EGARCH (Exponantial GARCH) became an improve-
ment of the GARCH model proposed in Nelson(1991). In order to overcome
some weaknesses of the symmetric GARCH model Nelson[3] has presented
EGARCH that allows asymmetric effects between negative and positive as-
set returns. EGARCH can in fact account for leverage effect when handling
volatility models with financial time series. Nelson[3] defined EGARCH as
follows:

log σ2
t = a+

p∑
i=1

αig(Zt−i) +

q∑
j=1

βj log σ2
t−j

where g(Zt) = θZt+λ(|Zt|−E(|Zt|)), σ2
t is the conditional variance, a, α, β,

θ, λ are parameters. There are no further restrictions due to the fact that
log σ2

t may be negative. g(Zt) allows the conditional variance to respond
asymmetrically to negative and positive shocks in stock price.

Defining Zt = εt
σt

and using the fact that g(Zt) = θZt + λ(|Zt| − E(|Zt|)),
the function can thus be expressed as follows:

log σ2
t = a+

p∑
i=1

αiλ

(
| εt−1

σt−1
| − E(| εt−1

σt−1
|)
)

+

p∑
i=1

θi
εt−1

σt−1
+

q∑
j=1

βj log σ2
t−j

Depending on the distribution for εt, Zt varies according to Tsay[2]:

E(|Zt|) =

√
2

π

for the standard Gaussian dirtribution and,

E(|Zt|) =
2
√
v − 2Γ[(v + 1)/2]

(v − 1)Γ(v/2)
√
π

for Student-t distribution. The use of Zt enables the model to respond asym-
metrically to negative and positive values.

In this paper EGARCH(1,1) is used which can be expressed as followes:

7



log σ2
t = a+ α1λ

(
| εt−1

σt−1
| − E(| εt−1

σt−1
|)
)

+ θ1
εt−1

σt−1
+ β1 log σ2

t−1

which is again set up to forecast for one period ahead.

2.5 TGARCH

Another commonly used model is the TGARCH (threshold GARCH) that
accounts for handling leverage effects. TGARCH also captures the asym-
metry as earlier mentioned with the EGARCH model. TGRACH is defined
as followed, see Glosten, Jagannathan and Runkle[4]:

σ2
t = α0 +

s∑
i=1

(αi + γiNt−i) a
2
t−i +

m∑
j=1

βjσ
2
t−j ,

where Nt−i is an indicator for negative at−i, defined as:

Nt−i =

{
1, at−i < 0
0, at−i ≥ 0

where αi,γi and βj are nonnegative parameters. TGARCH uses zero as
its threshold to separate the impacts of past negative and positive shocks.
a2
t−i can have different effects on the conditional variance σ2

t depending on
whether at−i is above or below the threshold. When the value at−i is pos-
itive, it contributes with αia

2
t−i to σ2

t compared to when the value of at−i
is negative it has a larger impact with (αi+γi)a

2
t−i when γi > 0, see Tsay[2].

TGARCH(1,1) which forecasts one period ahead is going to be implemented
throughout this paper, defined as follows:

σ2
t = α0 + (α1 + γ1Nt−1) a2

t−1 + β1σ
2
t−1,

2.6 Parameter estimation

As mentioned earlier two different distributions will be used throughout
this paper, the Normal distribution and the Student’s t distribution. The
results will differ when estimating parameters for the different GARCH mod-
els when using different distributions. Depending on the distributions the
likelihood function will differ when obtaining the maximum likelihood esti-
mators.
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2.6.1 Maximum likelihood

Maximum likelihood is the most commonly used method when estimating
parameters for time series models. θ̂ML is the estimate of the estimator θ
that maximizes the likelihood funcion, see Held and Bové[6]:

θ̂ML = arg max
θ∈Θ

l(θ)

where l(θ) = ln(L) is the log-likelihood function.

When assuming the normal distribution, the likelihood function is defined
as follows:

L = f(an+1, ..., aK |α, a1, ..., an) =
K∏

t=n+1

1√
2πσ2

t

e
− a2t

2σ2t

where α = (α0, α1, ..., αn) are the parameters to be estimated and a1, a2, ..., aK
is a set of K independent and identically distributed random variables. Re-
call that at = rt − µt ≈ rt when µt ≈ 0. The log-likelihood function is
therefore as follows:

l(θ) =

K∑
t=n+1

ln(
1√

2πσ2
t

e
− a2t

2σ2t ) =

−(K − (n+ 1))

2
ln(2π)− (K − (n+ 1))ln(σt)−

1

2σ2
t

K∑
t=n+1

a2
t

When Student’s t distribution is assumed the likelihood function is defined
as:

L = f(an+1, ..., aK |α, a1, ..., an) =
K∏

t=n+1

Γ(v+1
2 )

Γ(v2 )
√

(v − 2)π

1

σt
(1+

a2
t

(v − 2)σ2
t

)−
v+1
2

with the log-likelihood function:

l(θ) =

K∑
t=n+1

ln(
Γ(v+1

2 )

Γ(v2 )
√

(v − 2)π

1

σt
(1 +

a2
t

(v − 2)σ2
t

)−
v+1
2 ) =

(K−(n+1))ln(
Γ(v+1

2 )

Γ(v2 )
√

(v − 2)π
)−1

2

K∑
t=n+1

ln(σ2
t )−

v + 1

2

K∑
t=n+1

ln(1+
a2
t

(v − 2)σ2
t

)
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2.7 Statistical tests and Model selection

2.7.1 AIC

Akaike Information Criterion (AIC) measures the goodness of fit for dif-
ferent statistical models and compares different models, see Tsay[2]. AIC
makes adjustmenst to the likelihood function to account for the number of
parameters. If the number of parameters in the model is K, the AIC is given
by:

AIC = 2K − 2l

where l is the maximized value of the loglikelihood function. The best fit
will have the lowest AIC value.

2.7.2 BIC

Bayesian Information Criterion (BIC) is a criterion for model selection. BIC
measures the goodness of fit and is based on the likelihood function, see
Tsay[2]. BIC is closely related to the AIC with the same notation but with
one additional parameter. BIC is given by:

BIC = Kln(N)− 2l

where N denotes the number of observations in sample size, K is the number
of parameters in the model and l is the maximized value of the loglikelihood
function. BIC resolves the problem of overfitting a model that have many
parameters by introducing a penalty term for the number of parameters in
the model. BIC generally penalizes more strongly than AIC. A smaller value
of BIC provides better sample fit and is therefore prefered.

2.7.3 T-test

The t-test is a statistical hypothesis test to check whether the mean of the
test statistic is equal or different from zero. The distribution of the sample
is normally assumed to follow a Gaussian distribution. The null hypothesis
is defined as follows, see Britton & Alm[9]:

H0 : µ = µ0

against the alternative hypothesis:

HA : µ 6= µ0

where µ is the mean from a sample X = (x1, x2, ..., xn). The test statistic
can be defined as follows:
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T =
X̄ − µ0

s(X)/
√
n
∼ t(n− 1)

where the test statistic is Student-t distributed with (n− 1) degrees of free-
dom and s(X) is the standrad deviation. The null hypothesis is rejected and
the mean is different from zero when |T | > tα/2(n− 1).

2.7.4 Autocorrelation function and White noise

Autocorrelation measures if there is linear dependence between two obser-
vations. It is of interest to compare the dependency between the return
series Rt and its past values Rt−i, see Tsay[2]. A linear time series model is
defined as follows:

Rt = µt + at

where µ is the mean of the return series and at is a sequence of iid random
variables with mean zero and variance σ2.

For a given return series Rt, the autocorrelation is defined as follows, see
Tsay[2]:

ρ̂l =

∑T
t=2(Rt − R̄)(Rt−l − R̄)∑T

t=1(Rt − R̄)2

where R̄ is the sample mean, l is the number of lags and 0 ≤ l < T − 1. A
stationary series is not serially correlated if ρl = 0 for l > 0.

In order to determine if serial correlations occur it is convenient to set up
statistical tests that test for zero correlations. As earlier mentiond, Ljung-
Box test caculates p-values in order to find out whether or not to reject the
null hypothesis.

If all autocorrelation functions are close to zero, then the series is said to
be a white noise series. A time series Rt is white noise if if Rt is a sequence
of iid (identical and independently distributed) random variables with finite
mean and variance σ2.

2.7.5 Ljung-Box

Ljung-Box test tests if the autocorrelations of a time series are different from
zero. The hypothesis H0 is defined as follows:

H0 : ρ1 = ρ2 = ρ3 = ... = ρm = 0
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with the alternative hypothesis that autocorrelations are different from zero.
If that is the case, then they exhibit serial correlation.

According to Ljung and Box[7], the test statistic can be defined as follows:

Q(ρ) = n(n+ 2)

m∑
k=1

(n− k)−1ρ̂2
k ∼ χ2

m

where ρ̂k is the estimated autocorrelation, k number of lags and n observa-
tions in the time series. The Ljung-Box test is χ2 distributed with m degrees
of freedom. If Q(ρ) > χ2 the decision is to reject H0. Based on the number
of lags, Ljung-Box test tests the overall randomness in the time series.

2.7.6 Heteroscedasticity

In a classical linear regression model the variance of each disturbance term
εj , conditional on explanatory variables is constant and equal to σ2 is said
to be homoscedastic. On the other hand when the variance of the distur-
bance term is not constant it is a case of heteroscedasticity, see Tyrcha[8].
Heteroscedasticity is defined as the conditional variance that changes over
time. In other words the variance is nonconstant over time.

2.7.7 Skewness and Kurtosis

Skewness is the third central moment to measure the symmetry of a data set.
A distribution is called symmetric if it looks the same to the left and right of
the center point. Negative values indicates left skewness and positive values
indicates right skewness. A value of zero indicates that sample data comes
from a normal distribution. Skewness is defined as follows, see Tsay[2]:

Ŝ(x) =
1

(T − 1)σ̂3
x

T∑
t=1

(xt − µ̂x)3

where x1, x2, ..., xT is a random sample of X with T observations, µx is the
mean and σx is the standard deviation.

Data sets with high kurtosis tend to have heavy tails. Similarly, data sets
with low kurtosis tend to have light tails. Kurtosis is the fourth moment
and is an easy way of measuring the size of distribution tails. A value of
3 indicates that sample data comes from a normal distribution. With the
same assumptions as above, Tsay[2] defines kurtosis as follows:

K̂(x) =
1

(T − 1)σ̂4
x

T∑
t=1

(xt − µ̂x)4
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2.7.8 Jarque-Bera Test

Jarque-Bera test is a normality test based on skewness and kurtosis. The
test statistic is defined as follows, see Tsay[2]:

JB =
Ŝ2(r)

6/T
+

[K̂(r)− 3]2

24/T

which is chi-squared distributed with 2 degrees of freedom. The value of
3 in the test statistic represents a normal distribution as mentioned above.
The assumption of normality under H0 is rejected when the p-value of JB
test is less than the significance level.

3 Methodology framework

In this section the methodology framework will be presented. The sample
data is downloaded from Carnegie Fund’s database and represents daily
closing prices for Carnegie Strategyfund.

3.1 Data analysis

In this part of the paper the sample analysis will be evaluated. As earlier
mentioned, Carnegie Strategyfund is the sample data used for analysis with
2517 observed closing prices, covering the time 2007/01/26 - 2017/01/25.
The sample data will be observed from two point of views. The first one
where all the 2517 observations are covered. The second point of view is were
the sample is divided in two subintervals, before and during the financial
crisis, and the second subperiod that covers the time after the financial crisis.
The reason for this divition is to find out whether the same GARCH model
fits all time intervals, but also to find out which interval is most benficial to
use for future forecast.

3.2 Carnegie Strategyfund

Carnegie Strategyfund is a mixed fund with 60 percent shares and 40 percent
interest rates. As mentioned above, the return series will be presented from
two points of views where the first analysis covers the whole 10 year period,
afterwards the sample data will be divided in two subperiods in order to
find the interval with best conditions for future forecast. The sample data
will be analyzed with plots that brings out different characteristics from the
sample.

13



Figure 1: Daily closing prices

Figure 1 demonstrates how the price for Carnegie Strategyfund have
fluctuated during a 10 year period between 2007/01/26 - 2017/01/25. Before
the crisis the stock price was on a downfall and reached the lowest point in
2008. After the crisis it was evident that the price rebounded and started
to rise. The price process will be one main variable throughout this paper.

Figure 2: Daily log-returns

In figure 2 the daily log-returns are presented. The figure illustrates
how the returns have fluctuated over time, with especially high fluctuations
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around 2008 when the financial crisis occured, followed by calmer periods
efter the crisis. As mentioned before, the return is defined by Rt = Pt−Pt−1

Pt−1

and taking the logarithm gives the following relation: Rt ≈ log( Pt
Pt−1

). By the
judgement of the shape, it becomes eveident that the return series indicate
traits of heavier tails. The deviation around index 500 is much larger than
the rest of the series which indicates heavier tails in sample data.

Figure 3: QQ-plot of daily log-returns

To find out whether the error term from the sample data comes from
a Gaussian or Student-t distribution it can be convenient to observe the
following plot in figure 3. By plotting the Quantile-Quantile plot (QQ-plot)
it becomes clear if the data follows a Gaussian distribution or if the sample
data indicates heavier tails. In this case it is demonstrated by figure 3 that
data is not normaly ditributed because of the tails that deviates from the
staight red line. The Gaussian distribution would therefore not provide a
particularly good fit. The QQ-plot exhibits significantly heavier tails and
the behavior indicates that the Student-t distribution could be a better fit.
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Figure 4: QQ-plot for GARCH, EGARCH & TGARCH with Gaussian dis-
tribution used on the whole time interval

It is also demonstrated by the QQ-plots in Figure 4 that the residuals
exhibit heavier tails for all the three GARCH models. Once again it could
be said that all the three models does not follow a Gaussian distribution
because of the deviation from the straight line. The QQ-plots for the three
GARCH models with Student-t distribution are presented in appendix.

Figure 5 is observed in order to find out if the financial crisis had an impact
on the QQ-plots or not. When looking at Figue 5 the QQ-plots only indicate
a significant small improvement. Although it is still the same situation as
in Figure 4 where both GARCH and EGARCH looks asymmetric and the
TGARCH model looks slightly more symmetric but with deviated obser-
vations on both sides. It is hard to make any assuptions on which model
has the best distribution fit, the QQ-plots are very much alike but with the
exception that TGARCH have some larger deviations than GARCH and
EGARCH. QQ-plots with Student-t distribution are presented in appendix.
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Figure 5: QQ-plot for GARCH, EGARCH & TGARCH with Gaussian dis-
tribution used on period 2 without the financial crisis

3.2.1 Characteristics of sample data

Sample Data

Skewness Kurtosis Jarque-Bera

-0.3540795 10.92358 p <2.2 E-16

Table 1: Sample tests

A characterization of the sample data includes skewness and kurtosis in or-
der to detemine the location and the variability of the data set. As earlier
mentioned, skewness is a measure of symmetry and it discovers whether a
distribution is symmetric and look the same to the left and right of the center
point. Data follows a normal distribution if skewness is near zero. In table
1 the sample characteristics are summerized with a skewness of -0.3540795
which indicates that the sample is negatively skewed meaning that sample
data does not come from a normal distribution.

Kurtosis measures whether the sample is heavy tailed or light tailed rel-
ative to a normal distribution. A value of 3 indicates that sample comes
from a Gaussian distribution. The sample data presented in table 1 have a
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kurtosis of 10.92358 which indicates a heavy tailed distribution.

The Jarque-Bera test is used in order to find out whether the error terms
are normally distributed based on skewness and kurtosis. A p-value of less
than 2.2e-16 indicates a significant result where the assumption of normality
under the null hypothesis is rejected.

The statistically significant result recieved from the Jarque-Bera test and
a negative skewness together with a high value of kurtosis indicates heavier
tails to the left, and it becomes evident that the sample does not follow a
Gaussian distribution. The sample data has a better fit with the Student-t
distribution.

3.2.2 Testing for Autocorrelation

In order to find out if any autocorrelation occurs in data it is convinient to
compute autocorrelation plots. It is of interest to find out whether there are
any linear dependencies between the return series Rt and the past values of
Rt−i. In figure 6 the autocorrelation function is observed and indicates a
weakly stationary series with a weak correlation, if any. The series is there-
fore a white noise series. In order to use GARCH models and apply them
to data it is important that the return series is uncorrelated but still depen-
dent, see Tsay[2]. The squared autocorrelation function, which is the second
moment of the returns, is also presented in figure 6 which demonstrates and
confirmes that there is a dependency, which is recuired in order to predict
the future.

In order to be certain that the series truly is uncorrelated it is necessary
to test for zero correlation. This is easily done by using Ljung-Box test
which is χ2-distributed, and test the null hypothesis H0 : ρ = 0 versus the
alternative hypothesis HA : ρ 6= 0. The null hypothesis is rejected if the
p-value is approximately smaller than 0.05 on a 95% level. According to
Tsay[2], the number of lags are calculated by taking the logarithm of the
number of observations from the data, giving the following: ln(2517) ≈ 7.8.
Computations of Ljung-Box test gives a p-value equal to 0.06436 which is
non-significant and the null hypothesis is not rejected on a 95% level. The
return series is therefore uncorrelated.

It is also necessary to test if the series mean is equal to zero. This is pro-
vided with a t-test with the null hypothesis H0 : µ = 0 versus the alternative
hypothesis HA : µ 6= 0. As earlier mentioned, the null hypothesis is rejected
if the p-value is less than 0.05. The t-test gives a p-value of 0.4654 with the
95% confidence interval [-0.0002554677, 0.0005585943]. This means that the
output is non-significant and H0 can not be rejected. The return process
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rt = µt + at can now be simplified as rt = at

Figure 6: Autocorrelation functions of daily log-returns

Continuing on with the observation of Figure 7 it becomes evident that
the series is not autocorrelated. The plots illustrate autocorrelation func-
tions of the GARCH model. All the spikes lies within the confidence interval
which indicates that there are no linear dependencies within the time series,
the series is therefore a white noise series. The same can be concluded
when applying ACF on EGARCH and TGARCH. The results are found in
appendix.

19



Figure 7: Autocorrelation functions of the standardized residuals for
GARCH(1,1)

3.2.3 Testing for Heteroscedasticity

To determine whether or not heteroscedasticity occurs in sample data it is
essential to set up a hypothesis that test if heteroscedasticity is present. This
could be done with for example plots of residuals that show in what way
the variance is behaving; if it is constant, increasing, decreasing etc. Het-
eroscedasticity can also be tested with Whites test to determine whether the
variance of the error term is constant or varies over time. If heteroscedas-
ticity is present it is said that the disturbance term σ2 do not have constant
variance, see Tyrcha[8].

Another way to test for heteroscedasticity is to use the Ljung-Box test
as mentioned above. If autocorrelations are present it indicates that het-
eroscedasticity can be assumed. Otherwise, if the disturbances would be
autocorrelated then the assumption would be violated. The result from the
Ljung-box test and the QQ-plots above proved that the return series is un-
correlated and therefore heteroscedasticity can be assumed in data. When
heteroscedasticity is present in the residuals it also means that there are
ARCH-effects in the data. It is therefore convinient and approved to use
GARCH models for the existing sample data.
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4 Results

In the following section the results will be evaluated. Two different dis-
tributions of the error term are used when evaluating the models. Data
will be analyzed separately with the GARCH models chosen in this paper;
GARCH(1,1), EGARCH(1,1), TGARCH(1,1).

There are different ways to evaluate models and to compare the goodness of
fit for different GARCH models. Different methods can be used depending
on if they are nested or not. In other words how complex a model is and if it
is possible to transform the model into a simpler model by setting contraints
on some parameters. In this case the likelihood ratio would be evaluated
when determining whether some parameters are necessary or not. This is
not the case in this paper and will therefore not be used. Other evaluation
methods are AIC (Akaike Information Criterion) and BIC (Bayesian Infor-
mation Criterion) which are the most commonly used information criterion
tests. These tests can be used when comparing any model’s goodness of fit
against each other. AIC and BIC will be used in this paper for evaluation
and finding the most appropriate model for future forcasts. When using AIC
and BIC a smaller value is preffered. A small value indicates that the model
have a better fit for data. The GARCH family models will also be evaluated
by comparing the statistical significance of the parameters estimated by the
maximum likelihood.

After having presented the results for the whole 10 year period the data
will be divided in two periods. In this way it can be determined if the same
model fits the separate subperiods or if different models are more appropri-
ate when divinding the periods. The data is divided as follows; Period 1
with 736 observations between 2007/01/26 - 2009/12/30 which represents
the time before and during the financial crisis and Period 2 with 1781 obser-
vations between 2010/01/04 - 2017/01/25 which represents the time after
the financial crisis.
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4.1 GARCH(1,1)

GARCH(1,1)

Parameters Student-t Gaussian

α0 4.079 E-07∗∗ 3.943 E-04∗∗

α1 9.373 E-02∗∗∗ 9.427 E-02∗∗∗

β 9.057 E-01∗∗∗ 9.060 E-01∗∗∗

AIC -6.916841 -6.875109
BIC -6.905251 -6.865837

∗∗∗ = Statistically significant on 0.1% level
∗∗ = Statistically significant on 1% level

Table 2: Parameter estimation

When looking at the results from Table 2 all the coefficients show that they
are statistically significant, both for the Student-t and the Gaussian dis-
tribution. One difference is that the Gaussian and Student-t value for α0

have a slightly lower significance level than the rest of the parameters. α0

is significant on a 1% level when in the meantime the other parameters are
significant on a 0.1% level which is preferable. When looking at Table 2 the
results show the value obtained from AIC and BIC. The Student-t distri-
bution has a slightly smaller AIC compared to the Gaussian distribution.
The Student-t distribution also have a slightly smaller BIC value compared
to the Gaussian. This indicates that the Student-t distribution both have
the lowest AIC and BIC value. On the other hand the results are so close
that it is hard to make any conclusions that Student-t is definitely a better
choice.

4.2 EGARCH(1,1)

EGARCH(1,1)

Parameters Student-t Gaussian

α0 -0.13150∗∗∗ -0.116270∗∗∗

α1 -0.10408∗∗∗ -0.092278∗∗∗

β 0.98632∗∗∗ 0.987482∗∗∗

θ 0.12706∗∗∗ 0.130911∗∗∗

AIC -6.9388 -6.9058
BIC -6.9226 -6.8919

∗∗∗ = Statistically significant on 0.1% level

Table 3: Parameter estimation

Furthermore when analysig the EGARCH model in Table 3 all the parame-
ters show a statistical significance on a 0.1% level. The Student-t distribu-
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tion has slightly lower AIC and BIC values just as the results from GARCH.
It is however difficult to draw any conclusions or assumptions when the re-
sults only slightly varies.

4.3 TGARCH(1,1)

TGARCH(1,1)

Parameters Student-t Gaussian

α0 7.975 E-04∗∗∗ 8.430 E-04∗∗∗

α1 6.550 E-02∗∗∗ 6.825 E-02∗∗∗

β 9.384 E-01∗∗∗ 9.370 E-01∗∗∗

γ 8.451 E-01∗∗∗ 7.389 E-01∗∗∗

AIC -6.886106 -6.456248
BIC -6.872197 -6.444657

∗∗∗ = Statistically significant on 0.1% level

Table 4: Parameter estimation

When looking at Table 4 the parameters are statistically significant as before.
The statistical tests are presented and when comparing them it is as before
stated that the Student-t distribution have lower values. The AIC and BIC
value for Student-t are smaller and could therefore be prefered. The values
differ slightly more than the results from GARCH and EGARCH and it
could be said that in this case Student-t distribution could be a better choice
when determining the distribution. Although this does not come as suprise
that the Student-t distribution would have slightly better results when only
looking at the values from AIC and BIC. The sample data indicated heavier
tails that were present in the QQ-plots.

4.4 Dividing data in two periods

The question whether or not the same model fits data after dividing it in
two periods will be presented below. The time before and after the crisis
is analyzed in order to determine if the same model fits the subperiods
versus the whole period. But also to find out which interval creates the best
conditions for future forecast.
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Figure 8: Closing prices divided in two periods

Figure 8 demonstrates the divition of the whole time period. The first
period represents the time bofore and during the financial crisis when the
stock market had a huge breakdown. The prices declined and reached rock
bottom. Afterwards came a better period when the crisis was over, the stock
market began to rise and have recovered since the breakdown.

4.4.1 Period 1

As before mentioned Period 1 represents 736 observations between 2007/01/26
- 2009/12/30, the time before and during the financial crisis. This period
is characterized by a downfall when the prices reached bottom in the stock
market. The dataset will be analyzed in order to find the best fit and de-
termine which model suits Period 1 the best.

The results of the parameter estimation and the statistical tests of the
GARCH models are presented in appendix. In Table 5 GARCH(1,1) is
evaluated and the results indicates a statistical significance of α1 and β on
a 0.1% level. The intecept α0 is on the other hand not significant for both
the Student-t distribution and the Gaussian distribution. The AIC and BIC
value is slightly lower for Student-t than the values for the Gaussian distri-
bution.

Continuing on with EGARCH(1,1) in Table 6, all the parameters show a
statistical significance as in the results for the whole period presented above.
The Student-t distribution could as before be a better choice when only look-
ing at the values calculated from AIC and BIC. In Table 7 TGARCH(1,1)
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indicate a statistical significance for all the parameters besides the inter-
cept that has no statistical significance. With the same motive as before
the Student-t distribution would be chosen, due to the lower AIC and BIC
values.

4.4.2 Period 2

Period 2 represents the time 2010/01/04 - 2017/01/25 with 1781 observa-
tions after the financial crisis when the stock market started going upwards.
The price of the fund began to rise and have not declined by that much ever
since. This interval has no influences from the crisis, it will therefore be
analyzed if the sample fit improves. The results are presented in appendix.

When applying the same analysis as before it is evident that EGARCH(1,1)
with Student-t distribution has the lowest AIC and BIC values. All the pa-
rameters are statistically significant on 0.1% level compared to GARCH(1,1)
that have a lower significance level on the intercept. The difference is how-
ever slightly distinct between the models and does not vary by that much,
just as the results presented within the other time intervals.

When comparing the whole timeperiod with the single subperiods it be-
comes evident that period 2 without the financial crisis would be chosen
when applying a GARCH model for forecasts. The time interval 2010/01/04
- 2017/01/25 indicates a upgoing trend and is not affected by the breakdown
from period 1. This interval presents slightly stronger results compared to
the whole time interval in terms of AIC and BIC but also stronger signif-
icance when comparing the parameters. Period 1 is on the contrary worse
which also was expected by the judgement of fewer observations, but also
a hectic period were a downfall in the stock market was observed. This of
course had negative impact on the results and the ability to be used for
further forecasts.

4.5 Sensitiveness of model selection

One important perspective of this paper is to analyze and address the ques-
tion how sensitive the result is to the correctness of an assumed model. How
big is the uncertainty within model selection and how strong conclusions can
be made when the results between different AIC values only slightly varies.
According to Pawitan[10], the distance between a model and the true under-
lying distribution that generates data is essential to consider. It is important
to recognise what we get if we assume a wrong model, since the real data
analysis will always be wrong regardless of what is assumed. There are for
example no real data that are exactly Normal or Student-t distributed data.
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In order to find the best model with a distribution closest to the true dis-
tribution it is essential to maximize the likelihood. In principal, the model
with the closest distance to the true distribution should be chosen. The
AIC is used when comparing models and deciding which is the best and
most supported by the data. It is especially simple if the models are nested
to compare the Loglikelihood ratio, but that is not the case in this paper.
One of the themes of this paper has been to test whether H0 : normal or
student-t modeles are equally good for data, versus HA : one model is better
than the other. Choosing between two different distribution models is more
diffcult than comparing the Loglikelihood ratio between two nested models
and deciding wheter or not one extra parameter enhaced the goodness of fit.

When comparing the AIC values between non-nested models it is impor-
tant to consider some criterias that affects the result. Firstly, when a model
is tested the AIC value always improves when there are a lot data observa-
tions available. Secondly, when the AIC values only slightly varies between
the models it could be difficult to be absolutely sure which model is the best
one. Recall that AIC = 2K − 2l where l is the maximized loglikelihood
and K is the number of parameters in the model. In this case where there
are a lot of data observations available, the variable K becomes negligible
and the maximized loglikelihood that yields a larger value becomes a more
important variable.

5 Discussion and conclusion

In this paper there were three main themes being studied, first the evalua-
tion of which time interval created the best conditions for future prediction.
Then the second theme to determine which distribution for the error term
gave the best sample-fit and the third theme was to evaluate and find a
model from the GARCH family that had the best sample-fit in terms of
AIC and BIC.

One main theme was to find out whether the whole timeperiod or a sub-
period created the best conditions for volatility forecasting. It was evident
that period 2 without the financial crisis was preferred because of the best
sample-fit and the best values from the information criterion tests. This
could again be assumed and a possible reason might be that the dynamics
of the volatility changes over time, especially during the financial crisis where
the volatility and the dynamics of the market shifted. It was evident that
EGARCH(1,1) were slightly better than GARCH(1,1) and TGARCH(1,1) in
terms of AIC and BIC. The conslusion here by the judgement of the resluts
is that more complex models provide better sample-fit than simpler models
with fewer characteristics. If that would not be the case then EGARCH(1,1)

26



and TGARCH(1,1) would be pointless and they would have been reduced
to the simpler GARCH(1,1). But, in this case the GARCH model is nested
in both EGARCH and TGARCH, the results and the conslusion was there-
fore quite expected. Further evaluation indicates that EGARCH(1,1) had
slightly better values than TGARCH(1,1). Both AIC and BIC resulted in
smaller values and all the parameters were statistically significant. But on
the other hand, the results between the models were only slightly different
and it is difficult to be absolutely sure which model will perform the best in
reality. When comparing two non-nested models with sligtly different AIC
values it becomes more difficult to decide which one is the best.

The impact of the distribution error term was quite evident when look-
ing at the sample fit. It was clear that the Student-t distribution provided
a slightly better sample fit than the Gaussian distribution whithin all time
intervals in terms of AIC and BIC. Based on the QQ-plots that indicated
heavier tails it was quite expected that the Student-t distribution would
have better sample fit. When comparing the characteristics of sample data
the results indicated a negative skewness and a high value of kurtosis, it was
further quite evident that sample data was heavy-tailed. The return series
also indicated significantly heavier tails when looking at the shape of the
plot. Theoreticaly, a symmetric distribution as the Gaussian is not always a
realistic assumption because of the leverage effect. The effect considers the
larger impacts from negative shocks that occurs in the financial market and
therefore the Student-t indicates a distribution closest to the true distribu-
tion.

When closely looking at the results it is obvious that the parameters and
the statistical test does not vary by that much. The GARCH models belong
to the same GARCH family and only have some different characteristics
between each other. For instance, EGARCH and TGARCH are improved
models that overcome the weakness of the symmetric GARCH and allows
for asymmetric effects between positive and negative shocks in stock price,
which is coherent to the reality. In theory it does not come as a suprise
that complex models outperformes simpler models, it is also explicable that
the results only slightly varies because of the closeness within the GARCH
family.
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5.1 Further research

For further investigation and to increase the understanding of volatility mod-
els it could be convinient to find out whether a higher order of GARCH
models would perform a better fit. The next natural step would also be
to perform a forecast for the three different GARCH models in order to
evaluate the performance and compare the models against each other. An-
other thing to research would be to reduce the time intervals. One reason is
that the volatility might have changed during this long time horizon. The
volatility over this sample time is not stationary and the dynamics of the
volatility might have shifted. One major impact was the financial crisis
that especially changed the dynamics of the volatility. Further investigation
with back-testing could be done in order to estimate the performance for
the models, this would enhance the evaluation of the performance for the
different GARCH models in this paper.
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6 Appendix

6.1 ACF

Figure 9: Autocorrelation functions of the standardized residuals for
EGARCH(1,1)

Figure 10: Autocorrelation functions of the standardized residuals for
TGARCH(1,1)
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6.2 QQ-plot

Figure 11: QQ-plot for GARCH, EGARCH & TGARCH with Student-t
distribution used on the whole time interval

Figure 12: QQ-plot for GARCH, EGARCH & TGARCH with Student-t
distribution used on period 2 without the financial crisis
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6.3 Period 1

GARCH(1,1)

Parameters Student-t Gaussian

α0 2.277 E-06 1.742 E-06
α1 9.798 E-02∗∗∗ 9.147 E-02∗∗∗

β 8.945 E-01∗∗∗ 9.029 E-01∗∗∗

AIC -5.799185 -5.784202
BIC -5.767826 -5.759115

∗∗∗ = Statistically significant on 0.1% level

Table 5: Parameter estimation and statistical test for Period 1

EGARCH(1,1)

Parameters Student-t Gaussian

α0 -0.067647∗∗∗ -0.048526∗∗∗

α1 -0.108492∗∗∗ -0.094206∗∗∗

β 0.992841∗∗∗ 0.994789∗∗∗

θ 0.106202∗∗∗ 0.091662∗∗∗

AIC -5.8256 -5.8167
BIC -5.7817 -5.7791

∗∗∗ = Statistically significant on 0.1% level

Table 6: Parameter estimation and statistical test for Period 1

TGARCH(1,1)

Parameters Student-t Gaussian

α0 1.131 E-04 9.082 E-05
α1 5.853 E-02∗∗∗ 5.059 E-02∗∗∗

β 9.454 E-01∗∗∗ 9.537 E-01∗∗∗

γ 9.745 E-01∗∗∗ 1.000 E-01∗∗∗

AIC -5.621123 -4.692115
BIC -5.583493 -4.660756

∗∗∗ = Statistically significant on 0.1% level

Table 7: Parameter estimation and statistical test for Period 1
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6.4 Period 2

GARCH(1,1)

Parameters Student-t Gaussian

α0 5.918 E-07∗ 5.435 E-04∗∗

α1 9.158 E-02∗∗∗ 9.878 E-02∗∗∗

β 8.986 E-01∗∗∗ 8.954 E-01∗∗∗

AIC -7.374472 -7.322697
BIC -7.359059 -7.310367

∗∗∗ = Statistically significant on 0.1% level
∗∗ = Statistically significant on 1% level
∗ = Statistically significant on 5% level

Table 8: Parameter estimation and statistical test for Period 2

EGARCH(1,1)

Parameters Student-t Gaussian

α0 -0.27059∗∗∗ -0.26323∗∗∗

α1 -0.12039∗∗∗ -0.11749∗∗∗

β 0.97302∗∗∗ 0.97330∗∗∗

θ 0.11187∗∗∗ 0.12796∗∗∗

AIC -7.4022 -7.3628
BIC -7.3807 -7.3443

∗∗∗ = Statistically significant on 0.1% level

Table 9: Parameter estimation and statistical test for Period 2

TGARCH(1,1)

Parameters Student-t Gaussian

α0 1.349 E-04∗∗∗ 1.428 E-04∗∗∗

α1 6.455 E-02∗∗∗ 7.292 E-02∗∗∗

β 9.278 E-01∗∗∗ 9.223 E-01∗∗∗

γ 1.000 E+00∗∗∗ 8.507 E-01∗∗∗

AIC -7.342345 -7.002533
BIC -7.323850 -6.987121

∗∗∗ = Statistically significant on 0.1% level

Table 10: Parameter estimation and statistical test for Period 2
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