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Abstract

The generalized survival model (GSM) is a parametric spline based
survival model, whose model scope includes many widely used para-
metric survival models. The GSM is implemented in the R package
rstpm2. Performance checks of the package has previously been made
on right censored data. In this thesis we aim to assess the perfor-
mance GSM implementation on interval censored data. We apply
the implementation to simulated proportional hazards data from the
Weibull and mixture Weibull distributions, and to the Signal Tand-
mobiel data set. We then compare the GSM to a Weibull proportional
hazards (PH) model, implemented in the survreg function of the sur-

vival package, which provides the core survival analysis routines in
R.

Applied to Weibull data, we find that the special case of an propor-
tional hazards GSM wih one spline term yields identical estimators as
the standard PH model. In the case of a mixture of Weibull distribu-
tions, the GSM successfully captures the more complex distribution,
outperforming the PH model. We find that in the case of very coarse
censoring, the GSM fails to adequately capture the data. Finally we
apply a lognormal accelerated failure time (AFT) model, and a pro-
bit GSM to the Signal Tandmobiel data set. The GSM does seem to
capture more detailed features of the data than the AFT, suggesting
that it is a better fit.

We conclude that the GSM implementation performs well on in-
terval censored data, given the types of data tested and a reasonable
resolution of the censoring.
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1 Introduction and background

1.1 Objectives and background

In the field of time-to-event data and survival analysis, one attempts to analyse
the time to some event occurring. The theory is widely used in many fields,
including medicine and engineering [11]. Two common model families are the
parametric and non-parametric models. In this thesis, we will focus on the
former.

In 2009, Younes and Lachin [18] introduced a parametric “link-based model”,
with a more flexible nature than previous models. Their model scope included
many other popular parametric models, such as the proportional hazards model
and the proportional odds model, making it a generalization of these. The
model has been developed by Royston and colleagues under the name flexible
parametric models to include general link functions for natural splines of log
time. In 2018, Liu, Pawitan, and Clements [10] generalized these models to allow
for a broader range of parametric and penalized smooth functions and used the
name generalized survival models (GSM). Liu and colleagues also presented an
implementation of GSMs in the R package rstpm2 [1], and applied the model to
right censored data.

We will use the R package survival [14] created by Therneau, as a comparison
tool. The survival package contains many of the common survival analysis tools,
and is considered a canonical package in survival analysis. In particular, it
contains an accelerated failure time model in the survreg function.

In this thesis, our aims are:

1. To assess the statistical properties of the GSM implementation on simu-
lated interval censored data. We will do this by considering specific cases
when the GSM is equivalent to an accelerated failure time and proportional
hazards model, as well as simulating from a mixed Weibull proportional
hazards model.

2. We will demonstrate the flexibility of the GSM by applying it to the
Signal-Tandmobiel R© data set.

1.2 Data set

The Signal-Tandmobiel R© study [16] is a large longitudinal study of oral hygiene
for children conducted in Flanders, Belgium during 1996–2001. There were
over 6000 seven year old children who participated in the study, making up
approximately 7% of the target group. As a part of the study, an oral health
education program was conducted. The goals of the study were to determine
the oral health condition of Flemish school children in the ages 7–12, to educate
the children in this age group about oral health, as well as to measure the effect
of the health education program. The children were divided in three groups:

Group A: The 4468 children in this group were followed during the six years
the study was performed. They were examined annually, and participated
in the health education program.

Group B: A control group of 520 children not participating in the study. These
children were examined in the first and last year of the study, allowing a
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comparison with the children in group A. The children in this group did
not participate in the health education program.

Group C: The children in this group were selected anew each year, to act as
a cross-sectional control group. Each year, the group comprised approxi-
mately 500 children. The children in this group did not participate in the
health education program.

Since the children were only visited on a yearly basis and not continuously,
this study yielded what is called censored data, which will be introduced in
Section 2.2.

2 Concepts for survival analysis

We will introduce some concepts that are common in the analysis of time-to-
event data. This mainly consists of defining what we actually mean by censored
data, and some useful functions. The definitions presented in this section are
adapted from Cox and Oakes [2].

2.1 The survival, hazard and cumulative hazard functions

Throughout this paper, we are going to refer to the survival, hazard, and cumu-
lative hazard functions. There are several different ways of representing these
in terms of each other, some of which are presented in Section 2.1.3. All of
these functions refer to a non-negative, continuous random variable T . We will
regularly omit subscripting functions of random variables when the underlying
random variable is obvious from context, i.e. write f(t) instead of fT (t).

2.1.1 Survival function

We begin by defining the survival function.

Definition 1 (Survival function, p. 13 in [2]). The survival function
— denoted ST (t) — of a random variable T , is defined as

ST (t) = PT (T > t) =

∞∫
t

fT (x)dx. (2.1)

That is, S(t) is the probability that the event happens after time t — or,
conversely, that the event does not happen by time t. The connection between
the survival function and the cumulative distribution function F (t) is simply
that

S(t) = 1− F (t).

As a consequence of this relation, the survival function is monotonically decreas-
ing, and satisfies S(0) = 1 and lim

t→∞
S(t) = 0. This follows directly from the

corresponding properties of the cumulative distribution function. Note that im-
proper distributions may also be possible, such as due to statistical cure, where
lim
t→∞

S(t) > 0.
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Example 2.1. The Weibull distribution is a common choice for para-
metric survival analysis models. We will use it as an example through-
out this paper to illustrate certain concepts. A Weibull distributed
random variable T with scale parameter λ and shape parameter k has
density function

fT (t) =
ktk−1

λk
e−(t/λ)k , t, λ, k ≥ 0.

Using Equation 2.1, we can calculate the survival function of T :

ST (t) =

∞∫
t

kxk−1

λk
e−(x/λ)k dx = e−(t/λ)k .

2.1.2 Hazard function

Another function that appears in time-to-event analysis is the hazard function.
The interpretation of the hazard function is less intuitive than the survival
function.

Definition 2 (Hazard function, p. 14 in [2]). The hazard function
of a random variable T is defined as the instantaneous rate of event
occurrence:

hT (t) = lim
∆t→0

PT (T < t+ ∆t | T ≥ t)
∆t

. (2.2)

It is the conditional limiting probability of the event occurring in the interval
[t, t + ∆t), divided by the length of the interval, as the length of the interval
goes to zero. The hazard function is closely related to the density function f(t),
as will be presented shortly.

Sometimes one also has use of the cumulative hazard function H(t), defined
by

H(t) =

t∫
0

h(t′)dt′, (2.3)

which, as we shall see, has a close connection to the survival function.

2.1.3 Connecting S(t) and h(t)

Expanding the conditional probability in the numerator of Definition 2 using
the definition of conditional probability, the following expression for the hazard
function is obtained:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t · S(t)
=
f(t)

S(t)
. (2.4)

which, if one notices that the derivative of S(t) with regards to t is −f(t), then
the hazard function can be re-expressed as:

h(t) = − d

dt
logS(t).
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Using this formula to rewrite the survival function in terms of the hazard func-
tion, we obtain

S(t) = exp

−
t∫

0

h(t′)dt′

 = exp {−H(t)} . (2.5)

Example 2.2. Continuing with the Weibull distribution, we can use
Equation (2.4) to calculate the hazard of T ∼Weibull(k, λ):

h(t) =
f(t)

S(t)
=
ktk−1

λk
. (2.6)

The cumulative hazard function can either be calculated by integrating
the hazard, like in Equation (2.3), or using Equation (2.5). Either way,
we will arrive at the cumulative hazard function:

H(t) = − log(S(t)) =

t∫
0

h(t′)dt′ =

(
t

λ

)k
.

2.2 Censored data

In survival analysis one attempts to model the time to some event from a lon-
gitudinal study, which gives rise to a special kind of imprecision in the data.
Consider a hypothetical study on new born children investigating the time until
the child learns to walk. Usually parents notice when their toddler starts wan-
dering away, but for the sake of this example let us assume the children in the
study have especially inattentive parents. A natural way to collect these data
would be to select some infants, observing their walking skills once a month
until they can successfully take a few steps. However, the time when a child
actually learned to walk could be at any point in time in between the last test
before the first successful test, and the first successful test. This is the idea of
interval censored data.

Let us put this in more mathematical terms. The participants in the study
will throughout the paper be referred to as units. When talking about a failure
time, we mean the occurrence of the event of interest. The times the units are
observed will be referred to as examinations. In the previous example, the time
the ith child learned to walk would be referred to as the failure time of the ith
unit. Denote the failure time of the ith unit by Ti, the last examination before
Ti by Li, and the first examination after Ti by Ri. The concept is visualized in
Figure 1.

Other types of censoring are left- and right-censored data. A right censored
observation is only known to have happened after some point in time, and a left
censored observation is only known to have happened before some point in time.
Right and left censored data occur as special cases of interval censored data.
With right censored data we get the interval [Li,∞), and with left censored
data we get the interval (0, Ri].
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Figure 1: A visualization of censored data, displaying the end points of the
censored interval Li and Ri, as well as the actual failure time Ti.

3 Likelihood theory

3.1 Non-informative censoring

In the case of exact data, the contribution of an observation t to the likelihood
L(θ) for parameters θ is simply fT (t|θ). It would seem reasonable to assume
that the contribution of observing an observation censored on [L,R] is simply
P (T ∈ [L,R]), and under certain circumstances this is indeed the case. It turns
out [12] that this holds under the assumption of non-informative censoring. In
this paper we will not go into very much mathematical detail of this assumption,
but merely try to give the reader some intuition.

We will use the informal definition of non-informativity presented on page
42 in [7]. The assumption states that the distribution of failure times yields no
information about the distribution of censoring intervals, and vice versa.

Now, one might wonder if there are any cases of informative censoring in
practice. The answer is yes, and this will hopefully be clarified in the following
two examples.

Let us revisit the fictional infant study previously discussed in Section 2.2.
Consider a situation where the event of a child learning to walk made the parents
of said child lose interest in the study, and drop out before the study was over.
Then the distribution of the failure times heavily influences the distribution of
the censoring intervals, since no examinations would be visited after the event
occurred. This is a case of informative censoring, since the failure times influence
the distribution of the censoring intervals.

Another possible scenario would be if the examination process of the children
had a significant impact on their walking performance. Then the children at-
tending more examinations would learn to walk faster than the other children.
Or in other words, the distribution of censoring intervals yields information
about the failure times, and thus the censoring is informative.

A mathematical definition of the non-informativity assumption can be found
in [12].

There are two other assumptions usually made about the censoring, random
censoring and independent censoring [7]. These treat the randomness of the
censoring process, and basically assume that the hazards of censored units are
the same as those of the non censored units over the whole data set, as well
as conditioned on covariates. These assumptions will not be discussed in more
detail, since these assumptions are automatically fulfilled if the failure times
and censoring times are simulated independently.
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3.2 Likelihood theory for censored data

When we have exact observations, the contribution of an observation to the like-
lihood function is fT (t|θ). Under the assumption of non-informative censoring,
the contribution of an observation censored on the interval [L,R] to the likeli-
hood is PT |θ(L ≤ T < R). Expressing this probability in terms of the survival
function, we get that

PT |θ(L ≤ T < R) = S(L|θ)− S(R|θ). (3.1)

In the special cases right and left censoring of interval censoring, (3.1) simplifies
to S(L|θ) and 1 − S(R|θ) = F (R|θ) respectively, recalling that S(0) = 1 and
limt→∞ S(t) = 0. The censoring type of an observation and the likelihood
contribution is summarized in Table 1.

Censoring type Likelihood contribution
Exact, L = R = t f(t|θ)
Interval censored, [L,R] S(L|θ)− S(R|θ)
Left censored, [0, R] 1− S(R|θ) = F (R|θ)
Right censored, [L,∞) S(L|θ)

Table 1: The different types of censored observations, and their likelihood con-
tributions.

Let θ be a parameter vector, E be the set of exact observations, L the set
of left censored observations, R the set of right censored observations, and I
be the set of censored observations. The likelihood and log likelihood function
becomes

L(θ|E,L,R, I) =
∏
t∈E

f(t|θ)
∏
r∈L

(1− S(r|θ))
∏
l∈R

S(l|θ)
∏

(l,r)∈I

(S(l|θ)− S(r|θ)),

(3.2)

l(θ|E,L,R, I) =
∑
t∈E

log f(t|θ) +
∑
r∈L

log {1− S(r|θ)}

+
∑
l∈R

log {S(l|θ)}

+
∑

(l,r)∈I

log {S(L|θ)− S(R|θ)} . (3.3)

The parameter vector θ̂ which maximizes the likelihood function (or equivalently
the log likelihood function) is called the maximum likelihood (ML) estimator of
θ [4]. The ML-estimator can be calculated with the use of the derivative and
second derivative of the (log) likelihood function. As per usual, the score vector
is obtained by taking the gradient of the log likelihood

∇l(θ|E,L,R, I) =

(
∂l(θ|E,L,R, I)

∂θi

)
i

.

The Fisher information matrix is obtained by taking the negative hessian of the
log likelihood

I(θ|E,L,R, I) = −
(
∂2l(θ|E,L,R, I)

∂θi∂θj

)
i,j

.
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Example 3.1. For this example, we will consider exponentially dis-
tributed failure times Ti ∼ Exp(λ) with mean λ−1. Given nE exact
observations, and nI interval censored observations we get explicit ex-
pressions of the likelihood and log likelihood using Equation (3.2) and
(3.3).

L(λ|E, I) = λnE
∏
t∈E

e−λt
∏

(L,R)∈I

(
e−λL − e−λR

)
,

l(λ|E, I) = nE log λ− nEλt̄+
∑

(L,R)∈I

log
(
e−λL − e−λR

)
,

where t̄ = 1
nE

∑
t∈E t. As we shall now see, the last sum does not

simplify. The score function is calculated by differentiating the log-
likelihood with respect to λ,

∇l(λ|E, I) =
nE
λ
− nE t̄−

∑
(L,R)∈I

Le−λL −Re−λR

e−λL − e−λR
.

Without the censored observations the solution to the score equation
can be expressed analytically, but the censoring clearly complicates the
expression. The Fisher information becomes

I(λ|E, I) = − d

dt
(∇l(λ|E, I))

=
2nE
λ
−

∑
(L,R)∈I

(
L2e−λL −R2e−λR

) (
e−λL − e−λR

)
(e−λL − e−λR)

2

−
∑

(L,R)∈I

(
Le−λL −Re−λR

)2
(e−λL − e−λR)

2 .

The expressions for the score and information are not presented here in
expectation that the reader will have any use of these expressions, but
merely to illustrate the fact that they will require a numerical solution.
This is also the reason for going with the exponential function for this
example, the expression for the Fisher information matrix in the case
of Weibull failure times is more complex.

In practice the score and Fisher information can also be calculated
using finite differences in the log likelihood. For example, in one vari-
able we have

∇l(θ) ≈ l(θ + h) + l(θ − h)

2h
,

I(θ) ≈ l(θ + h)− 2l(θ) + l(θ − h)

h2
,

for sufficiently small h.
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4 Survival analysis models

In this section we present three parametric survival analysis models. In Sec-
tion 11.1.2 of the appendix we describe the non-parametric Kaplan-Meier esti-
mator of the survival function.

4.1 Proportional hazards model

Before we can look at a more general model, we will introduce the proportional
hazards (PH) model. In this model, one assumes that the hazard function hx(t)
of t under the effect of a covariate x is proportional to the baseline hazard h0(t).
Let us clearly define what we mean by this.

Definition 3 (Proportional hazards model, p.70 in [2]). Let x be a
vector of covariates, hT (t;x) be the hazard function of a random vari-
able T given x, and hT (t; 0) be the baseline hazard of t. By employing
a proportional hazards model, we assume the effect of covariates sat-
isfies the relation

hT (t;x) = hT (t; 0)ψ(x), ψ(0) = 1.

The function ψ is a link function between the covariates and their effect. In

this thesis, we will always put ψ(x) = eβ
Tx for some parameter vector β and

covariate vector x. We see that for any covariate vector x, h(t;x) ∝ h(x; 0),
which is the source of the name proportional hazards model.

This model yields a simple interpretation of covariate effects. Given a binary
covariate and a parameter β = log(2), under the assumption of the PH we can
state that the hazard of those under covariate effect is always twice that of those
not under covariate effect.

Example 4.1. Recall that the hazard function of a Weibull-distribution
with scale parameter λ and shape parameter k is

h0(t) =
ktk−1

λk
.

Under the PH model we find, using Definition 3, the hazard of t under
covariate effect from x to be

hx(t) =
ktk−1

λk
eβ
Tx. (4.1)

In Figure 2 the two hazard functions h0(t) and h1(t) are illustrated
for the special case when x is a binary covariate, β = 1, λ = 1, and
k = 1.4.

The expressions for the cumulative hazard, log cumulative hazard,
and survival function can be derived from Equation (4.1) and the re-
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lations in Section 2.1.3.

H(t|x,β) =

t∫
0

h(t′|x,β)dt′ =
tk

λk
eβ
Tx

log(H(t|x,θ)) = k log(t)− k log(λ) + βTx (4.2)

S(t|x,θ) = exp {−H(t|x,β)} = exp

{
− t

k

λk
exp

{
βTx

}}
.

Taking one extra look at Equation (4.2), we notice that the effect of
covariates is linear on the log cumulative hazard scale.

Figure 2: Illustrated are the hazard functions h0(t) and h1(t) from Example 4.1,

as well as the ratio h1(t)
h0(t) between them. Notice how because of the proportional

hazards effect the ratio between the two hazard functions is constant.

4.2 Accelerated time model

Another common parametric survival model is the accelerated failure time model
(AFT). The idea behind the AFT is that the time to failure of a unit under effect
of covariates x is accelerated by some constant amount ψ(x). Let us define what
we mean by this.

Definition 4 (Accelerated failure time model, p. 64 in [2]). Denote
the survival function of a random variable T affected by covariates in
x by ST (t;x). By employing the accelerated time model we assume
that the effect of covariates can be described by the relation

ST (t;x) = ST (ψ(x) t; 0) .

Just like with the PH model, we will always let ψ(x) = eβ
Tx in this paper.

Expressions for the density, hazard, and cumulative hazard of a unit under
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covariate influence can be derived from their definitions:

fT (t;x) = ψ(x)fT (ψ(x)t; 0) (4.3)

hT (t;x) = ψ(x)hT (ψ(x)t; 0) (4.4)

HT (t;x) = HT (ψ(x)t; 0) (4.5)

One way to think of the AFT assumption is that the underlying random variable
(time to failure) of a unit under covariate effect Tx is identically distributed to
T0/ψ(x). This also yields the interpretation of covariate effects. An example
is if we have a binary covariate, with parameter value β = log 2. Then, a unit
under the influence of the covariate cuts the expected time to failure in half
compared to if it was not under covariate effect.

Example 4.2. Let us assume that the AFT model holds for some
independent and identically distributed failure times Ti under the effect
of covariates x, and assume a baseline Weibull distribution. That is,

S0(t) = exp
{
− (t/λ)

k
}
.

Under the AFT, the survival, density, hazard, and cumulative hazard
functions conditioned on a covariate vector x is found to be

Sx(t) = exp

{
−
(

t

λe−βTx

)k}

fx(t) =
k

λe−βtx

(
t

λe−βTx

)k−1

exp

{
−
(

t

λe−βTx

)k}

hx(t) =
k

λe−βtx

(
t

λe−βTx

)k−1

Hx(t) =

(
t

λe−βTx

)k
,

using Definition 4.2 and Equations (4.3), (4.4), and (4.5). Writing this
is terms of the log cumulative hazard and reparametrizing β̃ = kβ we
obtain

log (Hx(t)) = k log t− k log λ+ β̃Tx

Notice that this is exactly the same as the PH model when assuming
a baseline Weibull distribution derived in Example 4.1. In general,
this is not the case. Under the AFT model, and Weibull baseline
distributed failure times T0 ∼ Weib (k, λ), covariate affected failure

times are distributed according to Tx ∼Weib
(
k, λe−β

Tx
)

.

4.3 Generalized survival model

As the name suggests, the generalized survival model (GSM) is a generalization
of parametric survival models. It is more general in the sense that it allows for
a much wider variety of distributions of the failure times than, for example, the
proportional hazard model can offer.
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Definition 5 (Generalized survival model, section 2.1 in [10]). Let g
be a link function, t be a realization of a failure time (positive random
variable) T , x a covariate vector, and θ a parameter vector. The
generalized survival model takes the form

g(S(t|x;θ)) = X(t,x)θ = η(t,x;θ) (4.6)

where X is the model matrix, and η is a linear predictor.

We could express the linear predictor as η(t,x;θ) = g(S0(t)) + βTx, which
expresses the covariate effects as being additive. Note that the model matrix X
is time dependent, where the linear predictor is a function of time. Hopefully
the example in the end of this section will help to illustrate this.

What assumptions are we putting on the link function? Well, as the name
suggests, the purpose of a link function is to act as a link between the linear
predictor (whose image can be all of R) and in this case, the survival function
(whose image is the interval (0, 1)). Then it seems like a necessity that such a
function is invertible, since we want to be able to retrieve the survival function
given the linear predictor, just as well as we can obtain the linear predictor
given the survival function. We will use the same assumptions on the link
function made by Younes and Lachin [18] when they first presented the link-
based model that the GSM stems from. Thus, we assume that the link-function
g : (0, 1)→ R is a bijective, strictly monotone function and known. This yields
that g is invertible. We also make another assumption about g that is not made
in [18], and that is that the inverse link function is differentiable with respect to
t. The reason for this will become apparent when we write the hazard function
under the GSM.

The linearity of η refers to the fact that it is linear with respect to the
parameter vector θ. From the model matrix representation of the GSM, the
linearity is captured by the matrix multiplication of X with θ, while the way
in which the model matrix depends on time may be complex. This is hopefully
clarified in the example at the end of this section.

One assumption that we make about η is that it is twice differentiable with
respect to time. The need for the once differentiable assumption will (just
as with the link function) become apparent when we try to write the hazard
function under the GSM. In biological settings, it is common to assume that
the underlying hazard “changes smoothly with time” [18]. Taking smooth to
mean differentiable, we will see that this means exactly that the linear predictor
should be twice differentiable in the next paragraph.

Let G = g−1 be the inverse link function. Using the Equation (4.6), and
the connections between the survival, hazard, and cumulative hazard found in
Section 2.1.3, we find explicit expressions for them:

S(t|x;θ) = G(η(t,x;θ))

H(t|x;θ) = − log (G(η(t,x;θ)))

h(t|x;θ) = −G
′(η(t,x;θ))

G(η(t,x;θ))
η′t(t,x;θ). (4.7)
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Here we see the reason for differentiability of the inverse link function and
the twice differentiability of the linear predictor. If they were not, the hazard
function would not be defined and differentiable under the GSM.

In stpm2, the default is that the time effects in the linear predictor are
modelled as natural splines for log time [18]. That is, we assume that the true
baseline hazard can be expressed as

g(S0(t)) = sdK(log t)

where sdK(log t) is a spline of degree d over knots in the set K. It is not neces-
sary to model on the log time scale, but it has been suggested a good choice for
the most common link functions[10]. A natural spline is a picewise polynomial
function, with a zero second derivative in the left- and rightmost knots. The
values of t where the polynomial pieces meet are called knots, and the spline
is required to be continuous and twice differentiable at these knots (recall the
remark made earlier in this section about the underlying linear predictor chang-
ing smoothly with respect to time). Given a degree d, and |K| knots in the set
K, there exists a basis spline having the property that all splines sdK(t) can be
written as a linear combination

sdK(log t) =

|K|−1∑
i=1

θiB
d
i (log t)

where Bdi (log t) is a basis function with natural spline properties. In R, the
natural splines are calculated by the splines::ns() function using a matrix
projection of B-splines. An algorithm for constructing the B-splines is presented
in [18]. Having found a basis, we fit the spline by adjusting the parameters θi.
In order to enforce positivity of the hazard, we use a quadratic penalty to
ensure that η′t(t,x;θ) > 0 [10]. One of the advantages of the GSMs is that the
calculation of survival does not require integration, while the calculation of the
hazard requires differentiation of the linear predictor with respect to time.

Wold [17] proposed that knot number and placement should not be consid-
ered ordinary parameters of the curve fitting process, but instead thought of as
deciding the underlying functional form. Instead, Wold suggested that knots
should be placed in areas where data density is high, or places where it attains
a maximum or minimum. In stpm2 the knots are placed on the observed fail-
ure time quantiles, a strategy which has been suggested when nothing is known
about the underlying distribution the data [18]. In the case of censored ob-
servations the knots are placed on the quantiles of the left censoring interval
boundary if the unit is interval or right censored, and on the right censoring
interval boundary if the unit is left censored. The number of knots to use can
be determined using forward selection on AIC [18].

Example 4.3. Consider this special case of the GSM:
Let x be a covariate vector of length n, and

θ = (k, α, β1, . . . , βn)
T

g(S(t)) = log(− log(S(t)))

η(t,x;θ) = k log t+ α+ βTx.
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Notice that the linear predictor is differentiable with respect to time,
η′t(t,x;θ) = k

t . Also, the link function has a differentiable inverse,
G(η(t,x;θ)) = exp {− exp {η(t,x;θ)}}.

Then, the model matrix and parameter vector for n covariates and
m units (denoting the jth covariate of the ith unit by xij) is simply

X(t,x) =


log t 1 x11 . . . x1n

log t 1 x21 . . . x2n

log t 1 x31 . . . x2n

...
...

...
. . .

...
log t 1 xm1 . . . xmn


and 

k
α
β1

...
βn

 .

Now, using equation (4.7) we can find an expression for the hazard
function:

h(t|x,θ) = ktk−1eαeβ
Tx.

Reparametrizing α = −k log λ we get the hazard function of the Weibull
distribution under PH (or equivalently AFT) effects, presented in Ex-
amples 4.2 and 4.1. That is, this special case of the GSM is equivalent
to the AFT and PH models. This fact will be used to compare the GSM
implemented in the R package rstpm2 to the AFT in the standard R
package survival in Section 7.

5 Statistical comparison methods of models

Following Liu et al [10], we will primarily use two methods of comparing dif-
ferent models. The first one is a quantitative measure, simply measuring the
area between the estimated baseline hazard curve, and the real baseline hazard,
between the first and last observed failure time. That is:

A(ĥ, h) =

∫ tmax

tmin

|ĥ0(t′)− h0(t′)|dt′

In this paper we will estimate the hazard functions and use the average area be-
tween the true hazard and the estimated hazards. We will refer to this measure
as the area difference of a model. This is a very simple way to compare models,
where the more an estimated hazard diverges from the true hazard, then the
larger the area between them becomes.

Another method of comparison that we are going to use is a graphical one.
Recall the definition of the emprical mean square error:

EMSE(Ŷ ) =
1

N

N∑
i=1

(Ŷi − Yi)2
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In this case though we are not comparing a estimated parameter and a true
parameter value, or predictions with observed values, but an estimated hazard
function with the true underlying hazard function, depending on time. That is,
the EMSE of the hazard function is itself going to be a function, dependent on
time. Given i = 1, · · · , N estimated baseline hazard functions, the ith of which
is denoted ĥ0,i(t), the EMSE is:

EMSE(ĥ0(t)) =
1

N

N∑
i=1

(
ĥ0,i(t)− h0(t)

)2

.

In this thesis, we compare the EMSE of different models over the region of time
where events can be observed.

6 Simulation methods

We will simulate interval censored data according to prescription 1, p.675 in [8],
also discussed in [3]. The idea is to generate examination times in some manner,
and then independently of that simulate failure times from the desired distribu-
tion. Examination times are the moments when we observe the unit. If a failure
occurs in between two examinations, it is censored on that interval. Different
interval lengths are obtained by each unit missing out on each examination with
some predestined probability p. In the next paragraph the simulation method
is described in more detail.

Let N be the total number of observations we want to simulate, indexed by
i.

1. SimulateN failure times t1, t2, . . . , tN from a distribution with some known
parameter θ. This step is described specifically for the Weibull distribution
and mixed Weibull distribution in Sections 7.1 and 8.2 respectively.

2. Generate M potential examination times Cj , j = 1, 2, . . . ,M . In Sec-
tion 7 we simply use Cj = j, while in Section 8 we consider more frequent
examinations as well. These potential examination times are the same for
all units in the sample.

3. For every unit, each potential examination is visited with some probability
p. The largest measure time smaller than ti becomes Li, the lower bound of
the censoring interval. The smallest measure time larger than ti becomes
Ri, the upper bound of the censoring interval.

This method can produce intervals of different lengths by adjusting the visiting
probability p, and produces left, right, and interval censored data. If there is no
visited measure time before ti, then the observation is left censored. Similarly, if
there is no visited measure time after ti, the observation becomes right censored.
If none of the measure times are visited, the observation is discarded.

Recall the earlier discussion on non-informativity in Section 3.1. The simu-
lation method presented in this section satisfies the non-informativity assump-
tion, since the measure times and failure times are simulated independently.
An example of a simulation method subject to informative censoring could look
something like this:
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Simulate failure times Ti and generate potential measure times Cij , j =
1, . . . ,M exactly like in the previous proposed method. Now, for the ith unit,
the jth measure time Cij is visited with the probability p if Cij < Ti, and
zero otherwise. With this simulation method the censoring intervals are clearly
dependent on the failure times, and therefore informative.

7 Weibull simulation study

In this section, we will continue the analysis from Example 4.3. We will simulate
from a Weibull distribution with a binary and a continuous covariate, and fit
both the GSM and AFT models to the data. We will only consider the special
case of the GSM discussed in the example, when it is equivalent to the AFT
model. This will allow us to make a simple performance check of the GSM
implemented in stpm2 compared to the AFT implemented in survreg.

7.1 Data simulation

The data were simulated according to the procedure described in Section 6.
Failure times were simulated from the Weibull distribution by the following
procedure.

1. Simulate n uniformly distributed numbers ui, i = 1, · · · , n, between 0 and
1.

2. Using the quantile function, qW (u) of the Weibull distribution with shape

k and scale λe−β
Tx, the values qW (ui) are observations from the Weibull

distribution.

We used M = 10 potential examinations throughout this simulation. The prob-
ability with which each examination is visited was put to 0.9 with one exception
(which will be explained shortly).

We use a total of four different parameter scenarios in this study. We consider
three different distributional forms of the Weibull distribution, with shapes equal
to 0.5, 1, and 1.5. From there, we adjust the scale parameter such that about
90% of the simulated failure times would be expected to occur on the interval
(0,M ] = (0, 10]. For some shape k, percentage q, random variable T , and M ,
this is done by solving the equation

FT (M ;λ, k) = q,

for the scale λ. These three scenarios will be referred to as scenarios 1, 2 and
3, respectively.

In the fourth scenario we simulate from the same distribution as in scenario
2, but we decrease the probability by which each measuring time is visited from
0.9 to 0.6. This will result in wider censoring intervals, as well as a larger
proportion of right and left censored observations.

With each scenario we also attach two covariates: one binary, and one con-
tinuous. This is done by simulating covariate values for the binary covariate
from the bernoulli distribution (with parameter 0.5) and for the continuous
from the standard normal distribution. These will have the same coefficients
for all scenarios.
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Figure 3: The three different distributional shapes used in the four different
parameter scenarios of Section 7.

Scenario Shape Scale Binary
covariate

Continuous
covariate

1 0.5 1.886 0.25 0.25
2 1.0 4.343 0.25 0.25
3 1.5 5.735 0.25 0.25
4 1.0 4.343 0.25 0.25

Table 2: Parameter values for the four different simulation scenarios from Sec-
tion 7. The first three are different distributional shapes, and in the fourth we
simulate from the same distribution as in the second but with a lower probability
of each examination being visited, resulting in wider censoring intervals.

The three distributions used are visualized in Figure 3, and the parameter
values can be found in Table 2.

The simulation procedure is summarized as follows:

1. Simulate n observations from the Weibull distribution with shape k and

scale λe−β
Tx (recall the remark in the end of Example 4.2).

2. Apply the AFT model using survreg from the package survival and the
GSM model using stpm2 function from the rstpm2 package.

3. Reparametrize both models using the multivariate delta method (see the
appendix Section 11.1.3 for a short description of the multivariate delta
method), to get estimates and confidence intervals for the shapes, scales,
and covariate effects.

4. Repeat steps 1-3 N times to get N different estimates for each parameter.

5. Repeat steps 1-4 for each parameter scenario.

In this study, we used n = 500 and N = 104. These values were chosen based on
an compromise between available computing power, and obtaining an acceptable
level of accuracy.
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7.2 Analysis and results

The two functions produce extremely similar results. The kernel density estima-
tor (for a short introduction, see Section 11.1.4 of the appendix) of the binary
covariate parameter estimator from scenario four can be observed in Figure 4,
and plots for all parameters and scenarios can be found in Figure 14 in the
appendix. Simply by looking at the distributions of the estimators, one notices
how similar they are.

This is further reinforced when inspecting the distribution details of all the
parameters in Table 9 in the appendix. The sample mean, sample standard de-
viations, and 95% confidence interval coverages are identical for the two models
and all parameters.

In Table 3, we find the average area between the estimated hazard and true
hazard, Akaike information criterion (AIC), covariate parameter estimates, and
coverage proportions of the 95% confidence intervals of the covariate parameters,
for both models. Again, the two models produce strikingly similar results. One
observation that can be made here is that for scenario 2, the area A(ĥ, h) is about
70% to the area of scenario 4. This is not very surprising, since even though
the two scenarios use the same parameter estimates, scenario four will generally
have wider censoring intervals because of the lower examination probability.
This results in less accurate estimators, and thus generally a larger deviance
from the true hazard.

The time dependent EMSE plots look identical for all parameter scenarios.
In Figure 5 the time dependent EMSE’s of the second parameter scenario is il-
lustrated, while plots for all of the parameter scenarios can be found in Figure 15
in the appendix.

The confidence interval coverage proportions show no indication of conser-
vative or anti-conservative confidence intervals. In Table 3 we observe that the
confidence intervals of the two model have the same average coverage propor-
tions. In fact, we found that both implementations produce equal confidence
intervals.

If we want to make inference about the biases of the covariate parameter
estimators, the sixteen different scenario and parameter combinations unfortu-
nately makes us subject to the multiple comparisons problem. Taking this into
consideration, we use the Holm-Bonferroni method [5] to adjust the p-values to
counteract the issue. That is, we create a family of m hypotheses {Hi} and
their corresponding p-values pi. Then we sort the hypotheses and p-values in
ascending order according to the p-values. We then compare the ith hypoth-
esis to α

m−i , i = 0, · · · ,m − 1, rejecting any null hypotheses with pi ≤ α
m−i .

In this case, there are 16 parameter-scenario combinations so we have m = 16
hypotheses, and we are testing on the level α = 0.05.

In order to investigate bias in the parameters we create a family of hypothe-
ses, one for each parameter and scenario. For the ith parameter βi with true
parameter value βtrue

i , the hypothesis becomes

H0 :E(β̂i) = βi

Ha :E(β̂i) 6= βi.

Creating t statistics for all scenarios and parameters using the sample means
and standard errors from Table 9 in the appendix, and testing these using the
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Scenario Implementation A(ĥ, h) df AIC Ê
[
β̂bin

]
(95% CI) Ê

[
β̂cont

]
(95% CI) Binary CP Continous CP

1 stpm2 0.74 4 1511.71 0.25 (0.246, 0.254) 0.25 (0.248, 0.252) 0.95 0.94
survreg 0.74 4 1511.71 0.25 (0.246, 0.254) 0.25 (0.248, 0.252) 0.95 0.94

2 stpm2 0.68 4 2058.07 0.25 (0.248, 0.252) 0.25 (0.249, 0.251) 0.95 0.94
survreg 0.68 4 2058.07 0.25 (0.248, 0.252) 0.25 (0.249, 0.251) 0.95 0.94

3 stpm2 0.78 4 2118.19 0.25 (0.249, 0.251) 0.25 (0.249, 0.251) 0.95 0.96
survreg 0.78 4 2118.19 0.25 (0.249, 0.251) 0.25 (0.249, 0.251) 0.95 0.96

4 stpm2 1 4 810.75 0.25 (0.248, 0.252) 0.25 (0.249, 0.251) 0.95 0.95
survreg 1 4 810.75 0.25 (0.248, 0.252) 0.25 (0.249, 0.251) 0.95 0.95

Table 3: A summary of the results from the simulation study of stpm2 and
survreg on Weib(k, λ) distributed censored data. Visualized in the table is
the area difference, degrees of freedom, AIC, average parameter estimates and
confidence intervals, and 95% confidence interval coverage proportions for each
covariate.

Figure 4: The kernel density estimates of the binary covariate parameter estima-
tor for both the GSM and AFT models from parameter scenario 2 of Section 7.
The dotted line represents the true parameter value.

previously discussed Holm-Bonferroni method, we do not obtain any significant
indication of bias in the estimators for a sample size of 500.

8 Mixed Weibull simulation study

In the previous section we examined the performance of the two implementations
stpm2 and survreg of the AFT model, in the case of an underlying Weibull
distribution. This is of course an interesting and important study to make, but
it does not showcase the possible need for the GSM. If all failure times followed
a standard distribution, then the AFT and PH models would always suffice. In
many practical settings in biostatistics, this is unlikely to be the case. In this
section, we are going to assess the performance of the Weibull PH implemented
in survreg, compared to the GSM in stpm2.

We would expect that the GSM would outperform the PH, since it defaults
back to the Weibull PH when using zero knots. This is an ideal case though,
and will depend on the implementations of the two models.
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Figure 5: The time dependent empirical square mean error (EMSE) plots for
parameter scenario 2. The two implementations produce identical EMSE for all
examined values of t.

8.1 Mixed Weibull distribution

The underlying distribution of the failure times in this section will be a mixture
of Weibull distributions. This distribution has been used in previous simulation
studies [13] to evaluate the performance of spline based models.

The idea of the mixture distribution is simple. Let mi ∈ [0, 1],
∑n
i=1mi = 1

be n mixing parameters, k1, . . . , kn shape parameters, and λ1, . . . , λn scale pa-
rameters. Also let fi(t) be the density of a Weibull distribution with parameters
ki and λi. We say that a random variable T is mixture of Weibull distributions
with parameters mi, ki, λi, i = 1, . . . , n if it has the density function

fT (t) =

n∑
i=1

mifi(t), (8.1)

for t > 0, and 0 for t ≤ 0. In this section, we will refer to the fi(t)s as component
distributions.

Expressions for the survival function and hazard function of T can easily be
calculated from the density:

ST (t) =

n∑
i=1

mie
−
(
t
λi

)ki
(8.2)

hT (t) =

n∑
i=1

mi
ki
λi

(
t
λi

)ki−1

e
−
(
t
λi

)ki
n∑
i=1

mie
−
(
t
λi

)ki (8.3)

The nice properties of the Weibull distribution transfer naturally to the mixed
Weibull distribution. For example, since all the mis sum to one, and the density
function of any Weibull distribution integrate to one from 0 to∞, we have that

∞∫
0

fT (s)ds = 1 (8.4)
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for a mixed Weibull distributed random variable T .

8.2 Simulation of mixed Weibull distributed data

Using the definition of the PH model (Definition 3), and the equations presented
in Section 2.1.3 we can rewrite the PH assumption to

S (t|x) = S (t|0)
eβ
T x

.

From here, we can use the inverse of the previous stated function to generate
the failure times. Below follows a more detailed description of the method.

1. Simulate n uniformly distributed numbers uj , i = 1, . . . , n between 0 and
1.

2. Adjust the uniformly simulated values according to their corresponding

covariate values ũj = ue
−βT x

j .

3. Let W be of the baseline mixed Weibull distribution, and qW its quantile
function. The values qW (ũj) are now observations from W |X = x.

The quantile function of the mixed Weibull distribution can not be easily cal-
culated. Instead we use the root finding function uniroot in R to find the value
of S(t|0) which equals ũj .

In this study we will consider failure times T with the mixture of two Weibulls
as baseline distribution, more specifically T0 ∼ MixWei(m = 0.7, k1 = 1.9, k2 =
2.5, λ1 = 11.29, λ2 = 1.62). This is the same distribution used in Scenario 4 in
[13]. This distribution is unimodal with a right shoulder, and the density and
hazard are visualized in Figure 6.

In order to capture the more complicated features of the mixed Weibull
distribution, we will use more detailed potential examination times Ci = i ×
10−1, i = 1, . . . , 160. Define the step length of a censoring technique to be the
shortest distance between any pair of possible examination times. In this case,
the step length is 10−1. To compensate for the increase in potential examination
times, we will use a lower probability of each potential examination actually
being visited to p = 0.5. As in the previous section the units will be under

(a) Density (b) Hazard

Figure 6: The density and hazard of the mixed Weibull distribution considered
in Section 8, T ∼ MixWei(m = 0.7, k1 = 1.9, k2 = 2.5, λ1 = 11.29, λ2 = 1.62).

the effect of two covariates, one binary and one continuous. We use different
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values of the covariate parameters though. In this section we use 0.5 for both
parameters.

500 simulated values from the baseline distribution are visualized in Figure 7.

0 2 4 6 8 10

Failure time distribution

t

Censoring type

Interval
Right
Left

Figure 7: Visualizing the failure times from the mixed Weibull simulation study.
Each line segment represents the interval an observation in censored on. The
observations are sorted on their left interval limits. Notice the group of right
censored observations in the top right corner.

8.3 Method

In order to fit a GSM allowing for more than zero knots we need a way to
determine the amount of knots to use. We will use AIC as a knot count selection
tool. More precisely, we will fit the GSM with 0, . . . , 8 knots and then choose
the model with the highest AIC. This is not a very fast procedure to repeat a
lot of times. A faster but less fair approach would be to test the optimal knot
count on a small number of simulated data sets, and then simply test for the
two most common knot count, or even just using the most common knot count
(see the logspline package on CRAN for an approach that smooths on the log
hazard scale with knot selection).

Due to numerical instability, we did not calculate the area between the esti-
mated and true hazard between the minimum and maximum of the simulated
failure times. The two models yield numerical overflow for estimated hazards
that are outside the possible censoring interval. In order to compensate for this,
we instead measure the area between the first simulated failure time and the
last possible examination time. The area will in this section then measure the
performance of the two models up to the last possible examination time.

8.4 Performance results

Unlike in the last section, the two models do not display the same behavior
when applied to the mixed Weibull data. The PH model implemented in survreg
misses the complex features of the mixed Weibull distribution. The GSM im-
plemented in stpm2 is often able to capture these features, placing knots as
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A (tmin, Cmax) Area SD df AIC
Ê[β̂bin] (95% CI)

(βbin = 0.5)

Ê[β̂cont] (95% CI)
(βcont = 0.5)

stpm2 0.260 0.391 7.779 2728.848 0.495 (0.493,0.497) 0.495 (0.494,0.496)

survreg 0.387 0.026 4.000 2764.068 0.498 (0.496,0.500) 0.498 (0.497,0.499)

Table 4: Summarising the results of the simulation study. The mean area
between the estimated hazard and the true hazard, degrees of freedom, AIC, and
means and standard errors of the covariate parameters are displayed. Besides
the covariate headers, their true values are displayed.
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(a) The survival function.
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(b) The hazard function.

Figure 8: Illustrated here are examples of the estimated and the true hazard
and survival functions for the two models. The examples were chosen because
they have area differences close to the observed mean area difference and were
fitted on the same data set.

discussed in Section 4.3 and fitting natural splines to the observed values of
− log (− log (S(t))).

The simulation results are summarised in Table 4. We note that the GSM
produces a lower mean area and AIC than the Weibull PH, indicating a better
fit. Also, the mean covariate parameter estimates of the GSM are slightly closer
to the true values compared with those from the PH model. The covariate pa-
rameter kernel density estimates of the two models can be observed in Figure 16
in the appendix. The two models seem to produce similar, but slightly different
covariate estimates. In Table 4 we see that both models produce slightly bi-
ased covariate estimates for this sample size, except for survreg and the binary
covariate.

In Figure 8 representatives of the estimated survival and hazard functions
are drawn together with the true curves. The representatives were chosen at
random, but were applied to the same simulated data set. Observe how in
Figure 8b the Weibull PH model simply cuts through the peak of the true
hazard function, while the GSM does a better job of capturing this feature.

In Figure 9, the time dependent EMSE is plotted for both models. The
figure also indicates that the GSM in stpm2 does a better job of capturing the
more complex features of the distribution.

8.5 Varying the censoring parameters

In the mixed Weibull simulation study the possible examinations were more fre-
quent than in the ordinary Weibull case, in order to capture the more advanced
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Figure 9: The time dependent empirical mean square error (EMSE) of the two
models implemented on the simulated mixed Weibull data. The GSM (stpm2 )
seems to perform much better than the Weibull PH (survreg).

features of the more complex distributional shape. In actual studies, control of
examination frequency is often limited due to financial or practical aspects. In
this section we examine the behavior of stpm2 when we change the censoring
resolution. We consider three cases:

1. High resolution: step length: 10−2, probability of examination visit: 0.5.

2. Medium resolution: step length: 10−1, probability of examination visit:
0.5.

3. Low resolution: step length: 1, probability of examination visit: 0.5.

In each of the 500 simulation iterations we simulate 500 observations. The
failure times for one of the simulation iterations of the three censoring cases are
visualized in Figure 10.

Intuitively, the more exact the data is, the more complicated behavior can
be captured by stpm2. This is visualized in Figure 11, where we see how the
EMSE of stpm2 decrease drastically with the higher censoring resolution while
the performance of survreg barely changes. The application of stpm2 on the
step length 1 data stands out as much worse than the other two with regards
to EMSE. This suggests a limit at which any efforts to further shorten the
censoring intervals leaves one subject to diminishing returns. The length of
the censoring intervals determines the magnitude of failure time distribution
characteristics one is able to detect.

The covariate estimates continue to exhibit slight bias, except for survreg
with step length 0.1 and the binary covariate.

9 The Signal-Tandmobiel R©study

9.1 Application

As has been done in previous demonstrations using the data set [3], we will
use the emergence of permanent tooth 24 as our event. Due to the yearly
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(c) Step length 10−2.

Figure 10: Failure times for three different censoring resolution scenarios of
Section 8.5. One thing to note is that the proportion of left censored observations
decreases with increasing censoring resolution.

Step length Implementation A (t−, C+) df AIC
Ê[β̂bin] (95% CI)

(βbin = 0.5) sd(β̂bin)
Ê[β̂cont] (95% CI)

(βcont = 0.5) sd(β̂cont)
1 stpm2 0.365 5.237 1381.552 0.504 (0.502,0.506) 0.127 0.505 (0.504,0.506) 0.069

survreg 0.388 4.000 1383.185 0.505 (0.503,0.507) 0.127 0.505 (0.504,0.506) 0.069
0.1 stpm2 0.260 7.779 2728.848 0.495 (0.493,0.497) 0.123 0.495 (0.494,0.496) 0.067

survreg 0.387 4.000 2764.068 0.498 (0.496,0.500) 0.124 0.498 (0.497,0.499) 0.067
0.001 stpm2 0.330 7.811 4111.811 0.489 (0.487,0.491) 0.122 0.493 (0.492,0.494) 0.068

survreg 0.387 4.000 4146.836 0.492 (0.490, 0.494) 0.123 0.496 (0.495, 0.497) 0.068

Table 5: AIC, area difference, and covariate estimates and confidence intervals
for the three different censoring resolution cases of Section 8.5.

examinations, the events are either left, right, or interval censored. We will
consider the following two covariates:

Sex — Binary variable, indicating the gender of the child: 0 for boy, 1 for girl.

DMF — Binary variable, indicating whether or not deciduous tooth 64 was
decayed, missing or filled at the time of the last examination before the
emergence of permanent tooth 24.

The baseline distribution of the AFT, and the link function of the GSM was
chosen based on AIC scores. The available distributions and link functions are
presented in Table 6. As before, we select the knot count for the GSM based
on AIC as well.

The assumptions of non-informative, independent and random censoring in-
troduced in Section 3.1 are simply assumed to hold, allowing the use of the
simplified likelihood function (3.2).

The failure times are visualized in Figure 12.
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(a) Step length 1. (b) Step length 10−1.

(c) Step length 10−2.

Figure 11: EMSE for the three different censoring resolution scenarios of Sec-
tion 8.5. From Subfigure 11a to Subfigure 11b the EMSE decreases significantly.
This is not the case when increasing the resolution further.

AFT distributions GSM
Weibull Proportional hazard

Exponential Proportional odds
Gaussian Probit
Logistic Additive hazard

Log-normal
Log-logistic

Table 6: The considered distributions for the AFT, and the link functions for
the GSM. The lognormal distribution and the probit link functions produced
the lowest AIC values.

9.2 Results

For the AFT a baseline log-normal distribution provided the best AIC, and
for the GSM the probit link function with five knots performed the best. The
probit link function is g(·) = −Φ−1(·), with inverse −Φ(·). Results from both
models are summarized in Table 7. First, we note that all covariate effects are
significant with p < 0.05. We interpret the covariate estimates as follows:

For the AFT assuming a baseline log-normal distribution, the distribu-
tion of failure times for girls is log-normally distributed with a mean that is
exp(−0.03663493) = 0.964028 times their male counterparts. The other covari-
ate effect estimate is interpreted in the same manner.

The effects with a negative probit link is interpreted as the change for a
−Φ−1(·) transformation, which is the negative change in Z scores under a stan-
dard normal distribution. This indicates that the Z scores for girls are 0.3116609
lower than for boys, which is the same direction as the estimate from the AFT.
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Figure 12: The failure times of the Tandmobiel data set visualized. Each hori-
zontal bar represents a censoring interval.

Link/Distribution df AIC Sex (95% CI) DMF (95% CI)
stpm2 probit 9.0000 10946.9103 0.3117 (0.2631, 0.3602) 0.3952 (0.3453, 0.4452)

survreg lognormal 5.0000 10966.5792 -0.0366 (-0.0447, -0.0286) -0.0468 (-0.0549, -0.0388)

Table 7: Summary of the results of the Signal Tandmobiel data set analysis.
We note that the GSM scores a lower AIC value, indicating a better fit. All
covariate effects are significant with p < 0.05.

That is,
Φ−1(S(t|x, girl)) = Φ−1(S(t|x, boy))− 0.3116609.

More intuitive interpretations can be made by calculating marginal effects, such
as the expected survival or expected hazard. If one wanted to calculate the
estimated effect of the ith covariate one can calculate the partial derivative of
the estimated survival function with respect to the covariate in question,

∂Sx(t)

∂xi
= −∂η(t,x;θ)

∂xi
ϕ (−η(t,x;θ)) ,

which under an additive effects assumption simplifies to−βiϕ
(
Φ(S0(t))− βTx

)
.

The GSM AIC is appreciably lower than AFT AIC, indicating that there
are some features of the data that are not well captured by the AFT model. In
Figure 13 the estimated cumulative hazard function for girls is plotted together
with the non parametric Turnbull estimate (the Turnbull estimator is described
in short in Section 11.1.2 of the appendix), as well as the estimated hazards for
both boys and girls. In both figures, the DMF covariate is set to zero. Com-
paring the estimated curves with the Turnbull curve, it is hard to distinguish
differences between the two models in the lower failure time regions, but it seems
like the GSM provides a slightly better fit on the later failure times. Taking a
look at the estimated hazards, the GSM seems to capture more detailed changes
than the AFT model.
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Figure 13: Estimated cumulative hazard functions of stpm2 and survreg applied
on the tandmobiel data set for girls with healthy teeth, and the estimated hazard
functions for both boys and girls (in both figures, DMF = 0). The left figure
agrees with our interpretations of the effect of gender.

10 Discussion

To summarize, in Section 7 we showed that the GSM implementation displays
similar performance to the AFT in survreg in the special case of the GSM being
equivalent to a Weibull PH. We tested this by applying the implementations
on three different parameter scenarios of the Weibull distribution, as well as an
additional scenario with wider censoring intervals. We continued by applying
the GSM to a mixture of two Weibull distributions, and found that the GSM
more closely captured the features of the more complex distributional shape.
Moreover, we noticed that for very coarse censoring none of the discussed models
managed to capture the data adequately. Finally we applied a lognormal AFT
and a GSM with the probit link to the Signal Tandmobiel data set, and showed
that the GSM seemed to capture the property of the data more closely than the
more standard AFT model. The covariate interpretations we made were similar
to previously published work [3][9].

The GSM implementation could be improved in a few ways. Currently, the
spline knots of the GSM are placed on the quantlies of the left censoring interval
limit (unless the data is left censored, in which case the right limit is used
instead. There are other knot placement methods that could be used. A simple
example would be to place the knots based on censoring interval mid-points. As
previously mentioned, the GSM did not perform well when the censoring was of
very low resolution. It would be useful to develop a diagnostic to detect these
kinds of problems.

For further studies, there are a couple of different topics one could discuss.
The scope of the GSM includes models with time varying effects. These types
of models should be tested on interval censored data. More ambitiously, the
rstpm2 package recently implemented generalized AFTs for left truncated and
right censored data. This could be extended to include interval censored data,
which would allow for more direct comparison against to the AFT used in this
paper. Included in the rstpm2 package is a penalized GSM, which removes the
need for knot count selection based on an information criterion. The package
aslo includes support for normal random effect models for interval censored data.
These two models could also be tested in a simulation study similar to this one.
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11 Appendix

11.1 Theory

11.1.1 Censoring granularity

Here follows a short discussion about the effect of censoring granularity on the
stpm2 knot placement.

As discussed in Section 4.3, the knots of stpm2 are placed on the quantiles
of the observed left censoring limit in the case of interval and right censored
data, and on the right censoring limit in the case of left censored data. For
one simulated data set, the knot placements for one, up to and including five
knots, for different censoring interval placement resolutions can be found in
Table 8. In the study we used the step length 0.1 and examination probability
0.5. This yields (approximately) an expected interval length (given that the
observation is interval censored) of 0.3. Employing a step length of for example,
one, with the same probability of examination will yield significantly longer
censoring intervals. Similarly using a shorter step length between each possible
examination will yield much shorter censoring intervals.

Censoring parameters knots Knot placement
M = 10 1 4
p = 0.9 2 2 6
s = 1 3 2 4 7

4 2 3 5 8
5 1 2 4 6 9

M = 102 1 4.2
p = 0.5 2 2.5 6.8
s = 0.1 3 1.9 4.2 8.7

4 1.5 3.2 5.6 9.7
5 1.3 2.5 4.2 6.8 9.8

M = 103 1 4.325
p = 0.06 2 2.58 6.80
s = 0.01 3 1.96 4.325 8.72

4 1.64 3.19 5.66 9.94
5 1.43 2.58 4.325 6.8 9.98

Table 8: Knot placement for different censoring parameters and different number
of knots. Notice that the expected interval censoring length is different for the
three scenarios, but yet the knot locations are fairly similar.

11.1.2 Kaplan-Meier estimator

In this paper our focus is directed at parametric survival models. A common
non-parametric estimator of the survival function is the Kaplan-Meier (KM)
estimator[6]. We use the KM estimator in Section 9 to visualize the Tandmobiel
data. The KM estimator will not be described in detail, since it is not central
to the results of this thesis. In the case of non-censored failure times the KM-
estimator is calculated as follows.
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The failure times are divided into n intervals ti = [ai, bi), i = 1, . . . , n,
such that at least one event occurs at ai, the beginning of each interval. The
KM-estimate of the survival curve then takes the form

Ŝ(t) =
∏

i; min ti<t

(
1− ei

ri

)
,

where ei are the number of events in time interval ti, and ri are the number of
units at risk in the beginning of time interval ti. In the case of interval censored
observations, Turnbull presented an iterative algorithm which converges to the
ML-estimate [15][14]. The KM and Turnbull estimators are implemented in
survfit.formula::survival in R.

11.1.3 Multivariate delta method

The multivariate delta method[4] is a method of calculating the distribution
of transformations of the mean of i.i.d, p-dimensional random variables. Let

Ȳn = 1
n

n∑
i=1

Xi be the mean of n i.i.d random variables Xi with expectation

µ <∞ and covariance matrix Σ. Furthermore, let f be a function from Rp to
Rq with q ≤ p which is continuously differentiable in a neighborhood of µ, with
p× q Jacobian matrix J . Then

√
n (f(Yn)− f(µ))

apprx∼ N
(
0,JtΣJ

)
, n→∞.

In this thesis we use the multivariate delta method to transform parameter
estimates produced by different models to the same parameterization.

11.1.4 Kernel density estimator

The kernel density estimator is a non-parametric estimator of the density func-
tion some random variable. We introduce the concept of a kernel and take a
look at the definition. A kernel function K is simply any non-negative function
which satisfies

∞∫
−∞

K(x)dx = 1.

Given a kernel function K, n observations xi, i = 1, . . . , n of some random
variable X, and a bandwidth parameter h > 0, the kernel density estimator of
the density f of X is

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
.

There are many possible choices of kernel. In this paper, we chose the gaussian
kernel φ.

11.2 Plots and tables
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Shape Binary Covariate Continous Covariate Scale
Scenario Implementation Mean SE Coverage Mean SE Coverage Mean SE Coverage Mean SE Coverage

1 stpm2 0.50 0.03 0.95 0.25 0.20 0.95 0.25 0.10 0.94 1.91 0.28 0.94
survreg 0.50 0.03 0.95 0.25 0.20 0.95 0.25 0.10 0.94 1.91 0.28 0.94

2 stpm2 1.00 0.04 0.95 0.25 0.09 0.95 0.25 0.05 0.94 4.36 0.30 0.95
survreg 1.00 0.04 0.95 0.25 0.09 0.95 0.25 0.05 0.94 4.36 0.30 0.95

3 stpm2 1.51 0.06 0.96 0.25 0.06 0.95 0.25 0.03 0.96 5.74 0.26 0.95
survreg 1.51 0.06 0.96 0.25 0.06 0.95 0.25 0.03 0.96 5.74 0.26 0.95

4 stpm2 1.01 0.07 0.94 0.25 0.11 0.95 0.25 0.06 0.95 4.35 0.34 0.96
survreg 1.01 0.07 0.94 0.25 0.11 0.95 0.25 0.06 0.95 4.35 0.34 0.96

Table 9: Details on the distribution of the estimators of stpm2 and survreg
from the analysis of Section 7. Again, we notice that the two implementations
produce identical results.
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(a) Scenario 1: Shape 0.5 and probability 0.9

(b) Scenario 2: Shape 1 and probability 0.9

(c) Scenario 3: Shape 1.5 and probability 0.9

(d) Scenario 4: Shape 1 and probability 0.6

Figure 14: The kernel density estimations for scenarios and both models from
section 7. Notice that they look very similar between the models. This is a
good thing since it indicates that the models are implemented in a satisfactory
manner. Theoretically, they should be the same.
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(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Figure 15: The time dependent empirical square mean error (EMSE) plots for
the four different parameter scenarios of Section 7.
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Figure 16: The kernel density estimates of the covariate parameter distributions
of the two models from Section 8.
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