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Abstract

In this thesis we create and analyze a model for the spread of Newcastle
disease in a farm population. Our model takes the stable structure of
Swedish farms into account, allowing the virus to spread both inside the
stable and between stables. We derive the basic reproduction number R0

for the setting with only a single stable along with the next-generation
matrix of which the dominant eigenvalue is the basic reproduction number
for more than a single stable. With programmed simulations in R we
analyze the final size of the epidemic for varying values of parameters and
R0. We draw conclusions about how various parameters affect R0 on their
own and look at the effect of the free parameters on the probability that
the disease never leaves a stable where it started. We find that without
knowing more about the infectivity and mortality of the virus the only
way that stable separation is a sufficent way to safeguard against further
spread is if infected stables are unable to contact other stables and the
farmer is able to quickly recognize symptoms of NDV.
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1 Introduction

Newcastle Disease (ND) was first discovered on Java in Indonesia but received
its name from an outbreak in Newcastle-upon-Tyne in England, both during the
1920’s (World organization for animal health). It is a contagious virus disease
which mainly infect different species of birds leading to respiratory issues, thin-
shelled eggs, reduced egg production and often ultimately to death. There
is no known treatment. Mortality in infected birds depends on the strain of
the virus which is either lentogenic (negligible mortality rate), mesogenic (low
mortality rate) or velogenic (high mortality rate). Different strains of NDV
occurs in various parts of the world to differing extent. Lentogenic strains are
for instance worldwide while velogenic strains are widely spread in Africa, the
Middle East and Asia (World organization for animal health).

Since the first identified outbreak in 1926 there have been several devastating
outbreaks where infection in poultry farms have led to grave economic losses as
well as the death of millions of birds in attempts to eradicate the disease amongst
commercial chickens. Noteable outbreaks have been those in California in 1971
and in 2002 where the estimated loss has been 12 million repsectively 3.16 million
birds (California department of food and agriculture). Sweden has so far been
able to avoid disastrous outbreaks as that in California but several small scale
outbreaks have been reported, the most recent (as of the time of writing) being
in November 2017 where Newcastle disease was found in a farm of 26 000 laying
hens (Sveriges Radio, Utbrott av Newcastlesjuka p̊a sk̊ansk g̊ard).

ND is highly contagious and spreads from birds to birds through direct con-
tact, either via feces of the infected animal or through secretions from nose and
mouth. The virus survives for longer durations in feces and can be picked up
on tools, clothing or machines by interacting humans thus spreading the disease
further if cleanliness routines are not respected. No treatment exists for the
disease and neither does a vaccine offering comeplete immunity (World organi-
zation for animal health).

In this thesis we construct a model based around NDV in a farm setting. Our
model is a generalization of a Reed-Frost model containing extensions for an
animal population. We analytically derive the basic reproduction number for
our model and use simulations coded in R to answer questions relating to the
model and the farm setting. Our goal is to find out whether or not dividing
poultry into stables is an effective way to safeguard against the spread of NDV.
Normally when NDV - or any other type of harmful epizootic - is discovered in
a farm population, the population is immediately culled to avoid further spread
of the disease. We wish to look into what the possibilities for spread between
stables are and especially with what certainty a farmer may need to fully cull a
herd when cases of NDV appear on the farm.
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2 Model

2.1 Population and contacts

To model the spread of NDV in a farm population of laying hens we have
opted for a model based around the four types of poultry farms existent in Swe-
den. These four types are free-roaming indoors, free-roaming outdoors,
ecological and caged. As we will later see, under certain restrictions, the first
three models will behave similarily to each other while the model for the caged
poultry will remain unique. We will only be working with laying hens and ig-
noring various types of broiler farms. This simplifies the model and allows us
to disregard the life-times of birds.

In all four farms birds are first and foremost kept in stables for the majority
of their lives. In both free-roaming farms, birds are allowed to roam without
restriction inside their habitat without the constraints of cages. In the indoors
farm they are confined to their stables exclusively while in the outdoors farm the
birds also receive a couple of hours outdoors in an enclosure. Both free-roaming
models come with further population and size constraints set by Jordbruksver-
ket (department of agriculture.) In the ecological farm birds live identical lives
to the birds in the free-roaming outdoors farm where the main difference is in
sharper population constraints. Lastly, the birds on the caged farms are housed
in cages arranged in grids. These too are situated inside stables (Jordbruksver-
ket, SJVFS).

We assume that poultry farms consist of N laying hens making up the entire
population. These N hens are then separated into k unique stables where Hi is
the total population of stable i for i = 1, ..., k such that

k∑
i=1

Hi = N.

Further restrictions on Hi will depend on the type of farm in question.
We consider the poultry population to be of the same type, meaning that

we do not differentiate between the birds on the farm. They all share the
same traits and characteristics in our model - the population is homogeneous.
Furthermore, we also assume that N remains constant throughout the duration
of the epizootic, that is we allow for no in- or outflow of chickens into the farm,
i.e., the population is closed.

Besides the traditional in-stable-interaction we allow for contact to happen
between populations of different stables. Since NDV is good at surviving out-
side the body of the birds in for instance infected feces we find it reasonable
to assume that contact, via human interaction, may happen between two given
stables i and j. If cleanliness routines are not properly respected there is a
slight probability that infection successfully spreads. We assume that farmers
are aware of potential NDV and very careful with respect to cleanliness routines
making the probability of spread from stable i to stable j low for i 6= j.
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Free-roaming indoors: The simplest farm is the one where the hens are
allowed to roam freely indoors. The population N is divided into k unique
stables with the only upper bound on Hi being due to the restrictions made by
Jordbruksverket. For the free-roaming indoors farm this restriction is of each
hen having at least 0.11m2 to move upon, or equivalently, each stable having no
more than 9 hens per square meter available area (Jordbruksverket, SJVFS).

In the previous subsection we made an assumption of the population of hens
being homogeneous and seeing as the Hi hens roam about freely inside the sta-
bles it seems fair to assume that we in this model would have a uniformly mixing
population. That is, all birds have the same rate of contact with eachother inside
the stables.

Free-roaming outdoors: The free-roaming outdoors farm is simply an ex-
tension of the indoors farm and uniform mixing still applies by the same argu-
ment as for the previous model. The constraints for the stables are the same as
before with the additional constraint on the outside area having at least 4m2

available area per chicken (Jordbruksverket, SJVFS). To simplify the model we
assume that the outdoor enclosures are paired with the stables, meaning that
stable i has enclosure i which has no contact with either stable j or the enclosure
of stable j for i 6= j. We also make no difference in contact rates when birds are
in- or outdoors.

Ecological: As the outdoors farm was an extension of the indoors farm we
find the ecological model to simply be an extension of the outdoors-farm. In
the ecological model stables are allowed a maximum of 3000 chickens meaning
that for stable i, Hi ≤ 3000. Past this constraint the two farms behave in the
same fashion (Jordbruksverket, SJVFS).

Caged: The last of the four types of farms is the setting where the birds are
kept in cages for the entirety of the epidemic. This gives way to a quite different
contact between the birds in the stable. First of all we again assume that the
N birds are split into k unique stables where the birds are housed inside cages.
Cages contain a maximum of 16 birds and require 0.06m2 of available area per
bird living in the cage (giving a minimum size of 0.96m2 for a cage with 16
individuals in). Cages are placed in a I × J-grid as in the example presented in
figure 1 (Jordbruksverket, SJVFS).
Since birds no longer roam freely we are unable to assume that there is uniform
mixing in the population of a caged farm and we must instead respect the grid
arrangement of the cages. Adding to this, we must also respect the fact that
susceptible individuals in a cage with an infected bird must run a higher risk of
being infected themselves than a susceptible individual in a cage further along
the grid would be. The grid in figure 1 is an example of how cages may be
connected in this model (for I = 3, J = n) where nodes represent cages and
edges represent the connections between these.
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Figure 1: 3× n-grid of cages

2.2 Model description

The four above farms have been the basis for our theoretical model. Instead of
modelling all four we have chalked them down to a single concise model, flexible
enough to represent the three first models. Since there is too big of a difference
between the caged model and the other three we have decided to ignore deeper
analysis of it and leaving the problem of spread in a caged population with a
few brief comments outlined in section 2.5.

For the free-roaming indoors, free-roaming outdoors and ecological farms
we opt for a traditional stochastic SIR compartment model to describe the
spread of NDV in these populations. This model classifies the population N
into 3 different states: susceptible, infectious and removed where the three states
correspond to the clinical states of the individuals in the population. Removed
translates to diseased individuals which no longer spread the disease which, in
our case, means individuals which have died from the virus.

The SIR-model only allows for individuals to move from one state to the
other in the direction S→I→R. Removed individuals may not get the disease
as a result of already having suffered through the disease and those who enter
the R state will remain there for the rest of the epidemic. Infected individuals
will remain infectious for a while before entering the absorbing removed state.
Susceptible individuals either remain susceptible for the full duration of the
epidemic or become infected, eventually dying and entering the removed state.
Usually the epidemic is stopped once the number of infectious individuals reach
zero.

We let t denote the time of the epidemic, choosing t = 0 as the time of the
start of the epidemic where we in our model have chosen to utilize discrete time.
Next we let S(t), I(t) and R(t) denote the number of susceptibles, infectious
respectively removed at time t of the epidemic. Now at time t = 0 the population
consists of N individuals inside k stables where stable i contains Hi individuals
for i = 1, 2, ..., k. Since the population is constant we note that N = S(t) +
I(t) + R(t) throughout the whole epidemic. Furthermore, we choose S(0) = n
and I(0) = m as our initial number of susceptibles and infectious with R(0) = 0.
To extend upon this we may look at the epidemic at stable level where for stable
i we write Si(t) for the number of susceptible individuals in stable i at time t
and Ii(t) for the number of infectious individuals in stable i at time t. For the
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initial number of susceptibles in stable i we write ni and accordingly for mi such
that

n =

k∑
i=1

ni, m =

k∑
i=1

mi

We assume that the number of initial infectives m is small implying that it is
possible that m ≤ k i.e. we allow for the possibility that mi = 0 for some i.

At t = 0 the epidemic starts. Throughout the duration of the epidemic,
infected individuals have contact with other individuals at a constant rate λ > 0.
Contacted individuals are picked randomly from any of the three states and
if an infected individual contacts a susceptible individual then this susceptible
individual immediately becomes infected and will furthermore spread the disease
in the same way. The individuals in the infected state remain infected and
continue to attempt to infect others for a random duration I known as the
infections period. After this time, the infected individuals enter the removed
state (they die) and stop infecting others. This random variable I follows a
specified distribution FI such that E[I] = 1/γ where γ is the recovery rate
parameter.

Normally an epidemic runs until the time t = T where

T = min{t ≥ 1|I(t) = 0},

that is, until the number of infectious individuals have reached 0. In our model
we have added a second stopping criterion. When NDV is discovered in a
farm the main preventive measure to avoid further spread is to cull the entire
population of the farm. This means that if Newcastle disease is confirmed in the
population of birds upon a farm, the individuals must be destroyed, naturally
stopping the epidemic. We thus add another relevant parameter in the form
of the detection of the disease which we consider a random variable D which
follows a specified distribution FD such that E[D] = 1/α much like with the
infectious times where α = α(R(t)) depends on the total number of removed
individuals at time t.

For contact between stables our main parameter of interest is in the proba-
bility of eventual disesase transmission from one stable to another. Following in
line with the already established SIR structure of the model and individuals we
define a stable i to be infected at time t if Ii(t) > 0. At every time step t each
infected stable contacts all the remaining stables at a rate β where β = β(Ii(t))
depends on the number of infectives in stable i at time t. If the contacted sta-
ble j is susceptible (Sj(t) > 0) then further infection is possible while if the
contacted stable is not susceptible (Sj(t) = 0) nothing will happen.

This establishes a traditional SIR-model for which there are many well known
results applicable to it. Further details on the parameters of the model will be
given in the following subsection.
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2.3 Parameters

We let farms consist of a total of N individuals, in our case N laying hens who
inhabit the farms. These N individuals are then divided into k unique stables
where every stable i has a total of Hi individuals inhabiting it for i = 1, ..., k.
The total population N is then divided into the three SIR-states where we let
S(t), I(t), R(t) denote the total number of individuals in each state at each time
step t. The time t is discrete where each time step amounts to a day in the life
of each individual. For t = 0 we have an initial distribution according to

S(0) = n, I(0) = m, R(0) = 0,

where N = n+m. We may further divide the population of the stables in the
same fashion, letting Si(t), Ii(t), Ri(t) denote the number of individuals in each
state for each stable i = 1, ..., k. We have made no assumptions on how the
total population is divided into stables and the only thing we may say about
the distribution of the population into stables is

k∑
i=1

Hi = N,

k∑
i=1

Si(0) = n,

k∑
i=1

Ii(0) = m,

k∑
i=1

Ri(0) = 0,

Si(t) + Ii(t) +Ri(t) = ni +mi.

The most important parameters for this model and the upcoming simulations are
the probability parameters that govern the transition probabilities (probability
of going from one state to another). Firstly we have the infection parameter.
We let πI be the probability that a given susceptible individual is infected by a
given infective individual. Since the population is homogeneous this probability
is the same throughout all k stables. Writing i1 for a given susceptible individual
and i2 for a given infective individual we find that, in stable j,

P(i1 is infected by i2 at time t) = πI ,

P(i1 avoids infection by i2 at time t) = 1− πI ,

P(i1 avoids infection by all infectives in stable j at time t) = (1− πI)Ij(t).

However, this is not the only pressure that is exerted on stable j at a given time
t. We must also take into account the potential added pressure from the other
infected stables. For now, we simply say that the infection pressure that stable
i adds onto stable j at time t is a random variable ιij(t) which we detail further
down in this subsection. Simply taking ιij(t) for granted as the added pressure
we get that

P(i1 avoids infection in stable j at time t) = (1− πI)Ij(t)+
∑

i ιij(t).

Due to assumptions of homogenity and uniform mixing this holds for all stables.
Taking the complement lets us arrive at the desired probability.

P(i1 in stable j is infected at time t) = 1− (1− πI)Ij(t)+
∑

i ιij(t) = pI,j(t).
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This gives us the probability that a single, given individual in stable j is infected
at time t. Every attempt at infecting a susceptible is a Bernoulli trial with
probability pI,j(t) which by independence of individuals gives that the total
number of susceptibles in stable j that become infected at time t is binomially
distributed according to

TI,j(t) ∼ Bin(Sj(t), pI,j(t)), t = 1, 2, ...

This gives us both the probability of transitioning from state S to state I at
any time t and in any stable i as well as the total number of transitions for this
time step.

For transitions from I to R things are less complicated. We let πR denote
the probability that a given infective individual recovers, that is, πR is the
probability that a given infective moves from the infective state into the removed
state at any time t. This parameter is kept constant and does not depend on
any other parameter of the model. Indeed, if we let I denote the infectious
periods then for given time τ

P(Recover at time τ |Infected since t) = (1− πR)τ−t−1πR, τ = t+ 1, t+ 2, ...,

which we recognize as the Geometric distribution with parameter πR. Naturally,
for I ∼ Geom(πR) we have that E[I] = 1/πR which thus checks out with the
assumptions made about the infectious periods in the SIR-model. Furthermore,
since infective individuals are removed independently with probability πR we
can see these as Bernoulli trials. Thus, with the same arguments as before, we
find that the total number of transitions from the infective state to the removed
state in stable j at time t is given by

TR,j(t) ∼ Bin(Ij(t), πR).

At this point we have introduced a generalized chain-binomial Reed-Frost type
model. The traditional Reed-Frost model employes a deterministic recovery of
πR = 1 which we have generalized to a random variable based on the probability
πR > 0.

We have yet to explain the extra pressure added from a different stable i
onto a given stable j at time t. We have only said that this is given by a random
variable ιij(t). We let πS denote the probability that a given infective individual
in a given stable i spreads the disease into another stable j for i, j = 1, ..., k and
i 6= j. In a real world setting this would amount to infective substance from
a given infective in stable i being attached to tools or clothing from human
interaction which would later move into a different stable j. If this stable i is
susceptible then added infection will be possible. Through similar arguments as
for pI,j(t) we get that

P(Infective substance from given i1 fails to spread into given stable) = 1− πS ,

P(Inf. subs. fails to spread from stable i at time t) = (1− πS)Ii(t),
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P(Inf. subs. spreads from stable i at time t) = 1− (1− πS)Ii(t) = pS,i(t).

This gives us the probability that a given stable spreads the disease into another
stable. Now this is another case of a Bernoulli variable which means that the
total number of stables contacted by stable i at time t is another Binomial,
namely,

TS,i(t) ∼ Bin(k − 1, pS,i(t)),

where which stables will be contacted is drawn randomly from the k−1 available
stables with no stable being contacted twice at a single time step t.

What we must ask ourselves now is to what extent we shall add pressure
upon successful contact. If stable i contacts stable j at time t then infective
substance has been transmitted from stable i to stable j. We let ιij(t) be the
random variable which quantifies the amount of pressure added upon successful
transmission from stable i into stable j. In our model we find it realistic to let
ιij(t) ∼ Poisson(µ) i.i.d. for i, j = 1, ..., k whenever stable i successfully contacts
stable j. Here µ is set to represent the infectivity of the substance as well as
the contact rate that individuals have with a contaminated site. However one
may just as well argue for a completely different distribution and one is not
necessarily limited to discrete distributions.

This added pressure is what we find in our pI,i(t) parameter from above
where a susceptible stable is subjected to the pressure exerted from all infectious
individuals inside the stable as well as the possible added pressure from external
stables. Note that modeling the between-stable-spread this way upholds our
previous assumptions: if Ii(t) = 0 then the probability of spread will be zero; if
Si(t) = 0 then TI,i ∼ Bin(0, pI,i(t)) and nothing will happen.

The last parameter is relating to the discovery rate of the virus. We let
πD denote the probability of recognizing the symptoms of the virus in a given
removed individual which will thus lead to finding, by the same reasoning as
above, that

pD(t) = 1− (1− πD)R(t),

where pD(t) is thus the probability of discovering the disease in the full popula-
tion at time t. Modeling the discovery rate amounts to modeling the recognition
of the virus by the farm hand. This amounts to recognizing the symptoms of the
disease in the population. Normally, symptoms would be possible to discover
in the infectious population too and not exclusively in the deceased population.
However we have chosen to ignore these since adding these in makes the model
far more complicated as we must also quantify the weight infective symptoms
has compared to finding a deceased individual. Instead we simply consider the
removed individuals to be the sole increasing factor in the discovery rate.

Since an attempt at discovering the disease is made only once per day and
these attempts are independent of each other we find that

P(Discover NDV at time τ) =

(
τ−1∏
t=1

(1− pD(t))

)
pD(τ), τ = 1, 2, ...,
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This leaves us with five varying parameters out of which four are probability pa-
rameters {πI , πR, πS , πD} and our main source of interest. The fifth parameter
is the expectation µ of added pressure upon successful between-stable-spread.
The two first in combination, πI and πR are what control the infectivity and
spread of the disease in the population. These control the reproduction num-
ber R0 in a non-trivial way and varying these will decide if an outbreak of the
disease, according to our model, ends in a major or minor outbreak.

2.4 Reproduction number R0

One of the most crucial values to infer in any SIR-model is the basic reproduction
number R0. This value is defined to be the expected number of cases produced
by a typical infected individual during its infectious period, i.e. the mean number
of successful contacts a given infective has before being removed. Now R0

immediately tells us something about the average number of infected by any
given infective but more importantly, well known results can be applied to R0

to tell us something about the severity of the outbreak. It holds that

P(A major outbreak occurs |R0 ≤ 1) = 0,

P(A major outbreak occurs |R0 > 1) > 0.

This means that when R0 ≤ 1 a major outbreak is impossible while when R0 > 1
a major outbreak is possible (Ball, Pellis, Trapman, 2011, page 4; Britton (in
press), 2010, page 4). We will derive this R0 for our model below.

Consider first the single-type population, i.e., the setting where k = 1 with
a single stable and no contact between stables. Setting the initial number of
infectives to 1 we argue that since the population is homogeneous and there is
no difference in susceptibility or infectivity amongst individuals, any infective
individual behaves as a typical infective. Therefore we may let this initial in-
fective be this typical infective which then gives that the expected number of
cases produced by this infective during its infectious period is given by

E[TI,1(1) · I] = E[TI,1(1)] · E[I].

We remind the reader that we have defined TI,i(t) ∼ Bin(Si(t), pI,i(t)) where

pI,i(t) = 1 − (1 − πI)Ii(t)+
∑

j ιij(t) using the assumption that m1 = 1. Since
there is no other stable there will be no added infection pressure ιij(t) and thus
the parameter pI,1(1) = πI . This makes R0 immediately available to us in this
setting as,

R0 = E[TI,1(1)] · E[I] =
(N − 1)πI

πR
. (1)

Looking at the more complex setting of k > 1 quickly makes things more difficult
to derive. Consider the matrix Ak such that

Ak =


µ11 µ12 . . . µ1k

µ21 µ22 . . . µ2k

...
. . .

...
µk1 µk2 . . . µkk

 , (2)
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where µij is defined to be the expected number of cases in stable j produced by
a typical infective in stable i during its infectious period for i, j = 1, ..., k. This
makes every µij essentially a reproduction number of its own for a sub part of
the total population. Results give us that R0 is the dominant eigenvalue of the
matrix Ak (Andersson and Britton, 2000, page 54).

We will derive this matrix Ak and the subsequent reproduction number here
for a general k > 1 in the model derived in section 2 with the assumption of
πD = 0, by deriving µij for i, j = 1, ..., k in two different cases. We may use
the same trick as before, setting the initial number of infectives in stable i to
mi = 1 where mj = 0 for all j 6= i. Taking infectious periods into account we
reason that

µij = E[TI,j(1) · I] = E[TI,j(1)] · E[I] =
E[TI,j(1)]

πR
. (3)

The catch here is in computing E[TI,j(1)] which depends on the random variables
ιij(t) of added infectious pressure which we have yet to assume anything about.
We argue that two different cases of µij will occur, the first, and simplest, being
the case when i = j, i.e., the case of µii for i = 1, ..., k of interior spread. We
then find that

E[TI,i(1)] = (Ni − 1)(1− (1− πI)1) = (Ni − 1)πI ,

where we used that TI,i(1) ∼ Bin(Ni − 1, pI,i(1)). Since P(ιii(t) = 0) = 1 and
since TS,j(1) ∼ Bin(k − 1, pS,j(1)) where pS,j(1) = 1− (1− πS)mj = 0 we have
that P(TS,j(1) = 0) = 1 which implies that P(ιji(1) = 0) = 1 for all j = 1, ..., k.
We may thus conclude that

µii =
(Ni − 1)πI

πR
. (4)

For the case when i 6= j we get again

µij =
E[TI,j(1)]

πR
.

However this time around we have that TI,j(1) ∼ Bin(Nj , pI,j(1)) where pI,j(1) =
1− (1−πI)ιij(1) and ιij(1) is a random variable which we do not yet know. It is
still possible to derive µij although a bit more tedious than the previous case.
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We begin by expanding with the tower property,

E[TI,j(1)] = E[E[TI,j(1)|ιij(1)]]

=

∞∑
x=0

E[TI,j(1)|ιij(1) = x]P(ιij(1) = x)

=

∞∑
x=0

(Nj)(1− (1− πI)x)P(ιij(1) = x)

= Nj

( ∞∑
x=0

P(ιij(1) = x)−
∞∑
x=0

(1− πI)xP(ιij(1) = x)

)

= Nj

(
1−

∞∑
x=0

(1− πI)xP(ιij(1) = x)

)
(5)

To continue we must study the behavior of ιij(1) which is a random variable
dependent on the outcome of other random variables. For instance we have
that P(ιij(t) = 0|TS,i(t) = 0) = 1 since if we make no contacts from stable i
at all then stable j in particular has not been contacted and thus the added
pressure from i into j must be zero with probability one. Furthermore we have,
by definition, that ιij(t)|TS,i(t) = k − 1 ∼ Poisson(µ) since if stable i contacts
all k− 1 available stables then it must contact stable j too and thus the size of
ιij(t) will be a Poisson random variable with unspecified mean µ.

We expand further with the law of total probability.

P(ιij(1) = x) =

k−1∑
y=0

P(ιij(1) = x|TS,i(1) = y)P(TS,i(1) = y) =

=

k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y)P(TS,i(1) = y)

+ P(ιij(1) = x|TS,i(1) = k − 1)P(TS,i(1) = k − 1)

=

k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y)P(TS,i(1) = y) +
µxe−µ

x!
P(TS,i(1) = k − 1) (6)

We need further tools to continue. The unknown terms that we need to in-
vestigate are the P(ιij(1) = x|TS,i(1) = y) for y ∈ {0, 1, ..., k − 2}. Now, with
an arbitrary amount of stables k > 2 it is possible that TS,i(t) = y such that
y < k − 1. If stable i contacts y < k − 1 stables we have to take the event of ”i
contacts j” for given j into account. We thus construct Cij(t) which is defined
as

Cij(t) =

{
1, if stable i contacts stable j at time t,

0, otherwise
,

a binary random variable functioning as an indicator for the event of stable i
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contacting stable j. Repeating the law of total probability we then get

P(ιij(1) = x|TS,i(1) = y) =

= P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)P(Cij(1) = 0|TS,i(1) = y)

+ P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 1)P(Cij(1) = 1|TS,i(1) = y)

= P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)P(Cij(1) = 0|TS,i(1) = y)

+
µxe−µ

x!
P(Cij(1) = 0|TS,i(1) = y) (7)

To continue we need to find the distribution of Cij(t) = z|TS,i(t) = y for
z ∈ {0, 1}, y ∈ {0, 1, ..., k − 2}. Essentially, P(Cij(t) = z|TS,i(t) = y) is the
probability of drawing stable z from a population of size k− 1 in y draws where
no stable can be drawn twice. We thus conclude Cij(t)|TS,i(t) = y to be a
hypergeometric random variable such that

P(Cij(t) = z|TS,i(t) = y) =

(
1
z

)(
k−2
y−z
)(

k−1
y

) .

In fact, for any t = 1, 2, ... we get that

P(Cij(t) = 0|TS,i(t) = y) = ... = 1− y

k − 1
, (8)

P(Cij(t) = 1|TS,i(t) = y) = ... =
y

k − 1
(9)

This is the last tool we need to fully calculate E[TI,j(1)]. Plugging this into (7)
we get

P(ιij(1) = x|TS,i(1) = y)

= P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)P(Cij(1) = 0|TS,i(1) = y)

+
µxe−µ

x!
P(Cij(1) = 0|TS,i(1) = y)

= P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)

(
1− y

k − 1

)
+
µxe−µ

x!

y

k − 1
(10)
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Moving backwards, we may plug results in (10) into equation (6), arriving at

P(ιij(1) = x) = (11)

=

k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y)P(TS,i(1) = y) +
µxe−µ

x!
P(TS,i(1) = k − 1)

=

k−2∑
y=0

(
P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)

(
1− y

k − 1

)
+
µxe−µ

x!

y

k − 1

)
P(TS,i(1) = y)

+
µxe−µ

x!
P(TS,i(1) = k − 1)

=
k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)

(
1− y

k − 1

)
P(TS,i(1) = y)

+
µxe−µ

x!

1

k − 1

(
k−2∑
y=0

yP(TS,i(1) = y) + (k − 1)P(TS,i(1) = k − 1)

)

=

k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)

(
1− y

k − 1

)
P(TS,i(1) = y)

+
µxe−µ

x!

1

k − 1
((k − 1)(1− (1− πS)1))

=

k−2∑
y=0

P(ιij(1) = x|TS,i(1) = y, Ci,j(1) = 0)

(
1− y

k − 1

)
P(TS,i(1) = y) +

µxe−µ

x!
πS
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Moving on, we may now finally enter the result of (11) into the original (5),

E[TI,j(1)] = Nj

(
1−

∞∑
x=0

(1− πI)xP(ιij(1) = x)

)
=

= Nj

(
1− P(ιij(1) = 0)−

∞∑
x=1

(1− πI)xP(ιij(1) = x)

)

= Nj

(
1−

k−2∑
y=0

1 ·
(

1− y

k − 1

)
P(TS,i(1) = y)− πSe−µ −

∞∑
x=1

(1− πI)xP(ιij(1) = x)

)

= Nj

(
1− 1 + P(TS,i(1) = k − 1) +

1

k − 1
((k − 1)(πS)− (k − 1)P(TS,i(1) = k − 1))

)
−Nj

(
πSe

−µ +

∞∑
x=1

(1− πI)xP(ιij(1) = x)

)

= Nj

(
πS − πSe−µ −

∞∑
x=1

(1− πI)x
(
k−2∑
y=0

0

(
1− y

k − 1

)
P(TS,i(1) = y) +

µxe−µ

x!
πS

))

= Nj

(
πS − πSe−µ −

∞∑
x=1

(1− πI)x
µxe−µ

x!
πS

)
= Nj

(
πS − πSe−µ − πSe−µ

(
eµ−µπI − 1

))
= Nj

(
πS − πSe−µπI

)
= NjπS(1− e−µπI ) (12)

Returning back to our original problem in equation (3) we find that, for i 6= j
and with the assumption that mi = 1 and mj = 0 for all j 6= i we get

µij = E[TI,j(1) · I] =
NjπS
πR

(1− e−µπI ). (13)

We thus conclude that the next generation matrix Ak(µij)i,j=1,...,k consists of
elements of the form

µij =


(Ni − 1)

πR
πI , for i = j

NjπS
πR

(1− e−µπI ), for i 6= j
(14)

We stop here, referencing back to the fact that R0 is now the largest eigen-
value of the next generation matrix Ak = (µij)i,j=1,...,k (Andersson and Britton,
2000, page 54). Computing R0 analytically from this matrix essentially boils
down to solving the resulting k-dimensional polynomial, i.e., the characteristic
equation of Ak. Efficiently doing so may provide useful insight into the structure
of R0 as a function of our parameters but even computing a general solution to
the cubic equation obtained from the determinant of (A3 − λI3) is an ardous
task. Luckily, we may instead utilize computational power to provide us with
the resulting R0 for varying values of parameters.
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2.5 Some comments on the caged model

In the setting for the caged model, things are not nearly as nice to us as before.
We may still employ an SIR-model. In fact, most of our assumptions made in
section 2.2 are still applicable in this setting however any further comparison
is met with contradictions. Firstly, since individuals spend their entire lives in
cages arranged in an I × J-grid we can no longer assume that the population
is mixing uniformly since it is no longer possible for an individual in cage (1, 1)
to directly contact an individual in cage (I, J) and at a given time t all suscep-
tible individuals can not necessarily be contacted by all infective individuals.
Secondly, due to the arrangement in grids of cages, one ought to consider some
kind of spatial structure where individuals in cage (i, j) for i, j ≥ 2 perhaps
only may contact individuals in cages directly connecting to their own (cage i, j
contacts cage (i + 1, j); (i, j + 1); (i + 1, j + 1) and so forth) which introduces
another complicated element to the model. Lastly, cages rarely house a single
individual and may contain up to 16 individuals per cage. This means that if a
single individual is infected in a given cage (i, j) the remaining 15 susceptibles
will face a higher infection pressure than individuals in adjacent cages. This
essentially makes the model a variant of a household model where cages are
households limited to a certain kind of spatial structure.
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3 Simulations and results

To get a better understanding of the movemenets of our modeled epizootic
we implement various simulations. Simulations are written in code using the
program R and no exterior packages have been used.

Four different types of simulations have been written up. Each simulation
builds on the other one making the last one the only relevant one for actual
simulations. The first simulation implements the epizootic in a single stable
setting (k = 1) and runs the simulation until the number of infectives reaches
zero. It does not utilize the alternate stopping criterion detailed in the previous
section and uses only two parameters πI and πR.

The second simulation simply takes the previous simulation but allows k
to be greater than 1. Still, no between-stable-spread is introduced and neither
is the alternate stopping. It runs until I(t) = 0 for some t and only takes
parameters πI and πR.

The next extension allows for between-stable-spread to occur. It thus in-
cludes a third parameter πS as argument but still no alternate stopping, mean-
ing it stops as soon as I(t) = 0.

Lastly, the final simulation is the main simulation. It builds upon all previous
simulations but also contains the alternative stopping criterion of discovering
the disease. As a result it contains four parameters πI , πR, πS , πD and runs until
either the total number of infectives I(t) reaches 0 or stops when the specified
criteria for the discovery of the disease are met.

The code itself uses results from theory to simulate the infection spread based
on what has been derived and written in section 2 of this paper. Two main func-
tions make up the simulation. The first one implements the initial distribution
at time t = 0 of the disease. As arguments it takes k, the number of stables, Hk

a vector of length k consisting of the number of individuals in each stable and m
the total number of initially infected. It creates a matrix of dimension N × 3k
where N =

∑
kHk consisting of zero’s and one’s such that every column triple

describes the state of the individual in that particular stable with 1 for TRUE
and 0 for FALSE where rows indicate individuals. It then randomly spreads out
m infected inidividuals amongst the stables and returns the full matrix. Simple
changes in the code would allow for the number of initially infected to work
differently. One may easily make a change such that the given number m of
total initially infective are all in the same stable at time t = 0.

This function sets up the simulation of the full epizootic. The full simula-
tion takes as arguments a matrix received from the previously mentioned start-
ing function, our four probability parameters πI , πR, πS , πD and the expected
amount of added pressure µ.

It sums up the columns in the starting matrix, storing them inside a 1× 3k-
matrix which thus contains the number of inidividuals in each state in each
stable. It then runs the simulation according to what has been described in
section 2. As a time step t is entered we begin by simulating a binomial following
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the distribution of TS,i(t) for all stables i = 1, ..., k which gives the total number
of stables contacted by stable i. We then simulate a Poisson(µ)-variable for
every successful hit, representing the ιij(t)-values. We then run through all
the stables, simulating binomials for TI,i(t) and TR,i(t) for every stable i and
ultimately updating the stable distributions according to the results. Before
exiting the loop we allow for the disease to be discovered by simulating a uniform
number and checking if it is lower than pD(t). If it is we immediately exit the
loop and return the state distributions at every time step t. If it is not then we
increment t and repeat the process until we either succeed or I(t) = 0.

Simple modifications have been made to the code to return things such as
the final sizes or other properties of the epidemic. Some simple functions have
also been written to simplify the running of simulations as well as the gathering
of data.

This is the structure that we have deemed reasonable and realistic. We have
tried to combine efficiency with realisism as far as the spread of the virus goes
and extensions are undoubtedly possible to make. The assumption of discrete
time steps may be flawed but we have failed to find a better implementation
when it comes to these simulations. One may also question whether or not the
initially infected individuals at time step t = 0 should be randomized into the
k different stables. It may indeed be better to simply choose infectives just
as we choose sizes of stables but since we are mostly interested in running the
simulations for m = 1 we find this to not be a problem.

3.1 Final size - Z

These simulations are powerful tools since they implement our model in a setting
where we can observe its behavior for any possible combination of parameters.
At its core, one run of the simulation for a set of values of {N,m, πI , πR, πS , πD, µ}
provides us with the distribution into states S, I,R for every time step t until
the epidemic is stopped. While this is indeed very useful, it is a lot of infor-
mation to take in for all the possible combinations of parameters and we may
instead focus our attention on the result of the epidemic, i.e., the final size of
a simulation. We thus define the random variable Z to be the final size of the
epidemic, that is, the number of individuals who have become infected during
the run of the epidemic. More rigorously we write

Z = R(T )−m, (15)

where T = min{t ≥ 1|{I(t) = 0} ∪ {D(t) = 1}} where D(t) is an indicator
variable for the event that the virus is discovered in the population.

We previously mentioned that when our basic reproduction number is greater
than 1, a major outbreak is possible but it was never quite clear what defined a
major as well as minor outbreak. This variable Z does not give us a clear line to
draw either but it at least, in a sense, lets us assess and quantify the severity of
an outbreak. In the subsections that follow we will thoroughly use Z as a way
to illustrate the changing behavior of R0 and the various free parameters in the
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model. Additionally, theory gives us that if N is large enough the distribution
of Z is bimodal, where one point will be 0 and the other point will be a quantity
ζ > 0, something we will observe through simulations in the coming subsections
(Britton (in press), 2010, page 13).

3.2 Univariate case - k = 1

One of the simplest settings to consider is the case where the farm consists of
only a single stable, i.e., when k = 1. In this setting we allow no between-stable-
spread and thus πS = 0. To simplify it even further we also choose to ignore the
discovery aspect of the model by simply setting πD = 0. The basic reproduction

number takes on a quite simple form here as R0 = µij = µ11 = (N−1)πI

πR
. As

stated in section 2.4 we may immediately say something about the infectivity of
an outbreak based only on the size of R0 which here depends on the 3 parameters
which we allow to vary. It is not clear what values of our free variables that are
interesting to study so we will let these vary throughout our simulations where
it is initially only assumed that m1 = m = 1.

In this subsection we wish to check that our simulations match our analytic
derivations of R0. Additionally, we want to use these simulations to further
existing theoretical results which apply to our model by deriving properties, an-
alyzing conjectures and understanding the behavior of our model as parameters
change. We begin by analyzing the resulting final size Z for simulations where
N is fixed to N = 3000 and where either πI or πR is allowed to vary with the
other fixed to a pre-specified value. We have chosen N = 3000 because we deem
it to be a realistic number for many Swedish farms as it is the upper bound for
the population of a stable inside an ecological farm as well as allowing for rela-
tively short computational times as opposed to for larger numbers. Our results
are displayed in figure 2.

We have chosen to present trajectories of Z for intervals of R0 such that the
highest R0 we see is R0 = 30. One may argue that this is a particulary high
value for the basic reproduction number but as a counterargument we claim
that it is unclear what the true R0 is for NDV. Indeed, it may be the case that
the disease is infectious enough that an R0 of 30 is not impossible but even if
this is not the case, illustrating the trajectories of Z up until this point seems
reasonable enough to illustrate the converging behavior of Z as parameters, and
subsequently R0, grows.

Analytic results tell us that, for R0 ≤ 1, major outbreaks should be impos-
sible. This property is indeed apparent in figure 2 as we have this region to the
left of the vertical line in A and B and to the right of it in plots C and D. In
the case when πI ranges from 0 towards 1 we see clearly in B a period where
outbreaks result in Z = 0 followed by a steep ascent as soon as πI passes the
vertical line, only to have convergence of Z → N −m as πI continues to 1.

Similar behavior is noticeable in C and D, where πI is kept fixed at πI =
0.0001 and we instead let πR vary freely. One striking difference between A, B
and C, D is the point to which Z converges as the parameters grow. In the case
of πR we have Z → 0 as πR → 1. This is due to the structure of R0 as a function
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Figure 2: All four plots have been created by setting N = 3000 and running the
simulations for a grid of values of length 500 where we for every value run 100
iterations, taking the mean of the final size. Plots A and B have had πR fixed
to πR = 0.05 whereas plots C and D has πI = 0.0001. In A, the grid is chosen
so that R0 ∈ [0, 30] as πI grows while in B it is chosen so that R0 ∈ [0, 3]. In
C, the grid is chosen so that R0 ∈ [30, 0.0299] while in D R0 ∈ [30, 0.75]. The
vertical line is the point where R0 = 1.
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Figure 3: Histograms are created through simulations with N = 3000, πR = 0.05
and πI chosen so that R0 is what is given in the titles of the plots. For every
plot, 5000 iterations have been run with the final size being presented.

of these parameters. In the case when πI is free we have R0(πI) = c · πI which
grows linearly from 0 to c as πI ranges between 0 and 1. However, for πR we
have that R0(πR) = c/πR for which R0(πR)→ c as πR → 1 and which tends to
infinity as πR → 0. Obviously, as the probability of infection grows, the number
of infected must also grow while as the probability of being removed grows we
get shorter infectious periods meaning that I(t) is not allowed to grow as large
which in turn lowers the pressure on the susceptibles.

In figure 2 we saw trajectories of Z which made it plausible to reason that
as the probability parameters πI and πR tend to their boundaries, Z converges
either to 0 or N −m. In fact it holds that, under certain conditions, that the
distribution of Z is bimodal (Britton (in press), 2010, page 13). In figure 3 we
give histograms of the final sizes for set values of N , πR and πI such that the
underlying R0 will be of varying size.

In A, B and C we note almost exclusively outbreaks resulting in Z = 0 with
a few minor outliers which together fails to make up even a 10’th of the total
outbreaks. We note that as R0 grows and eventually passes 1 onto R0 = 1.05 we
see a similar distribution where the size of the outlying final sizes grow larger and
larger. As R0 gets even bigger we see how Z clearly moves into this bimodality
mentioned above as evidenced in D, E and F.

Indeed, at this point Z seems to take either the value Z = 0 of a minor out-
break or Z = N −m of a major outbreak. The conclusion we may draw from
this is that when R0 is large, the best chance a population has of surviving is
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when the initial infective is removed before it successfully contacts any suscep-
tible. We also note that the previously mentioned property of R0 as informing
us about the potential size of the outbreak seems to hold. While we have not
defined how large Z ought to be for us to consider the outbreak to be a major
one, we can easily see that for the two histograms where R0 < 1, no major
outbreak has occured and at most, 600 individuals have been removed where
the virus failed to become epidemic and disappeared from the population with
the removed individuals.

3.3 Multitype case - k > 1

In this subsection we allow for a farm to have more than one stable corresponding
to the assumption of k > 1. As a result we find it natural to introduce the
parameters πS , the probability of disease spread, and µ, the average pressure
added upon successful spread, into our simulations. Much like in the previous
subsection we simplify the model by putting πD, the probability of discovery,
to 0.

In the multitype case we are still interested in for what set of parameter
values we may achieve a minor and conversely major outbreak. We are also
interested in the ability of the disease to spread from stable to stable, both in
a setting where the reproduction number is less than 1 but also in the setting
where we let R0 grow farther past one.

Much like in the previous subsection, we note that major outbreaks may only
occur if R0 > 1 and we will thus be interested in the trajectory of the disease
for the cases when R0 ≤ 1 as well as R0 > 1. As opposed to the univariate case,
the structure of R0 is not obvious. It is the dominant eigenvalue of the next-
generation matrix, found by solving the characteristic equation det(Ak−λIk) =
0 which makes the characteristic equation a polynomial in degree k which as
Abel famously proved there is no general solution for when k > 4. However,
since the structure of the elements µij of Ak are simple enough we may still
draw some asymptotic conclusions as we let the free variables tend to their
boundaries. In figure 4 we find four plots of R0 as we let the parameters πI , πR,
πS and µ vary throughout their domain, keeping the other parameters fixed.

We remind the reader that we in uncovered that we in (13) found that

µij =


(Ni − 1)

πR
πI , for i = j

NjπS
πR

(1− e−µπI ), for i 6= j

Simply looking at the size of R0 we reason that our parameters from the
univariate case πI and πR has the strongest control over the resulting R0. This
is not unreasonable since they are the only probability parameters to occur in
all expressions µij . In the case of πI we note that, much like in the univariate
case, R0 grows linearly with πI . Keeping all other parameters fixed we have
that µii(πI) = c · πI which is indeed linear, converging to c as πI → 1 and to
0 as πI tends to 0. Furthermore, µij(πI) = c(1 − e−dπI ) which converges to
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Figure 4: R0 in a population with k = 3 stables and total population Ni = 3000
for all stables. In A, B and C probability parameters take values over a grid from
(0, 1] of length 1000 while in D, µ varies in {0, 1, ..., 1000}. Fixed parameters
are set to πI = 0.001, πR = 0.1, πS = 0.001 and µ = 1.

c(1− e−d) as πI tends to 1 and which goes to 0 as πI → 0. Since all µij tends
to 0 as πI → 0 it is not unreasonable that R0 is 0 in this case, while we in this
setting, when πI → 1, get R0 = 300027.

Looking at the expectations µij but for πR instead we arrive at a very dif-
ferent structure. Obviously, µii(πR) = c1/πR much like in the univariate case
which tends to infinity as πR → 0 and simply tends to c1 as πR → 1. In the
same vein we see µij(πR) = c2/πR which behaves much in the same way. Here,
for πR ∈ (0, 1] we get R0 ∈ (∞, 3].

For πS and µ, the R0 behaves a bit differently. In both cases, the parameters
do not occur in the interior of stables and only affect the between-stable-contact.
Indeed, as a result of this µii is independent of both and so these parameters
may not affect this part of the R0 in any way. We note that µij(πS) = c · πS is
a linear function, as is the effect πS has on R0 as a whole. Still, the magnitude
of the effect of πS is not nearly as strong as πI and πR has. Even when we let
πS → 0, making between-stable-spread an impossibilty and µij = 0, the R0 is

still quite big at (Ni−1)πI

πR
= 29.99. For the converse, we note that letting πS

grow towards 1, meaning that a given stable i always contacts the other k − 1
stables, does not make R0 explode and while it in this setting grows towards
R0 = 89, this is a very minor increase when compared to the changes possible as
πI or πR is allowed to vary. While it is interesting to note the comparibly minor
effect of πS it is not too surprising. Even if πS = 1 successful spread still depends
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Figure 5: The final size Z as a result of the mean of 100 iterations for every
parameter value. In both plots, k = 4 and Ni = 3000 for i = 1, ..., k with
πS = 0.001 and µ = 1. The vertical line indicates the point where R0 = 1. In
A, πI is chosen over a grid of length 500 such that R0 ∈ [0, 30]. In B, πR is
chosen over a grid of length 500 such that R0 ∈ [30, 0].

on ιij(t) which for πS = 1 is simply Poisson(µ) and for low enough µ may fail to
add any kind of pressure at all to stable j. Additionally, if ιij(t) > 0 we may still
fail to infect susceptibles in stable j. While stable contact probability is indeed
relevant for the model, the many further controls it has to pass through to
successfully lead to infection lowers its effect on the basic reproduction number
considerably. We add that, as expected, computing R0 again with the same
values for parameters but letting k > 3 leads to larger effect on R0 for πS .

Lastly, for µ we note similar results to those regarding the impact of πS on
R0. Interior spread (µii) is independent of the size of µ and its only effect is
in the amount of pressure added upon successful exterior stable contact (i.e.,
the size of ιij(t)). We have that µij(µ) = c(1 − e−dµ) which is the same form
as for µij(πI) although the domain of µ is quite different. As µ → ∞ we get
µij(µ)→ c and when µ→ 0 we get µij(µ)→ 0. Much like for πS we note that
even though µ grows we see little impact on R0. In fact, letting µ increase even
further we note that R0 converges (in this case to R0 = 90) as µ→∞.

Having these in mind we may easily check the transitioning behavior of the
final size Z as we let parameters vary freely. Figure 5 gives plots containing
the trajectories for Z as πI and πR are allowed to vary throughout a grid of
pre-specified values.

Essentially, we note the same behavior as we did in the univariate case.
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Figure 6: The final size Z as a result of the mean of 25 in A, and 50 in B,
iterations for every parameter value. In both plots, k = 4 and Ni = 3000
for i = 1, ..., k with πI = 0.00001 and πR = 0.1. The vertical line indicates
the point where R0 = 1. In A, πS is chosen over a grid of length 100 such
that R0 ∈ [0.29, 27]. In B, µ is chosen over a grid of length 100 such that
R0 ∈ [0.29, 27].

Despite having introduced two more parameters, the behavior of the final size is
more or less the same. In A we note a slow start while R0 < 1 where a majority
of outbreaks finish with Z = 0 after which we get a transitional period as the
curve slowly converges to a point where outbreaks result in Z = N −m. In B
we also see something quite similar to what we saw in the univariate case when
we allowed πR to vary. As πR → 0 we again get Z → N − m much like we
saw in figure 2. Again, we note the difference in directions as the probability
parameters tend to 1 and point out that this is due to the structure of R0 as
a function of πI versus as a function of πR as we noted in Figure 4 with the
trajectories of R0 as functions of these.

For the two newly introduced parameters, things work out a bit differently.
While the trajectory is similar, convergence seems to happen much more slowly
as we note in the range on the x-axis, more so between πI and πS . In fact, while
both curves tend towards the limit of Z = N−m, none of them succeed in hitting
a final size this large. While it is not quite clear from the plots themselves, A only
reaches to about 10000 while B reaches 11000 at their highest. In comparison
with the plots in figure 5, this gives a great illustration on the impact of these
four variables on the final size Z. Both πI and πR control the outcome of the
epidemic more strongly than πS and µ does. This was visible already in the
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derivations of R0 where these two parameters appeared in all the terms µij in
the next-generation matrix and these plots in figure 6 give us more evidence of
this. Indeed, even if πS = 1, this only tells us that contact will occur repeadetely
throughout the epidemic. Still, if πI is low enough to make infection difficult, no
matter how often exterior infection pressure is added, it will fail to gain traction
due to the small size of πI .

One of our main questions of interest is of to what degree confinement of
individuals into stables is a safeguarding measure against major outbreaks of the
virus. We wish to study this by running simulations and counting the number
of runs in which the initially infected stable successfully infects another non-
infected stable. It is not clear for what parameters we wouldd like to analyze
this since all free parameters play an important part in this event. Luckily,
we may actually derive the correct probability with the caveat that it requires
knowing the time T when the epidemic is stopped along with knowledge of Ii(t)
where i is such that mi = 1. We give the result below and refer to appendix for
the full proof. Now if we know the time T when the epidemic is stopped and
assuming mi = 1 with mj = 0 for all j 6= i,

P(No spread occurs) =

=

T−1∏
t=1

P(No spread occurs at time T − t|No spread occurs at time T − t− 1, ..., 1)

=

T−1∏
t=1

∏
j 6=i

(
1− pS,i(t)

(
1− e−µ

) (
1− ((1− πI)ιij(t))Nj

)) = P (16)

where the epidemic is known up to every previous time step (so Ii(t) is always
known) and with ιij(t) > 0. We will refer to this as equation (equation number
here) or simply as P.

Writing the inner product as

P∗ = 1− pS,i(t)
(
1− e−µ

) (
1− ((1− πI)ιij(t))Nj

)
= 1− f1(πS , Ii(t)) · f2(µ) · f3(πI , ιij(t), Nj) (17)

we may more easily see the structure of the equation. This expression P∗
may be easily interpretated as a product of the probability of stable contact,
the probability of infection and the probability of a Poisson(µ) variable being
greater than 0. These are the steps needed to pass through to successfully spread
the virus into another stable. It is easy to see that for Nj and ιij(t) fixed, if
πI → 0 then the probability of spread not occuring will be 1 (f3 → 0) which
makes sense since if it is impossible to infect then no matter how much exterior
pressure is placed on a stable no individual will ever contract the disease from
the pressure. Similar results hold for πS : with Ii(t) fixed and πS → 0 then
P∗ will again be 1. If πS is 0 then it will be impossible for a stable to contact
another stable, making it impossible to spread the virus. Lastly, if µ→ 0 then
f2(µ) = 0 and as a result the probability P∗ becomes 1 in this case too. We
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Figure 7: Plots are created to estimate the probability of no spread occuring.
Fixed parameters are Nj = 3000, k = 4, πI = 0.0001, πR = 0.1, πS = 0.001 and
µ = 1. In A, πI varies over a sequence from 0 to 0.005. In B, πS varies over
a sequence from 0 to 1. In C, µ varies over a sequence from 0 to 100. In D,
πR varies over a sequence from 0.01 to 1. All sequences are of length 500 and
values for P have been obtained by running 100 simulations for each value in
the sequence and taking the mean.

may interpret this as that if the added pressure is on average 0 then regardless
of whether contacts are successful or not, the added pressure will not add any
infectivity to a stable.

The other free parameters also play a part but not quite an as pivotal role.
The size of Nj and ιij(t) plays an important part in the speed of convergence
of f3 towards 1 as πI → 1 which accelerates as both variables grow. The same
holds for Ii(t) which too works as an accelerator for the convergence of f1. For
both parameters this behavior comes with no surprises.

Perhaps most important to notice is the behavior when parameters πI , πS
and µ tend to their upper boundaries. When this happens, the part of the
product which contains the parameter will converge to 1 and thus disappear
from the equation - removing one of the obstacles the disease needs to pass
through to successfully spread. We note that this convergence happens quite
fast and is dependent on the other parameters of the model. For instance, the
speed of convergence to 1 of pS,i(t) is heavily dependent on the size of Ii(t) and
as a result, the larger Ii(t) is, the faster the convergence.

While there are difficulties in analytically deriving the probability of no
spread occuring any further than we have done in Proposition 1 (see appendix),

28



we may use the simulations available as data in order to estimate the probability
of no spread occuring. In the plot in figure 7 we have created 4 plots for this
probability for sequences of parameters as the others are kept fixed.

In plot A we see the probability nosedive towards 0 as πI runs towards 1.
Using a relative convergence criterion and ε = 1e− 6 as error limit we get that
f3(πI , 3000, 1) converges to 1 at around πI = 0.001 essentially removing one
of the obstacles that the disease has to pass through to successfully spread.
This illustrates the impact that πI has on the probability of spread occuring
- πI needs to be very close to 0 for us to be certain that no spread will occur
throughout the epidemic. In the other plots we see far less stability and a larger
variance.

For B, where πS is allowed to vary we note a similar behavior to that in A
but with a much slower convergence. Variation is also an issue and even though
the trajectory settles in as we near 1 we still note a quite unstable curve. An
explanation for this is in the randomness apparent in pS,i(t) which depends on
Ii(t), our results in every step of the simulation. Stability may improve for a
larger number of iterations. We note that despite the fact that the probability
of no spread occuring is still low even for small values of πS , it takes a much
longer time for the probability to converge to 0 as opposed to what we see
in A. Indeed, this further tells us something about the impact πI has on the
probability compared to the impact of πS or µ. We already saw something
similar in figure 4 of the effect of πS and µ on R0 as weak compared to the
control that both πI and πS exerts over it. This is further strengthened by the
results in C where µ→∞. Converges settles in at around µ = 14 (by checking
convergence with the relative convergence criterion and ε = 1e−6) and anything
after that seems to be similar behavior. Variation is large here too but perhaps
most important to note is that after convergence the probability is above 0. In
fact, the lowest probability found through our simulations were of P = 0.16.

Lastly, we observe the behavior of the probability as we allow πR to change.
While πR does not occur in the probability P∗ it affects the random variable
T , the first time the epidemic is stopped. As πR → 0, T grows larger and if we
specify µ > 0, πI < 1 and πS < 1 then P(No spread occurs)→ 0 as πR → 0 and
as a result, as T →∞.

We have yet to say much about the y-axis of figure 7 since taking these in
conjuncture with the trajectories for granted is somewhat naive. What we may
state for certain is that, in our model, the probabilities of no spread occuring
for the given sets of parameters, is what is portrayed in the plots in figure 7.
However, this is far from the whole truth about the probability of no spread
occuring. Its dependance on all free parameters is more complicated than what
we may infer from the trajectories in figure 7 and still no analysis has been
performed on the behavior of P as more than one parameter is allowed to
vary. The presented results are still very dependent on the fixed variables and
with the small knowledge we have of the true parameter values in the modeled
setting of NDV, it gets difficult to relay information about what the actual
real-life probability would be. We leave this discussion for later and return to
this problem in subsection 3.4 where we extend the model with the discovery
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probability.

3.4 Introducing discovery - πD > 0

As we introduce the discovery property of the model, πD > 0, the model changes
abruptly again. The univariate model has received extensive studies throughout
the past century with extra attention having been given to the Reed-Frost-
version where the recovery probability πR is constant and set to 1. The multi-
type epidemic has received its fair share of attention as well and theoretical
results and approximations exist in this setting too. However, little has been
formalized relating to alternative stopping conditions and once this property is
entered into our model, many of our previous results are not as easily employed.

We still have our results relating to R0, that for R0 ≤ 1, a major outbreak
is impossible. This holds with discovery in place too, since either the disease
is stopped before the first time I(t) = 0 and at this point Zd < Z (where Zd
denotes the final size in the same model but where πD > 0) or the disease is
stopped once I(t) = 0 and thus Zd = Z. When R0 > 1 we have that a major
outbreak may occur and that it occurs with a certain probability. With the
same argumentation we reason that here too, either Zd < Z or Zd = Z if the
epidemic is not prematurely stopped due to discovery of the disease. We thus
conclude that, with Zd denoting the final size of an epidemic with discovery
included and Z denoting the final size of the same epidemic without discovery
(πD = 0) we always have

Zd ≤ Z.

Obviously this is assuming that Zd is produced with the same values for param-
eters as Z has been.

In subsections 3.2 and 3.3 we created trajectories of the final size Z as pa-
rameters were allowed to vary throughout their domain. We repeat this analysis
here for different values of πD.

Just as we stated above, one would expect the new final sizes Zd to be smaller
than their counterparts Z. If we set all parameters but πD fixed and consider
the final size as a function of Z we note that Zd(πD) → Z as πD → 0. As a
converse, we note that when πD → 1 we get Zd → 0.

We note that the behavior of the trajectories of Z in figure 8 is still similar
to what we saw in figures 2 and 5. Minor outbreaks for R0 ≤ 1 followed by a
sharp transitional period and ultimately convergence. It is however no longer
true that it converges to a point where Z → N −m as is evidenced in the y-axis
in both plots. In the case of πR, simulations fail to reach the point Z = N −m
even with R0 = 30 which is not too surprising since for larger πR we note larger
infectious periods and as a result, an epidemic which lasts longer. This gives
the model more opportunities to discover the disease and immediately stop the
epidemic since discovery happens independently once every time step.

Discovery only depends on the total number of removed individuals at time
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Figure 8: Plots are created with N = 3000, k = 4, πS = 0.001, µ = 1. Both
plots have been produced by running the free variable over a sequence of values
of length 500, running 100 iterations for each value and taking the mean. In A,
πI ranges from 0 to 0.0005 coresponding to R0 ∈ [0, 30] with πR = 0.05. In B, πR
ranges from 0.001 to 0.1 corresponding to R0 ∈ [30, 0.3] with πI = 0.00001. The
vertical line is set at the point where R0 = 1, turquoise represents πD = 0.001,
olive represents πD = 1e− 5 and magenta for πD = 1e− 7.
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Figure 9: Plots are created with N = 3000, k = 4, πI = 0.00001, πS = 0.1.
Both plots have been produced by running the free variable over a sequence of
values of length 500, running 100 iterations for each value and taking the mean.
In A, πS ranges from 0 to 1 corresponding to R0 ∈ [0.299, 27] with µ = 30. In
B, µ ranges from 0 to 300 corresponding to R0 ∈ [30, 0.3] with πS = 0.1. The
vertical line is set at the point where R0 = 1, turquoise represents πD = 0.001,
olive represents πD = 1e− 5 and magenta for πD = 1e− 7.

t and we thus find that

P(Fail to discover disease|T ) =

= P(Fail to discover disease at time T − 1, ..., 1|T )

=

T−1∏
t=1

(1− pD(t)) =

T−1∏
t=1

(1− πD)
R(t)

= (1− πD)
∑T−1

t=1 R(t) ≤ (1− πD)
(T−1)R(T−1)

(18)

This bound is quite crude and somewhat uninformative since R(T − 1) may be
quite large in comparison to R(t) for t < T − 1 however it does nicely prove
how the probability of never discovering the disease in the population tends to
0 both as πR shrinks towards 0 and when the size of the population N is large.

In figure 9 we observe similarily created plots but this time with πS and µ
varying instead of πI and πR. Much like we noticed when comparing figure 8
with its predecessor figure 5, we note that for πD = 1e − 7 (line in magenta),
there is barely any difference between the trajectories in figures 9 and 6. For
πS in A, there is a slight difference in the maximum size of Z compared to the
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maximum Z observed in 6A while for µ in B, the magnitude of the final size
seems to be the same for both 6B and 9B.

While both πS and µ play a part in the probability of discovering the disease
we theorize that their impact is minor when compared to that of πI and πS .
We know the structure of the probability of failing to discover, i.e., P(Zd = Z),
and the form it has makes it simple enough to estimate by using data from our
simulations, but the difficulty of talking about the impact various parameters
has is contained in the difficulty of saying how R(t) is affected by the same
parameters. However, based on what we have seen previously, the final size is
heavily dependent on the basic reproduction number R0 which we in subsection
3.3 illustrated for varying parameters. There we illustrated the minor impact
that both πS and µ have on the full R0 and their dependance on parameters πI
and πR.

While we see that here, our assumptions about properties of Z dependent
on the size of R0 remains true we may still keep a bit of skepcisism towards
the quantity. In section 2.4 where the next-generation matrix, the basis for
the multi-type R0, was derived, we did not take discovery of the disease into
account. As a result we may be careful with interpreting R0 as the actual
basic reproduction number in the model with πD > 0 and instead simply use
it for comparison with identical simulations where πD = 0, much like in the
comparison of Zd and Z.

Another important property of Z that was briefly mentioned in section 3.1
and observed in 3.2 is the bimodality inherent in the variable as R0 > 1. In 3.2
we confirmed this property and noted that the number of outbreaks resulting
in Z = 0 quickly shrank towards 0 as the reproduction number grew larger. We
have already stated that when πD > 0 we will have Zd ≤ Z and as such we
theorize that this property of bimodality will be unavailable in this setting.

Despite having complicated the structure of the model since section 3.2 we
still get quite similar results in final sizes when comparing figure 10 with figure
3. The main thing that changes the distribution of Z is obviously the discovery
property. We reasoned that since Zd ≤ Z, prematurely stopping the epidemic
would only make the final sizes lower than their counterpart where alternate
stopping is impossible. This is quite apparent in all six histograms in figure 10.
Looking at the three upper histograms we note a distribution of Z very similar to
those exhibited in figure 3. In the histograms in figure 3, a significant majority
of outbreaks result in Z = 0, something which is true in figure 10 too. However,
the main difference lies in the severity of the outbreaks. In the histogram for
R0 = 0.75 in figure 3, the largest outliers of final sizes lies around 200 while
in figure 10 this fails to break past 100. For the bottom three histograms the
distributions differ a lot more between those in figure 3 and those in figure 10.
As theorized, bimodality is no longer inherent for Zd but there is a hint of this
property left in all three of the bottom histograms in figure 10. When R0 = 5,
the two main outcomes of Z are Z = 0 and Z = N −m where their ratio seems
to correspond to a similar ratio observed in the same setting in figure 3. The
same seems to ring true for R0 = 10 even if there are now a larger middle ground
than there are outcomes Z = 0 while for R0 = 50 the number of Z = 0 cases
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Figure 10: Histograms are created through simulations with N = 3000, πR =
0.05, πS = 0.1, µ = 1 and πI chosen such that R0 is what is given in the titles
of the separate plots. Data has been obatined by running 1000 iterations and
collecting the final sizes Z. Probability of discovery is πD = 1e − 6 for all six
plots.
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Figure 11: Estimation of the probability of spread occuring. Fixed parameters
are Nj = 3000, k = 4, πI = 0.0001, πR = 0.1, πS = 0.001 and µ = 1. In A,
πI varies over a sequence from 0 to 0.005. In B, πS varies over a sequence from
0 to 1. In C, µ varies over a sequence from 0 to 100. In D, πR varies over
a sequence from 0.01 to 1. All sequences are of length 100 and values for P
have been obtained by running 100 simulations for each value and taking the
mean. Turquoise corresponds to πD = 0.1, olive to πD = 0.01 and magenta to
πD = 0.001.

are barely noticeable.
We theorize that even when πD > 0, Z converges to some distribution as R0

grows which is not necessarily bimodal but where the the distribution of Z = 0
and Z = N −m outcomes is similar to that of when πD = 0 albeit allowing for
more than simply two outcomes.

In section 3.3 we briefly opened up for analysis of the probability that the
virus fails to spread from the initially infected stable (m = mi = 1) during the
run of the epidemic. We will here extend upon this, repeating the analysis in a
setting where πD > 0 and discovery is thus allowed.

We note that the derivation of the probability of no spread occuring is still
sound in the setting where discovery is included. The only assumption made
was that we knew the time T when the epidemic is first stopped (no spread
is possible once this has occured) but this includes any alternative stopping
criterion we add to our model. The main difference lies in the data used for
estimation of the probability. Since the probability depends not only on the time
T when the epidemic is stopped but also on the full history of the epidemic,
most importantly on the Ii(t)’s where i is the stable of the initial infective.
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Parameters are used identical to those used in the construction of figure 7 with
the main difference being that we now have included the discovery parameter
which will change the data available. The results are available in figure 11.

The magenta lines are the ones most closely resembling the trajectories ob-
served in figure 7. For these, πD = 0.001 and we may see this as the trajectory
stabilizing into the multi-type result as πD tends to 0. It is however surprising
how quickly this stabilisation occurs. Contrast with the trajectories of the final
size Zd. We know that πD → 0 ⇔ Zd → Z and in figures 8 and 9 this holds
true when we set πD = 1e− 7. However in this setting we may take πD nearly
10000 times larger and still achieve a considerable stabilization.

In A we notice quick stabilisation as πD gets smaller but also higher prob-
ability that non-infected stables escape the infection for larger πD. Naturally,
this behavior ought to appear in all plots - as πD gets larger we have an in-
creasingly large probability of prematurely stopping the epidemic which here
hopefully happens before the epidemic jumps into a new stable.

This is most clear in plot C where we see large differences in the probability
of the disease failing to spread for the different πD. As µ → ∞ the trajectory
converges quickly. This is noticeable from the structure of the inner part of the
probability P∗ where,

P∗ = 1− pS,i(t)(1− e−µ)(1− ((1− πI)ιij(t))Nj ).

We have that, as µ→∞, (1− e−µ) converges fast to 1. In addition to this, for
N = 3000, πI = 0.001 and approximating ιij(t) ≈ µ we get that P∗ → 1−pS,i(t)
for µ ≥ 14 as evidenced by C. At this point the only variation left in the equation
is in Ii(t) and the change in variation noticeable between the three trajectories
is as such a result of the variation in Ii(t) which comes with lower values of πD.

In D we see something similar too, although for a much shorter duration. As
πR tends to 1 we see the probability of never spreading goes along with it. The
reasoning behind this is that when πR is large we see an increased probability in
individuals immediately recovering which includes the initially infected and as
such, an increased probability of immediately stopping the epidemic. As such,
πD quickly stops playing a part when πR tends to 1 since individuals will be
removed before they are able to spread into other stables.

In plot B we see that when πS tends to 1 we converge to a single unified
point independent of the discovery probability. In fact, when πS tends to one
we find that

lim
πS→1

P∗ = 1− (1− e−µ)
(

1− ((1− πI)ιij(t))Nj

)
,

which with the parameters we have used for figure 11, along with assuming
ιij(t) ≈ µ gives us that P∗ ≈ 1−0.16 = 0.84. Now this number is not the entire
probability of spread not occuring since we still need to raise it to the power
of k − 1 as well as further raising it to the power of T − 1. With the values
we have specified in figure 11 we will wind up with something akin to (0.6)T−1

which indeed tends to 0 quickly but still has a fair chance of remaining large if
the disease is stopped quickly.
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Similar results hold when we take the limit as µ → ∞ or πI → 1 but these
are more difficult to describe since they will still be dependent on pS,i(t) and
thus in turn on Ii(t).

To clearly say something about stable isolation as a preventive measure
against a full outbreak we would need more information about several of the
parameters. The size of the population N is of great importance but for this we
are able to chose reasonable bounds by the restrictions set by Jordbruksverket
and due to the scarcity of NDV in Sweden we may set m = mi = 1 as a way to
represent this. What is more difficult to estimate are the parameters relating
to the infectivity of the disease. The parameter πI depends both on actual
infectivity of the virus but depends also on the behavior of individuals in the
population and the amount of contact they have with each other. Adding to
the uncertainty relating to infectivity, it is difficult to say what impact infective
substance µ would have when added into the live population. If we consider the
added pressure ιij(t) to be infective substance left inside a stable after human
contact then this would behave differently than an infective individual would:
it remains fixed in place and behaves more as a contaminated site than it does
as an infective individual. Regardless, we have often used µ = 1 to signify that
the average added pressure functions as another infective individual (due to the
large population size, the impact of an extra infective would be minor when
the number of infectives is great but important when the number of infectives
is low). The probability of being removed is equally difficult to estimate. The
world organization for animal health reports that for velogenic strains mortality
rates may approach 100% but does not say anything about how long infective
individuals survive.

Lastly, we have the parameters relating to human interaction. These are
even more difficult to estimate, but for the sake of prevention of spread, these
can at the very least be controlled. Stable contact from stable i at time t occurs
according to the binomial random variable TS,i(t) ∼ Bin(k − 1, pS,i(t)) where
pS,i(t) is random and dependent on the number of infective individuals at time
t, Ii(t). We have incorporated this property of the model with the argument
that when farm staff enters the stable, infective substance may follow the staff
upon exit. If cleanliness routines are not fully respected at this point, this
infective substance may follow into a susceptible stable where it is picked up by a
susceptible individual and allowed to begin the spread inside this stable. Luckily,
this probability can be controlled and as ordered for by the world organization
for animal health, important routines for the sake of preventing outbreaks are,
among others, ”proper carcass disposal”, ”bird-proofing houses” and ”control
of human traffic”. We theorize that through proper routines and preventive
measures against the disease, one may reduce the probability of stable contact
which as such reduces the probability of between-stable-spread occuring.

In addition to this, by setting the probability of discovery large enough one
may immediately stop the disease upon infection after which one may remove
the infective and save the remaining population from a greater outbreak. The
problem here is that this is much more easily done in theory than it is done in
practice. Firstly, immediately recognizing NDV in a large population would be
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Figure 12: We set N = 3000, k = 4, and µ = 1. We let πI vary along a grid
from 0 to 1 of length 100 whereas πR varies along a grid from 1e − 4 to 1 also
of length 100. In plots A and B, πS = 1e − 5 and πD = 0.1 while in C and
D πS = 1e − 4 and πD = 0.01. When πI is fixed, turqouise corresponds to
πI = 0.001 with olive being 1e − 4 and magenta πI = 1e − 5. When πR is
fixed, turquoise corresponds to πR = 0.01, with olive being 0.001 and magenta
πR = 1e− 4.

difficult and secondly, even if the initially infective is immediately removed, this
does not necessarily stop the disease as infective substance may remain inside
the stable, further infecting the remaining susceptibles after an individual has
been removed.

We close this section of with a plot created under these assumptions. Letting
πS ≈ 0 and with πD large, we let πI and πR vary and estimate the probability
of no spread occuring during the epidemic. In plots A and B we have set πS and
πD to what we consider optimistic values. Both adhere to the assumptions made
on the parameters. The results are also optimistic. As πI varies throughout its
entire domain we only ever reach a probability of 0.5 and this is when we set
πR = 1e−4 corresponding to infectious periods of 10000 days. In B we note the
lowest probability at around a similar value of πR as its trajectory starts. Here
the probability almost immediately rises and converges to 1, estimating it as
nearly impossible to spread into another stable. The lowest R0 in A is obviously
at the point where πI = 0 but looking at how the probability converges early on
regardless of the size of πI we may take more or less any point arriving at R0

huge which is also promising. Looking at B and especially at the magenta line
we have that R0 = 300 at the point where the magenta line starts its trajectory
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which is similarily large. Remember that, as πR → 1, R0 becomes smaller
which, with our previous results about the outcome of an outbreak for large πD
from figure 11, leads us to theorize that the probability of no spread occuring
is independent of R0 for large πD.

In C and D we have allowed ourselves to be less optimistic which unfortu-
nately leads to less positive results. In the plot for D the trajectories converge to
1 although slowly with the turquoise line where πI = 0.001 barely even reaching
1 before πR reaches its maximum value. In the plot for C things are even less
certain where the probability immediately dives down, stabilizing around 0.25
or even lower and tending to 0 as we pick successively lower πR.

Our conclusion here is that one can prevent major outbreaks regardless of
how infective the virus is by making sure that cleanliness routines are withheld
and by being vigilant and alert for potential outbreaks. In practice this would
amount to strangling between-stable-contact while also keeping an eye out for
deceased individuals and unnatural behavior. If this is done to the correct degree
(which in our model corresponds to the level of πS ≤ 1e− 5 and πD ≥ 0.1) then
there is a low, but still positive, probability that spread between stable occurs
and upon discovered infection isolated stables may be considered safe. However,
if these routines are not kept to the appropriate degree, it will take very little
for an infectious enough disease to contact all stables and wipe out the entire
population on its own.

4 Discussion

The objective of this thesis was to create a stochastic model for the spread of
Newcastle disease in a farm population. Several assumptions have been made to
cater to this situation and our limited knowledge of both the Newcastle disease
virus as well as the routines and procedures apparent on a typical poultry farm
have led to approximations and simplifications to aid the mathematical model
in both simplicity and analytic tractability. Realism has remained a constant
through the definition of the model but not a main priority. In fact, while it has
been nearly a century since the discovery of NDV, due to the variation inherent
in the virus, both in different strains but also in manifestation amongst different
types of fowl, little can be stated as to how long infected individuals survive,
how infectious the disease is or to what extent infected substance compares to
direct contact.

This leads us into one of the main complications with the goal of this thesis
and that is in its usefulness. The model allows for a large variation of values and
the structure, for instance when it comes to between-stable-spread, is complex
enough to take multiple factors into account. However, when there is no good
way to estimate parameters it is difficult to use either the equation for the
reproduction number, the simulations or proposition 1 to give results applicable
to a real-life farm setting.

Our goals were to create a model, which we have succeeded with, but also to
use this model to say something about how well isolation of birds into stables
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would work. This has proven to be a more difficult task than expected and we
have only been able to look at simple cases where single variables have been
allowed to vary. We have written a program for estimation of this probability
using the coded simulation of the epidemic but this again runs into the issue of
requiring parameter input to be useful.

As a consequence of this, our obtained results mostly relate to certain ana-
lytic derivations along with a closer study of the final size Z. We successfully
derive an equation for the basic reproduction number in the case of k = 1 stables
along with deriving the next-generation matrix Ak which can be used to derive
R0 in a multi-type setting (k > 1) either numerically or analytically for k low.
For R0, the perhaps most interesting result is the one given in figure 4 where we
illustrate the size of R0 as the involved parameters are allowed to vary. While
we are unable to derive a general formula for R0 when k > 1 we may still use
these results to get an understanding of to what degree various parameters im-
pact the R0. The main surprise here is how little effect the probability of spread
πS and the expected amount of added pressure upon successful stable contact µ
has on the reproduction number and final size. With more time we would have
liked to extend the computation of R0 to include the discovery parameter as
well as being able to conclude something more about the structure of R0 with
more than only a single parameter varying.

Due to time limitations we were also unable to extend the caged model into
more than simple comments and initial observations. An interesting question
would be to compare the ability of both interior spread between caged birds
and the free-roaming birds and to look into whether cages further enable the
spread of NDV or acts as a neutralizer, slowing the speed of the spread down.
We conjecture that the caged model would see less extensive spread than the
other models, leaving comments on which one is ultimately better to be unsaid.

As a model for NDV we argue that this model is both realistic and appro-
priate. The only questionable assumption is whether taking Swedish farms as a
setting for the virus is appropriate. Not only is it an odd source of inspiration
due to NDV not being as widespread in Sweden as it is in other countries but
adding to this we are also assuming that the strain of the virus which we are
modeling is of the velogenic kind, i.e, the most infectious and deadly kind (other-
wise the SIR-model would be inappropriate) however this virus strain is not said
to be found in Europe (World organization for animal health). Despite this, the
reasoning behind the various parts of the model are sound and reasonable and
the model in its general form (as detailed in sections 2.2 and 2.3) can be applied
to a wide range of similar diseases in similar settings. An example of such a
disease would be foot-and-mouth disease which spreads primarily through direct
contact but where the virus may also be carried via humans through clothing,
vehicles or equipment (Jordbruksverket). Foot-and-mouth disease infects cloven
hoofed animals and as such assumptions detailed in section 2.1 on farm structure
along with population and contact would have to be looked over and changed
from poultry to cleft-hoofed be able to apply the model.

As we have repeated throughout this thesis, our goal with the creation of this
model has been to find an equilibrium between simplification and realism as is
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often the goal with any model. The statistician George Box famously said that
”all models are wrong but some are useful” and this statement indeed rings
true for our model too. Several extensions which we have glossed over could
be implemented, making the model no less wrong but perhaps slightly more
useful. An immediate example would be to correct the discovery probability
and extending it to also depend on the infected population. In a real-world
setting, we assume that the farm hand is not blind to symptoms in the farm
population and as such a more realistic definition would be

pD(t) = 1− (1− πD)cI(t)+R(t),

where c is used to quantify the weight that symptoms in live individuals have
on the discovery probability. This idea was mentioned in section 2.4 but it was
dismissed due to the difficulties in estimating c as quantifying such a behavior
is not easy.

Another interesting extension would be to look at different distributions
of the added exterior pressure, ιij(t)|Cij(t) = 1. We have chosen this to be
Poisson(µ) but there is no set limitation on this distribution and it may very
well be chosen to be deterministic which might simplify the structure of the
model.

Other properties that have been considered but ultimately dismissed relate
to spatial structure inside a stable, implementing site contamination for infective
substance and making the contact parameter λ vary between λin of contact rate
inside stables and λout of contact rates when outdoors birds are allowed outside.
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Appendix

Proposition 1: If the time T when the epidemic is stopped is known and we
assume that mi = 1 with mj = 0 for all j 6= i then

P(The disease never spreads) =

=

T−1∏
t=1

∏
j 6=i

(
1− pS,i(t)

(
1− e−µ

) (
1− ((1− πI)ιij(τ)

)Nj
) (19)

Proof: For the proof we use several variables and results from subsection 2.4.
We have that

P(The disease never spreads) =

= P(Disease fails to spread at time T − 1, ...,disease fails to spread at time 1)

= P(Fails to spread at time T − 1|Fails at T − 2, ..., 1)P(Fails at T − 2, ..., 1)

=

T−1∏
t=1

P(Fails to spread at time T − t|Fails at T − t− 1, ..., 1) (20)

For τ ∈ {1, ..., T − 1} we have that, using that we know that the disease has
failed to spread at every previous timestep t < τ ,

P(Fails to spread at time τ) =

= P(Stable 1 fails to spread into stable 1, ...,Stable k fails to spread into stable k)

=

k∏
j=1

k∏
i=1

P(Stable i fails to spread into stable j at time τ)

=
∏
j 6=i

P(Stable i fails to spread into stable j at time τ) (21)

Here we have used that the events that a given stable spreads into another given
stable are independent along with the assumption of mi = 1 with mj = 0 for
all j 6= i. The last assumptions gives us that P(Cji(t) = 0) = 1 along with how
we have defined that P(Cii(t) = 0) = 1 for all t. Continuing we get that

P(Stable i fails to spread into stable j at time τ) =

= P(Cij(τ) = 0 ∪ {Cij(τ) = 1, ιij(τ) = 0} ∪ {Cij(τ) = 1, ιij(τ) > 0, TI,j(τ) = 0})
= P(Cij(τ) = 0) + P(Cij(τ) = 1, ιij(τ) = 0) + P(Cij(τ), ιij(τ) > 0, TI,j(τ) = 0)

= A+B + C. (22)
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We continue by looking at the probabilities of these events separately.

A = P(Cij(τ) = 0) =

k−1∑
y=0

P(Cij(τ) = 0|TS,i(τ) = y)P(TS,i(τ) = y)

=

k−1∑
y=0

(
1− y

k − 1

)
P(TS,i(τ) = y) = 1− 1

k − 1
(k − 1)pS,i(τ) = 1− pS,i(τ)

(23)

B = P(Cij(τ) = 1, ιij(τ) = 0) = P(ιij(τ) = 0|Cij(τ) = 1)P(Cij(τ) = 1)

= e−µ (1− P(Cij(τ) = 0)) = e−µpS,i(τ) (24)

C = P(Cij(τ) = 1, ιij(τ) > 0, TI,j(τ) = 0)

= P(TI,j(τ) = 0|Cij(τ) = 1, ιij(τ) > 0)P(Cij(τ) = 1, ιij(τ) > 0)

= P(TI,j(τ) = 0|Cij(τ) = 1, ιij(τ) > 0)P(ιij(τ) > 0|Cij(τ) = 1)P(Cij(τ) = 1)

= (1− (1− (1− πI)Ij(τ)+ιij(τ)))Sj(t) (1− P(ιij(τ) = 0|Cij(τ) = 1)) (1− P(Cij(τ) = 0))

=
(

(1− πI)ιij(τ)
)Nj (

1− e−µ
)

(pS,i(τ)) (25)

where ιij(τ) > 0.

⇒ A+B + C = 1− pS,i(τ) + e−µpS,i(τ) +
(

(1− πI)ιij(τ)
)Nj (

1− e−µ
)

(pS,i(τ))

= 1− pS,i(τ)

(
1− e−µ −

(
(1− πI)ιij(τ)

)Nj (
1− e−µ

))
= 1− pS,i(τ)

(
1− e−µ

) (
1− ((1− πI)ιij(τ))Nj

)
(26)

Plugging this back into equation 21 gives us that

P(The disease never spreads) =

T−1∏
t=1

∏
j 6=i

(
1− pS,i(t)

(
1− e−µ

) (
1− ((1− πI)ιij(t))Nj

)) , (27)

where ιij(t) > 0. This completes the proof.

References

[1] Andersson, H. and Britton, T., Stochastic epidemic models and their sta-
tistical analysis. Springer, 2000.

43



[2] Britton, T. (in press), Stochastic epidemic models: a survey. Mathematical
biosciences, 2010.

[3] Pellis, L., Ball. F. and Trapman, P., Reproduction number for epidemic
models with households and other social structures I: definition and calcu-
lation of R0. Research report, 2011:6.

[4] California Department of Food and Agriculture (CDFA),
Historical virulent Newcastle disease incidents.
URL: https://www.cdfa.ca.gov/ahfss/AnimalHealth/

NewcastleDiseaseInfo.html

[5] Jordbruksverket, Mul- och klövsjuka.
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