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Abstract

This thesis describes quantile regression coefficient models (QRCM),
a method recently developed by Frumento and Bottai [3]. This method
is an extension of quantile regression, which can estimate conditional
quantiles of a continuous outcome variable given covariates. QRCM
specifies the coefficients of a quantile regression model as parametric
functions of the order of the quantile. This thesis illustrates the use
of QRCM in a study of the distribution of body mass index (BMI),
defined as weight divided by height squared (kg/m2). The data were
collected by the National Health and Nutrition Examination Survey
(NHANES) between the years 2015 − 2016. The sample consisted of
8419 individuals living in the United States. QRCM were used to es-
timate conditional quantiles of BMI given four explanatory variables:
age, race, height and gender. All these predictors appeared to be
important for accurate estimations of BMI quantiles. QRCM enabled
estimating reference values that could be used when assessing the BMI
value of any given individual in an epidemiological or a clinical setting.
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Sammanfattning

Denna uppsats beskriver kvantilregressionskoefficientsmodeller (QRCM), en
metod nyligen utvecklad av Frumento och Bottai [3]. Dessa modeller är en
förlängning av kvantilregression, som kan uppskatta betingade kvantiler av
en kontinuerlig utfallsvariabel givet kovariater. QRCM anger koefficienterna
av en kvantilregressions modell som en parametrisk funktion i kvantilordnin-
gens ordning. Denna uppsats illustrerar användandet av QRCM i en studie
av fördelningen av kroppsmasseindex, (BMI). BMI är definierat som vikten
delat med längden i kvadrat (kg/m2). Datan samlades in av National Health
and Nuitrition Survey (NHANES) från åren 2015 − 2016. Stickprovet be-
stod av 8419 individer bosatta i USA. QRCM användes för att uppskatta
betingade kvantiler av BMI givet fyra förklarande variabler: ålder, etnicitet,
längd och kön. Alla dessa prediktorer tycktes vara viktiga för exakta skat-
tningar av BMI kvantiler. QRCM möjliggjorde uppskattning av referensvär-
den, som kan användas vid bedömning av BMI värden av någon given individ
i epidemiologiska eller kliniska förhållanden.
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1 Introduction

Quantile regression is an extension of linear models and is used to comple-
ment ordinary least squares regression. The story behind the development
of quantile regression goes back a long time. In 1757 the priest and math-
ematician Boscovich fitted a straight line to a number of observations with
two variables using least sum of absolute deviations. This method was later
used and developed by Laplace [17]. Almost two centuries later Harris [16]
found in 1950 that the problem with minimum absolute deviations can be
transformed to Wagner’s [28] theories on the linear programming problem,
developed in 1959. This method has been used frequently because it has be-
come popular to use robust methods and extreme value modeling. Quantile
regression methods are introduced by Cameron and Trivedi [6] in 2005, Hao
and Naiman [15] in 2007, and Wooldridge [30] in 2010.

In this thesis we use the definition of quantile regression presented by
Koenker and Bassett [20] in 1978. They introduced quantile regression as
an extension to ideas that were already existing. They suggested estimating
the conditional quantile function models as functions of observed covariates.

There are advantages in using quantile regression instead of the more
common ordinary least square (OLS) regression, as explained by Lê Cook
and Manning [23] in 2013. When using OLS we study only the mean of
the distribution and not the upper and lower tails of the distribution. An
advantage of using quantile regression is that it is more robust when dealing
with data that have skewed error terms. With quantile regression one can
obtain a complete picture of the distribution as one can study the tails of
the distribution as well as all quantiles in-between.

Frumento and Bottai [3, 4] extended quantile regression and developed
quantile regression coefficient models (QRCM). The hallmark of this method
is that the regression coefficients are modelled as parametric functions in the
order of the quantiles. Frumento and Bottai found that using this method
might be preferable with respect to efficiency and parsimony and it might
help expand the potential of statistical modeling.

The data used in this thesis are from the National Health and Nutri-
tion Examination Survey (NHANES) [7]. The data contain the explanatory
variables gender, age, race and height; and the dependent variable body
mass index (BMI). BMI values is used when examining body weight of a
person. The BMI of a person is defined by a person’s weight and height,
BMI=kg/m2, and therefore it is a measurement quite easy to obtain. In
clinical and epidemiological settings, BMI values are often compared with
reference values and growth charts.

In this thesis we use Frumento and Bottai’s approach on data from the
National Health and Nutrition Examination Survey [7] to estimate reference
values and use them to assess BMI values of individuals of any given quantile.
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1.1 Structure of the thesis

The structure of this thesis is as follows. Section 2 describes the basic proper-
ties of quantile regression and quantile functions along with a few examples
of application from earlier studies in different fields. Section 3 introduces
quantile parametric models developed by Frumento and Bottai [3] in 2016.
Section 4 presents the analysis of the data from NHANES [7], on BMI and
four explanatory variables. In section 5 we discuss the limitations of this
study and future work on the subject.

2 Background and Methods

This section outlines the theory and concepts that will be used in the thesis.

2.1 Quantile functions and Cumulative Distribution Func-
tions

The cumulative distribution function (CDF) of a random variable X is de-
fined as the probability that the observed value X is smaller or equals a value
that we call x,

FX(x) = P (X ≤ x).

For a continuous random variable X with a continuous CDF function, the
probability density function (PDF) of X is defined as the derivative of the
CDF,

fX(X) =
dFX(x)

dx
.

The quantile function (QF) is defined as the inverse of the CDF, i.e.

Q(p) = F−1(p) = inf{x : F (x) > p}.

The quantiles and their ranks can be estimated through an optimization
problem as described by Koenker.[19]

2.2 Quantile regression

This section follows the material presented in the book by Koenker [19].
Quantiles can be obtained by solving a minimization problem, but let us first
describe how to estimate the expected value from a sample. To obtain an
estimate of the expected value E(Y ), from a sample Y1, ..., Yn of independent
observations of random variables Y1, Y2, . . . , Yn with distribution function
FY , one can solve the minimization problem,

2



min
µ∈<

n∑
i=1

(yi − µ)2.

Suppose that some of the variation in Y is explained by a vector of
covariates x = (x1, ...xq)

T . To find the conditional mean E(Y |x), µ(x) =
xTβ, we can estimate β by solving the same minimization problem as above,
but replace µ with xTβ, i.e.

min
β∈<q

n∑
i=1

(yi − xTi β)2,

where xi = (xi1, ..., xiq)
T is a vector of covariates for observation i.

The same procedure follows when we want to find the p sample quantile,
this is obtained by solving the minimization problem

min
α∈<

n∑
i=1

qp(yi − α),

where qp(·) is the function of the tilted absolute value, with the pth sample
quantile as solution. This is illustrated in Figure 1.

Figure 1: Quantile regression q function. The slope of the line to the right
represents the pth quantile (denoted τ in the picture), whereas the slope of
the line to the left is the p−1th quantile (denoted τ −1 in the picture). The
notion denoted ρτ represents the qp(·) function.

We can solve the conditional quantile function for the pth quantileQy(p|x) =
xTβ(p) as

min
β∈<q

n∑
i=1

qp(yi − xTi β).

A regression model with independent and identically distributed error
terms ui is written as follows

Yi = β0 + xiβ1 + ui,

3



where β0 is the intercept term. Then the quantile functions of Y can be
written as

Qy(p|x) = β0 + xβ1 + F−1u (p),

where Fu is the common distribution function of the error terms ui. By
integrating the quantile of the error term into the intercept, we can rewrite
the quantile function as

Q(p) = β0(p) + β1(p)x.

When estimating the parameters of a linear regression model, we need
to find the partial derivatives of the objective function with respect to the
intercept and the effect parameters. If a covariate is dependent on more than
one coefficient in the model, the interpretation would be that when there is
a change in a covariate it will lead to changes on all coefficients associated
with the covariate. We have that

Qh(Y )(p|X = x) = h(QY (p|X = x)),

which holds for a monotone transformation h(·). It then follows that

Qh(Y )(p|X = x) = xTβ(p),

if h is chosen as the link function for which the conditional quantile function
of h(Y ) rather than Y , is a linear combination xTβ(p) of the covariates.
Then find the partial derivative for xj ,

δQh(Y )(p|X = x)

δxj
=
δh−1(xTβ)

δxj
.

An example with a logarithmic link function, would then be

Qlog(Y )(p|X = x) = xTβ(p),

with the following derivative

δQh(Y )(p|X = x)

δxj
= exp(xTβ)βj .

2.3 Examples of quantile regression applications

Quantile regression is used in many fields and some empirical examples are
described in this section.
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2.3.1 Economics

The Nobel prize winner Angus Deaton introduced the concept of quantile re-
gression in his book The Analysis of Household Surveys (Deaton, 1997) [12].
He used quantile regression when studying data from food share and total
expenditure in Pakistan between the years 1984-85. In previous experience
made on the topic it has been shown that the budget share a household
spends on food can be approximated as a linear function of the logarithm
of household expenditure per capita. The survey made by Deaton studied
9119 households on which he calculated the food share conditional on the
logarithm of household experiment per head. In the result he observed the
10th, 50th and the 90th quantiles of the quantile regression. The observed
slopes of the three quantiles differ where the 10th quantile had a slope of
-0.121, the 50th (median) a slope of -0.094 and the upper 90th quantile had
a slope of -0.054. The slopes have a wide variation, meaning that there is
an increasing conditional variance of the regression in households that are
wealthier. He noted that there is a large difference between the 10th and
the 90th quantile among the wealthier households, Deaton concludes that it
means that the households with more money tend to spend less of it on food
but he also notes that there is a higher variability of tastes among them.

2.3.2 Epidemiology

A study by Zhang et al [32] in 2006 investigated the impact smoking has on
the sleep architecture (a cyclical pattern of sleep that is affected by age and
disorders). Quantile regression was used in the article to examine the param-
eters of sleep architecture and to study the differences between the groups:
never smoker, former smoker and current smoker. After parameterization
was made on the models, the regression coefficients compared the relative
proportions of each sleep step between the reference group never smokers
and the former or current smokers respectively.

2.3.3 Ecology

When studying statistical distributions of ecological data there is more than
one rate of change that explains the relationship between the outcome and
predictor variables. This is called unequal variation. To be able to estimate
multiple rate of change, quantile regression is used, then the ecologists will
learn more about all the factors affecting the organisms.[5] An example of
quantile regression used in ecology is a study by Dunham et al [13] in 2002,
where they used quantile regression to investigate if there are limiting re-
lationships between the standing crop of cutthroat trout and measures of
stream channel morphology. The quantile regression models showed an in-
verse relationship between the variation of fish density and the ratio between

5



width and depth of streams. The study also indicated that there was no re-
lation found between variation of fish density and the width and depth of
the stream alone.

2.3.4 Medicine

Quantile regression is commonly used in medicine, and an example is a study
of growth charts of children in Finland (Wei et al., 2006)[29]. Data of height
and weight was collected from 2514 Finnish children, between the ages of
0 and 20 the children had been measured an average of 20 times. Their
conclusion of the study was that using quantile regression when observing
independent estimation growth curves is a flexible approach.

2.4 Restricted cubic splines

Restricted cubic splines are a transformation of an explanatory variable used
to model the non-linear relationship between an outcome and an explanatory
variable. Restricted cubic splines are used when studying non-linearity or
when the relationship between the variables is too non-linear for them to be
summarized meaningfully by a linear model. The method of restricted cubic
splines proceeds as follows: First subdivide the range of the predictor values
into subintervals with a number of knots. Then fit the regression curves/lines
in between these knots. The optimal number of knots to use depends on how
big the sample is. If working with a small sample, three knots are optimal
to use, this to ensure that there is enough observations between the knots
as needed in order to fit each polynomial. With large samples, five or more
knots can be used. The location of the knots is less important than the
number of them, and it is specified in advance depending on the quantile of
the continuous variable. The regression curves/lines must meet at the knots
in a way to that they will join smoothly. This means that for the polynomials
with degree n, the spline functions are continuous at the knots, as well as the
first n − 1 derivatives. For instance, the first and second derivatives of the
cubic splines are continuous at the knots, this gives them a smooth shape.
Cubic splines do not have to use as many degrees of polynomials as higher
order splines to still have an inflection and have flexibility when fitting the
data. To fit a linear model with k knots, k+ 1 coefficients are used, whereas
fitting a cubic spline needs k + 3 coefficients plus one for the intercept.

Restricted cubic splines are often preferred to cubic splines because they
constrain the fitting curve to be linear at either end of the range of the
predictor variable, where ordinary cubic splines may show erratic behaviour.

6



3 Quantile parametric models

This section closely follows the material written in 2016 by Frumento and
Bottai [3]. QRCM define the coefficients of a quantile regression model as
parametric functions of the order of the quantile. This approach generally
has advantages in efficiency, parsimony and it might help expand the poten-
tial of statistical modeling.

3.1 Quantile regression coefficient models

To explain this approach, we start by introducing some definitions. Denote
the conditional functions of PDF, CDF and QF by f(y|x), F (y|x) andQ(p|x)
respectively, where Y is the variable of interest conditional on the vector x
with dimension q, of observed covariates. Assume that for any p ∈ (0, 1),
there exists a q-dimensional column vector β(p) such that

Q(p|x) = xTβ(p), (1)

where β(p) is defined as a function of p. Moreover, β(p) depends on a finite-
dimensional parameter θ, such as

β(p|θ) = θb(p),

where b(p) = [b1(p), ..., bk(p)]
T is a set of k known functions of p, and θ

is a q × k matrix with entries θjh. The quantile regression coefficient that
is associated with the j-th covariate is βj(p|θ) = θj1b1(p) + ... + θjkbk(p),
j = 1, ..., q. The conditional quantile function can then be written as

Q(p|x, θ) = xTθb(p). (2)

To allow regression coefficients to be functions of different subsets of b(p),
some entries of θ can be set to 0. To describe how the regression coefficients
depend on the order of the quantile, the value of p is varied. Then the
vector β(p) will be a set of quantile coefficient functions that describe this
dependency.[4]

3.1.1 Examples of conditional quantile regression.

In equation (1) we saw the quantile regression model and now we are go-
ing to use the same model but with conditionals. The conditional quantile
regression model for a single covariate x can be written as

Q(p|x,θ) = β0(p|θ) + β1(p|θ)x,

where we have used that j = 0 for the coefficient associated with the constant
term in x and h = 0 for the coefficient associated with the constant term in
b(p).

7



Example1
In the first example we assume that β0(p|θ) = θ00 + θ01p and β1(p|θ) =
θ10 + θ11p. The quantile function is then a uniform distribution and the
support can be obtained by setting p = 0 and p = 1 where the endpoints
of the support are linear functions of x. We note that if θ01 + θ11x > 0, for
all x, then Q(p|x,θ) is monotonically increasing. This will make it simple
to control for quantile crossing. When θ11 = 0 homoscedasticity is imposed
and when there is no intercept, θ00 = θ01 = 0, it describes a zero-flat model
where all quantiles have value 0 at x = 0. The model is determined by the
choice of the "basis" b(p), which must be defined in advance, and by the
restrictions that are imposed on θ. In the first example the restrictions are
the following

b(p) =

(
1
p

)
and θ =

(
θ00 θ01
θ10 θ11

)
.

This model can be used for a bounded outcome (when the measurements
are in a finite interval) and then θ00 would be the lower bound of the support
for x = 0.

Example2
In the next example we assume that the outcome is not bounded. If β0(p|θ) =
θ00 + θ01z(p) and β1(p|θ) = θ10 + θ12p, where β1 is linear in p, and β0 de-
pends on the quantile function of a standard normal distribution, z(p), then
this model does not correspond to any known distribution for Y |x, except
when x = 0. If we were to put θ12 = 0 the model assumptions will be that
of a standard linear regression, with the coefficients β0 = θ00, β1 = θ10 and
the residual standard deviation σ = θ01. In this second example the model
restrictions are

b(p) =

 1
z(p)
p

 and θ =

(
θ00 θ01 0
θ10 0 θ12

)
.

This model describes an unbounded outcome where θ00 is the median
outcome when x = 0.

3.1.2 Estimator of the coefficient functions

We are now going to define an estimator which generalizes ordinary quantile
regression and it is developed to estimate the coefficient functions. To be
able to estimate the p-th quantile regression coefficients in model (1), we
must minimize the following objective function:

Ln(β(p)) = n−1
n∑
i=1

(p− ωp,i)(yi − xTi β(p)), (3)
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where ωp,i = I(yi ≤ xTi β(p)), and I(·) is the indicator function. The gradient
is a discontinuous function of β(p) which takes the form

Sn(β(p)) = n−1
n∑
i=1

xi(ωp,i − p). (4)

The Matrix θ in the quantile function (2) can be estimated as the mini-
mizer of the integrated objective function

Ln(θ) =

∫ 1

0
Ln(β(p|θ))dp. (5)

This is the same as to find the zeros of its gradient

Sn(θ) =

∫ 1

0
Sn(β(p|θ))b(p)Tdp, (6)

which we call the integrated loss minimization (ILM).
The integrated objective function (5) is obtained by marginalizing the

objective function (3) over the interval (0,1), hence it can be said to be an
average loss function. Using this approach allows us to estimate the entire
quantile process instead of estimating a discrete set of variables.

Now we define some quantities

Bh(p) =

∫ p

0
bh(u)du, Bh =

∫ 1

0
Bh(u)du and

b′h(p) =
dbh(p)

dp
, h = 1, ..., k.

We let B(p),B and b′(p) denote the corresponding k-dimensional vectors.
Now we can rewrite the integrated loss function (5) and the integrated gra-
dient function (6) can be written as

Ln(θ) = n−1
n∑
i=1

yi(pi − 0.5) + xTi θ[B −B(pi)], (7)

and

Sn(θ) = n−1
n∑
i=1

xi[B −B(pi)]
T . (8)

Here, pi = F (yi|xi,θ) corresponds to the CDF of yi evaluated at θ, which
is the same as saying that it corresponds to the order of the quantile such
that xTi β(pi|θ) = yi, where pi is a function of θ. The sample mean of B(pi)
is approaching its integral B when Sn(θ) approaches 0, which it does when
p1, ..., pn are evenly spaced within the unit interval. The integrated gradient
defined in equation (8) is a q × k matrix and if pi is a smooth function then
Sn will be a smooth function of θ as well.
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3.1.3 Asymptotic properties of the estimator

In this section we are going to look further into the asymptotic behaviour
of the proposed estimator. To do this we will apply the standard theory
of extremum estimators. We denote the parameter space Θ as the set of
possible parameter values and θ0 ∈ Θ is called the population parameter
that satisfies the condition F (xTi β(p|θ0)) = p. We denote θ̂ as the mini-
mizer of the integrated loss function (6) which we base on a sample size n.
We let p0i , which has a standard uniform distribution by definition, be the
value of pi evaluated at θ = θ0 which then corresponds to the true CDF
value of the data. It follows from these conditions that for any function g,
E[g(p0i )] =

∫ 1
0 g(p)dp and as E[B(p0i )] = B we have unbiasedness. The con-

ditions of consistency and asymptotic normality usually follow as well under
straightforward mild conditions.

4 Data analysis

We utilized QRCM to analyze BMI as a function of age, race, gender and
height.

4.1 Description of data

The data were collected by the National Health and Nutrition Examination
Survey (NHANES)[7], which is an American program of studies whose mis-
sion is to examine the status of adults and children in the United States
in terms of the health and nutritional perspectives. To collect the desired
information they perform surveys, physical experiments and interviews.

The data spans between the years 2015-2016. During this period there
were 15327 people selected to be part of NHANES, 9971 completed the
interviews and of these, 9544 were examined.

4.2 Variables

The original data from the NHANES are divided into two sets. One set is
data from the interview survey [8], which contains 47 variables. The other
set is data from the examination survey [9], which contains 26 variables. We
used the variables gender, age and race from the interview survey and the
variables height and BMI from the examination survey. Since there was a
different amount of people who were examined and who took part of the
interview, the number of observations in the corresponding data sets differs
as well.
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4.2.1 Gender

The first variable in the data set is gender, a binary variable where 1 indicates
males and 2 for females. The number of male participants was 4892 and the
remaining 5079 participants were females.

4.2.2 Age

The variable age represents the age in years of the participants when the
survey was made. The age ranges from 0 to 80 years, where the value 80
represents the participants of 80 years or more. The number of participants
who were between the ages 0 and 79 was 9595 and the number of participants
who were aged 80 years or more was 376.

4.2.3 Race

Race is divided into the following 5 categories, with the number of partic-
ipants representing this race in brackets: Mexican American (1921), other
Hispanic (1308), non-Hispanic white (3066), non-Hispanic black (2129) and
other race including multi-racial (1547). All these races add up to the total
number of participants; there are no missing data on the variable race.

4.2.4 Height

The variable for height is measured in centimetres and the height span is
from 80.7 to 202.7 cm. Height was measured on 8769 participants with 775
missing variables. Height was measured in the participants from the age of
2 years.

4.2.5 Body mass index

The last variable in the data set is BMI, which stands for Body Mass Index.
It is calculated as weight in kilograms divided by height squared in meters
with values rounded to one decimal digit. The span of BMI in the data
set is from 11.5 to 67.3 kg/m2. Since the height was not obtained for all
participants, there are missing values for BMI as well. Out of 9544 who were
examined, there are results from 8756 participants and the remaining 788
are missing values.

4.3 Missing data

The variables have a different number of valid observations. The number of
sampled individuals differ between the variables, since some participants who
did the survey did not undergo the examination. There are 9971 observations
for the variables gender, age and race, and 9544 observations for the variables
height and BMI. We included only the observations from the participants
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that were younger than age 80 years. This is because the participants with
an age of 80 years or more received the value 80 years. When performing
the data analysis we want values of all variables for the participants. The
participants with completed data were removed from the data set. This will
result in a data set containing 8419 observations.

4.4 Analysis of the data

To perform the data analysis we used the R program with the package named
qrcm. The package was developed by Frumento in 2017 [14]. The integrated
loss minimization (ILM), described in Section 3.1.2, is implemented in the
qrcm package and it was used in the data analysis. The R code used in the
data analysis is reported in Appendix A3. To decide the number of splines to
use we looked at the significance of the splines. If they were not significant
we decreased their number by one, and if all splines were significant we
added one. However, no more than 4 splines were used. We divided men
and women and analyzed them separately. For each gender we also studied
the different races separately. We show the results of the analyses in graphs.
The regression model was:

Q(p) = β0 + β1HeightSpline1 + β2HeightSpline2 + β3HeightSpline3

+ β4AgeSpline1 + β5AgeSpline2 + β6AgeSpline3. (9)

The β coefficients are estimated as

βi(p) = θi0 + θi1 log(p) + θi2 log(1− p) + θi3slp1 + θi4slp2,

where the variables slp indicate Legendre polynomial bases. The β coeffi-
cients for the regression model were the following

β0(p) = θ00 + θ01 log(p) + θ02 log(1− p) + θ03slp1 + θ04slp2

β1(p) = θ10 + θ11 log(p) + θ12 log(1− p) + θ13slp1 + θ14slp2

β2(p) = θ20 + θ21 log(p) + θ22 log(1− p) + θ23slp1 + θ24slp2

β3(p) = θ30 + θ31 log(p) + θ32 log(1− p) + θ33slp1 + θ34slp2

β4(p) = θ40 + θ41 log(p) + θ42 log(1− p) + θ43slp1 + θ44slp2

β5(p) = θ50 + θ51 log(p) + θ52 log(1− p) + θ53slp1 + θ54slp2

β6(p) = θ60 + θ61 log(p) + θ62 log(1− p) + θ63slp1 + θ64slp2.

(10)

4.5 Results

We obtained estimates for the β coefficients. In Table 1 the estimates for
females are reported with the standard error within the parenthesis. The
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p-values represent significance of the null hypothesis that the value of θ in
each column, is 0. All β coefficients are significantly different from zero.
For example, using equation (10) we can read that the estimated quantile
regression coefficient for spline 3 of height is

β̂3(p) = − 1.7 · 10−6 − 1.8 · 10−7 log(p) + 5.3 · 10−7 log(1− p)
+ 5.2 · 10−7slp1− 4.9 · 10−8slp2.

Table 1: Summary of estimates of β coefficients for Females. The standard
errors are within the parenthesis. The p-values represent the significance of
the null hypothesis that the value of θ in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 82 3.1 -15 -4.9 1.8 <2·10−16

cept (51) (16) (37) (48) (26.9)
Height -0.8 -0.1 0.2 1.2 -9.8·10−4 <2·10−16

Spline 1 (0.6) (0.2) (0.5) (0.6) (0.3)
Height 2.2·10−3 2·10−4 -6.4·10−4 -5.0·10−5 4.4·10−5 <2·10−16

Spline 2 (1.6·10−3) (5·10−4) (1.3·10−3) (1.6·10−3) (8.8·10−4)

Height -1.7·10−6 -1.8·10−7 5.3·10−7 5.2·10−7 -4.9·10−8 <2·10−16

Spline 3 (1.3·10−6) (3.8·10−7) (9.6·10−7) (1.3·10−6) (6.8·10−7)

Age 0.2 1.2·10−2 -4.2·10−2 0.1 1.6·10−2 <2·10−16

Spline 1 (0.2) (4.6·10−2) (0.1) (0.2) (8.8·10−2

Age -1.5·10−3 -2.2·10−4 -5.5·10−5 -7.5·10−4 -4.6·10−4 <2·10−16

Spline 2 (1.5·10−3) (4.1·10−4) (1.1·10−3) (3.4·10−6) (1.9·10−6)

Age 4.1·10−6 8.4·10−7 6.8·10−7 7.8·10−7 1.5·10−6 <2·10−16

Spline 3 (3.6·10−6) (10·10−7) (2.5·10−6) (0.3) (0.2)
p-value <2·10−16 5.1·10−5 <2·10−16 2.9·10−10 2.9·10−10

From the estimates in Table 2 we obtain that the estimated quantile
regression coefficient for spline 2 of age is

β̂5(p) = − 1.5 · 10−3 − 2.2 · 10−4 log(p)− 5.5 · 10−5 log(1− p)
− 7.5 · 10−4slp1− 4.6 · 10−4slp2.

The remaining summaries of ILM estimates are shown in Appendix A1.
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Table 2: Summary of estimates of β coefficients for Males. The standard
errors are within the parenthesis. The p-values represent the significance of
the null hypothesis that the value of θ in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 86 10 12 32 16 <2·10−16

cept (38) (10) (26) (32) (20)
Height -0.8 -0.1 -0.2 -0.4 -0.2 <2·10−16

Spline 1 (0.4) (0.1) (0.3) (0.4) (0.2)
Height 1.8·10−3 2.8·10−4 4.0·10−4 1.2·10−3 6.6·10−4 <2·10−16

Spline 2 (1.1·10−3) (3.1·10−4) (8.0·10−4) (9.8·10−4) (6.0·10−4)

Height -1.2·10−6 -1.8·10−7 -3.2·10−7 -9.1·10−7 -4.9·10−7 <2·10−16

Spline 3 (8.4·10−7) (2.3·10−7) (6.0·10−7) (7.4·10−7) (4.4·10−7)

Age -0.1 -7.9·10−2 -0.2 -0.2 -0.3 <2·10−16

Spline 1 (0.2) (5.4·10−2) (0.1 ) (0.2) (9.6·10−2)

Age 1.6·10−3 5.6·10−4 1.2·10−3 1.2·10−3 1.8·10−3 <2·10−16

Spline 2 (1.7·10−3) (4.8·10−4) (9.5·10−4) (1.3·10−3) (8.2·10−4)

Age -3.7·10−6 -1.0·10−6 -2.0·10−6 -2.3·10−6 -3.3·10−6 <2·10−16

Spline 3 (4.1·10−6) (1.6·10−6) (2.2·10−6) (3.0·10−6) (1.9·10−6)

p-value <2·10−16 5.1·10−10 <2·10−16 2.9·10−10 2.9·10−10

For the QRCM estimates we considered the 25th, 50th and 75th quantiles.
We performed this for each gender and race separately in the data analysis.
The results in Table 3 and Table 4 are from the estimates of all males and
all females, leaving the remaining estimates to Appendix A2.

The estimates in Table 3 and Table 4 represent the values for the male
and female populations respectively. In the regression model in equation (9)
the estimates for the β coefficients are the values in the tables. For example,
the estimates for the 25th quantile are

Q(0.25) = 66.1− 0.5HeightSpline1 + 1.2 · 10−3HeightSpline2

−7.4 · 10−7HeightSpline3 + 0.2AgeSpline1

−0.9 · 10−3AgeSpline2 + 8.3 · 10−7AgeSpline3.

In Figure 2 and Figure 3 we have plotted the estimates for the intercepts
and the splines. From the figures we can observed that the first splines for
both age and height are significant, whereas the coefficients for the second
and third splines in both cases have very small values. The reason for this can
be due to the fact that we have a large data set. A statistically insignificant
spline can however be clinically significant. The estimated values are difficult
to interpret.
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Table 3: QRCM estimates of the 25th, 50th and 75th quantiles for Males

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 66.1 6.3 53.7 78.5
cept 0.50 78.4 6.8 65.1 91.7

0.75 96.4 11.6 73.7 119.2
Height 0.25 -0.5 0.1 -0.7 -0.4
Spline 0.50 -0.7 0.1 -0.8 -0.5
1 0.75 -0.9 0.1 -1.2 -0.7
Height 0.25 1.2·10−3 0.2·10−3 0.8·10−3 1.6·10−3

Spline 0.50 1.6·10−3 0.2·10−3 1.1·10−3 2.0·10−3

2 0.75 2.2·10−3 0.4·10−3 1.5 ·10−3 2.9·10−3

Height 0.25 -7.4·10−7 1.4·10−7 -1.0·10−7 -4.6·10−7

Spline 0.50 -1.0·10−6 1.6·10−7 -1.3·10−6 -6.9·10−7

3 0.75 -1.5·10−6 2.7·10−7 -2.0·10−7 -9.8·10−7

Age 0.25 0.2 3.7 ·10−2 0.2 0.3
Spline 0.50 0.3 4.1·10−2 0.2 0.3
1 0.75 0.2 0.1 0.1 0.3
Age 0.25 -0.9·10−3 0.3·10−3 -.1.6·10−3 -0.3·10−3

Spline 0.50 -1.1·10−3 0.4·10−3 -1.8·10−3 -0.4·10−3

2 0.75 -0.4·10−3 0.5·10−3 -1.4·10−3 0.5·10−3

Age 0.25 8.3·10−7 7.76·10−7 -6.9·10−7 2.4·10−6

Spline 0.50 1.0·10−6 8.1·10−7 -5.8·10−7 2.6·10−6

3 0.75 -4.3·10−7 1.1·10−6 -2.6·10−6 1.8·10−6
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Figure 2: Plotted estimates of splines and intercept for Males.
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Table 4: QRCM estimates of the 25th, 50th and 75th quantiles for Females

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 81.4 9.6 62.6 100.2
cept 0.50 87.8 11.1 66.0 109.6

0.75 96.3 15.2 66.5 126.1
Height 0.25 -0.8 0.1 -1.0 -0.5
Spline 0.50 -0.8 0.1 -1.1 -0.6
1 0.75 -0.9 0.2 -1.3 -0.6
Height 0.25 1.8·10−3 0.3·10−3 1.2·10−3 2.5·10−3

Spline 0.50 2.0·10−3 0.4·10−3 1.2·10−3 2.3·10−3

2 0.75 2.3·10−3 0.5·10−3 1.2·10−3 3.3·10−3

Height 0.25 -1.3·10−7 2.5·10−7 -1.8·10−6 -7.9·10−7

Spline 0.50 -1.3·10−6 3.0·10−7 -1.9·10−6 -7.6·10−7

3 0.75 -1.6·10−6 4.2·10−7 -2.4·10−6 -7.3·10−7

Age 0.25 0.2 3.6·10−2 0.2 0.3
Spline 0.50 0.3 4.4·10−2 0.2 0.4
1 0.75 0.4 0.1 0.3 0.5
Age 0.25 -1.0·10−3 0.3·10−3 -1.7·10−3 -0.4·10−3

Spline 0.50 -1.4·10−3 0.4·10−3 -2.1·10−3 -0.6·10−3

2 0.75 -2.0·10−3 0.5·10−3 -3.0 ·10−3 -0.9·10−3

Age 0.25 1.5·10−6 8.1·10−7 -6.3·10−8 3.1·10−6

Spline 0.50 1.7·10−6 9.4·10−7 -1.7·10−7 3.5·10−6

3 0.75 2.5·10−6 1.3·10−6 2.0·10−8 4.9·10−6
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Figure 3: Plotted estimates of splines and intercept for Females

4.6 Comparison with growth charts and reference values

Growth of height and BMI in children is often evaluated using reference
values and growth charts. Parents can then easy measure the height of their
child and compare the result with the reference value of a child of the same
gender and age. The 2000 CDC growth charts for the United States [22] are
recommended when estimating the growth of children from newborns up to
age 20 in the United States. These growth charts are a revised version of the
National Center for Health Statistics (NCHS) growth charts that has been
used since 1977. The growth charts are divided by gender, into two sets.
The first growth charts are for infants who are newborn up to the age of 36
months. The second set of growth charts, the growth charts of our interest,
are for children from the age of 2 to 20. There are also different types of
growth charts. For the age span between 2-20 years, there are growth charts
for weight-for-age, stature-for-age and BMI-for-age. The two types of growth
charts that we are going to take a closer look at are growth charts for stature-
for-age and BMI-for-age. We will compare the CDC growth charts with the
data used in this thesis and compare the graphs.

Reference values differ from country to country and to obtain a reliable
reference value it is necessary to compare reference values for your country.
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The process of calculating these reference values were divided into two parts
[22]. The first part is called the curve smoothing stage. Sample weights
were applied in order to calculate the weighted empirical percentile points.
The weights were calculated from the midpoint of the age groups separately.
Then the estimates of the weighted empirical percentiles were obtained for
the percentiles 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 97th. The
curves were then smoothed, resulting in charts with a parametric form. Each
percentile had a corresponding estimated parameter. The second stage was
the transformation stage, where the smoothed curves obtained from the first
stage were approximated. The result of this stage are percentile curves which
are very alike the smoothed curves. A modified LMS estimation was used
to approximate the curves and the method produced the transformation
parameters which are lambda, mu and sigma, hence the shortening LMS.
From these percentile curves it is possible to obtain additional percentiles
and z-scores. Z-scores were calculated using the formulas below [26].

Z =
(BMI
M )L − 1

LS
for L 6= 0,

Z =
1

S
· loge(

BMI

M
) for L = 0.

The z-scores are then used for the LMS transformation equation which is
stated below [22],

X = M(1 + LSZ)1/L for L 6= 0,

X = M exp(SZ) for L = 0.

The letter M represents the median, S is for the generalized coefficient of
variation, X is the physical measurement and L is the Box-Cox transfor-
mation which corresponds to the degree of skewness. The z-score obtained
corresponds to a percentile which can be obtained from a normal distribution
table.

To analyse results of BMI it is necessary to know what the values stands
for. The BMI ranges for adults with an age over 20 are shown in Table 5
[31].
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Table 5: The World Health Organisation BMI Ranges of Nutritional Status

BMI Nutritional Status

Below 18.5 Underweight
18.5-24.9 Normal weight
25.0-29.9 Pre-obesity
30.0-34.9 Obesity class I
35.0-39.9 Obesity class II
Above 40 Obesity class III

In the growth chart in Figure 4, we observe the BMI-for-age percentiles
for girls between the ages 2 to 20. The growth chart has been applied to 9
empirical percentiles. From the lowest 5th percentile to the 95th percentile.
It is important that the 85th percentile is included in the BMI growth chart
because this percentile is a cutoff recommend to use to single out children
who are at the risk of obesity according to Barlow and Dietz [2]. Studying the
graph in Figure 4 we can approximate the BMI value of the 50th percentile
for a 5-year-old to be 15.2, for an 11-year-old to 17.5 and for a 20-year-old
to 21.9. The children who are above the 85th percentile, that is for example
an 8-year-old with a BMI of 18.7 or a 14-year-old with a BMI of 23.3, and
have complications of obesity are considered to receive treatment to prevent
obesity. The children who have values that are above the 95th percentile will
receive treatment even though they do not have complications with obesity,
according to Barlow and Dietz [2].

In Figure 5 we observe the 10th, 25th, 50th , 75th, 85th and 95th per-
centiles of BMI-age of Girls aged 2-20 years old from the data used in this
thesis. From Figure 5 we can roughly read that the BMI value for a 5-year-
old from the 50th percentile is 17, for an 11-year-old it is about 19 and for
a 20-year-old the value is approximately 23. If we study the values of the
85th percentile 8-year-olds we see that it corresponds to a BMI of 22, for
14-year-olds it corresponds to a BMI of 25.
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Figure 4: CDC Growth Charts of BMI-Age of Girls 2-20 years
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Figure 5: Percentiles of BMI-Age of Girls 2-20 years

In the growth chart in Figure 6 we observe the BMI-for-age percentiles
for boys between the ages 2 to 20. The percentiles in this growth chart are
the same as for the girls, from the lowest 5th percentile to the 95th percentile.
From the graph we find that the BMI value of the 50th percentile for a 5-
year-old is about 13.7, for a 11-year-old about 14.5 and for a 20-year-old the
value is approximately 19. All these values are lower than the same for the
girls. The boys who are above the 85th percentile, for example a 13-year-old
with a BMI of 22 or a 9-year-old with a BMI of 18.5, and have complications
of obesity are considered to receive treatment to prevent obesity.

In Figure 7 we observe 6 percentiles of BMI-age of boys aged 2-20 years
old from the data used in this thesis. From Figure 7 we can roughly read
that the BMI value for a 5-year-old in the 50th percentile is 17, for an 11-
year-old it is about 18 and for a 20-year-old the value is approximately 23.
If we study the values of the 85th percentile for 8-year-olds we see that it
corresponds to a BMI of 23, 15-year-olds it corresponds to a BMI of 27.
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Figure 6: CDC Growth Charts of BMI-age of Boys 2-20 years
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Figure 7: Percentiles of BMI-Age of Boys 2-20 years

In the growth chart in Figure 8 we observe the Stature-for-age percentiles
for girls between the ages 2 to 20. In this growth chart 7 percentiles are
included. From the graph we find that the height of the 50th percentile
for a 5-year-old is 108 cm, for an 11-year-old it is about 145 cm and for a
20-year-old the value is approximately 163 cm.

In Figure 9 we observe percentiles of Height-age of girls aged 2-20 years
old from the data used in this thesis. In this graph we observe that the
height of the 50th percentile for a 5-year-old is 110 cm, for an 11-year-old
it is 137 cm and for a 20-year-old it is 178 cm. In this data set we can
conclude, by comparing Figure 8 and Figure 9 that the girls are taller in the
50th percentile than the heights from the growth chart.
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Figure 8: CDC Growth Charts of Height-Age of Girls 2-20 years
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Figure 9: Percentiles of Height-Age of Girls 2-20 years

In the growth chart in Figure 10 we observe the Stature-for-age per-
centiles for boys between the ages 2 to 20. From Figure 10 we find that the
height of the 50th percentile for a 5-year-old is 109 cm, for an 11-year-old it is
about 144 cm and for a 20-year-old the value is approximately 173 cm. The
heights for a 5 and an 11-year-old are approximately the same as the height
for the girls, whereas for a 20-year-old the height of the 50th percentile is
about 10 cm more.

In Figure 11 we observe percentiles of Height-age of boys aged 2-20 years
old from the data used in this thesis. From Figure 11 we observed that the
height of the 50th percentile for a 5-year-old is 115 cm, for an 11-year-old it
is 140 cm and for a 20-year-old the it is 185 cm. By comparing Figure 10
and Figure 11 we see that the height of the boys at the 50th percentile in
this data set are taller than the heights in the growth chart.
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Figure 10: CDC Growth Charts of Height-Age of Boys 2-20 years
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Figure 11: Percentiles of Height-Age of Boys 2-20 years

4.7 Interpretation

From the QRCM in R we obtained estimates of reference values of BMI
given a specified age, race and gender for any given quantile. In this section
we study articles written about BMI for different ages and ethnicities to
compare their results with the reference values obtained by the QRCM. The
quantiles that we chose to study are the 10th, 50th and the 95th quantiles.

In an article published in the American Public Health Association by
Balistreri et al [1] in 2009, the authors studied the relationship between
socioeconomic status and BMI among Hispanic children of immigrants and
children of natives. They followed the children from kindergarten up to
fifth grade, when the children are at an age of 10 years old. One of the
results from the study was that for non-Hispanic white children the parental
education had a negative effect of the child’s BMI values. The parental
education for Hispanic children had a weak negative effect on BMI growth.
For Hispanic and white native children in kindergarten, the income had a
strong negative relationship with the child’s BMI value. As for children
from a Hispanic immigrant family, the association between income and BMI
was positive. Among the children in the data set that we used, we did not
have information on the origins of the parents, education or income of the
parents. We used our data to study the development of BMI for Hispanic
and non-Hispanic white children for ages 2, 7 and 11. In 2013 the percentage
of children aged 6-11 years with pre-obesity and obesity in the United States
was 17.4% [10], for children aged 2-5 years the value was 9.4% . Worldwide
the percentage of boys with obesity was 23.8% and for girls the percentage
was 22.6% [25].

In the left-hand graph in Figure 12 we observe that the black straight
line, representing age 2, is vertical for most of the quantiles. This is because
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most 2-year-olds have similar height and weights and therefore the BMI does
not vary much. When we study the quantiles for ages 7 and 11 we see that
the there is an upward slope of the curve, this means that the variation of
BMI for those children is beginning to grow.

Figure 12: Quantiles of BMI of Hispanic (left) and non-Hispanic white chil-
dren (right).

The estimates of BMI for non-Hispanic white children are shown in Table
6, for the 10th, 50th and 95th quantiles. If we study the values for a 2-year-
old we notice that the increase in BMI from the 10th, with an estimated
value of 14.77, to the 95th, with an estimated value of 19.55, quantiles is not
very large. This small variation is due to the fact that on average, most 2-
year-olds have similar heights and weights. For the ages 7 and 11 years there
are larger differences between the 10th and 95th quantiles. For a 7-year-old
Hispanic child the estimated BMI values of the 10th quantile is 14.95 and the
corresponding values for the 95th quantile is 25.13, which is a difference of
10 BMI units. For an 11-year-old Hispanic child the estimated BMI values of
the 10th quantile is 16.29 and the corresponding values for the 95th quantile
is 31.23, which is a difference of 15 BMI units. The BMI ranges from Table 5
is not applied for children under the age of 20, but if a child has a BMI value
of 30 or larger it is clear that the child is obese. Already at the age of 11 the
95th quantile of Hispanic children corresponds to being obese. The difference
between the 50th quantiles of a 2-year-old and a 7-year-old is larger than the
difference between the 50th quantiles for the 7-year-old and the 11-year-old.

Table 6: QRCM Estimates of Hispanic children with the standard errors in
the parenthesis.

Hispanic Children
Age and Height 10th quantile 50th quantile 95th quantile
2 Years, 93 cm 14.77(1.3) 15.85(0.23) 19.55(1.16)
7 Years, 123 cm 14.95(0.21) 17.71(0.30) 25.13(0.77)
11 years, 140 cm 16.29 (0.23) 20.50(0.28) 31.23(0.76)

29



The estimates of BMI for non-Hispanic white children are shown in Table
7, for the 10th, 50th and 95th quantiles. The values for a 2-year-old with
a length of 93 cm are very similar to Hispanic children, as the difference
in estimated BMI for the 10th quantile,with an estimated value of 14.62,
and the 95th quantile, with an estimated value of 18.32, is small. As for the
estimated values of the Hispanic children, there is a larger difference between
the 10th and 95th quantiles for age 7 with a length of 123 cm and for the
age 11 with a length of 140 cm. For a 7-year-old non-Hispanic white child
the estimated BMI value of the 10th quantile is 14.42 and the corresponding
values for the 95th quantile is 23.51. For an 11-year-old Hispanic child the
estimated BMI value of the 10th quantile is 15.77 and the corresponding
values for the 95th quantile is 29.10. Overall, from these estimates the BMI
values for non-Hispanic white children are smaller than the BMI values for
the Hispanic children. The difference between the 50th quantiles for the 2-
year-old and the 7-year-old is smaller for non-Hispanic white children than
Hispanic children.

Table 7: QRCM Estimates of non-Hispanic white children with the standard
errors in the parenthesis.

Non-Hispanic white Children
Age and Height 10th quantile 50th quantile 95th quantile
2 Years, 93 cm 14.62(0.15) 15.95(0.14) 18.32(0.22)
7 Years, 123 cm 14.42(0.11) 16.74(0.15) 23.51(0.59)
11 years, 140 cm 15.77 (0.12) 19.10(0.18) 29.10(0.55)

In an article published in the American Journal of Public Health by
Kirby et al. [18] in 2012, the authors addressed the question if there was
a relationship between living in a specific racial community and the risk
of obesity. According to the world health organisation (WHO) [31], adults
with BMI values between 25 and 30 are classified as pre-obesity or overweight
and those with BMI values over 30 are obese. The results from the study by
Kirby et al. showed that the Hispanic inhabitants who lived in communities
in which the Hispanic population exceeded 25%, were associated with an
increase of 0.55 in BMI and the odds for obesity was 21%. The same numbers
for non-Hispanic whites who lived in a community with a Hispanic population
of over 25% was an 0.42 increase in BMI and a 23% odds of obesity. The
researchers also studied non-Hispanic whites who lived in communities with
a non-Hispanic Asian population of at least 25% and this was associated with
a 0.68 decrease in BMI and 28% lower odds of obesity. The left-hand graph
in Figure 13 represents Hispanic men and women for the ages 20, 37 and
63. The right-hand graph represents non-Hispanic white men and women
for the ages 20, 37 and 63. Studying these figures we see clearly that the
BMI values are higher for people with a Hispanic ethnicity.
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Figure 13: Quantiles of BMI of Hispanic (left) and non-Hispanic white
(right).

The estimates for Hispanics aged 20, 37 and 63 of the 10th, 50th and
95th quantiles are shown in Table 8. For a 165 cm, 20-year-old the estimated
BMI values of the 50th quantile is 25.42 which indicates pre-obesity. The
estimated BMI values for the 50th quantile of a 171 cm long 37-year-old is
29.63 and for a 166 cm long 63-year-old is 29.53. Both of these values indicate
pre-obesity. As seen in Figure 13 there is a big difference between the 10th
and the 95th quantiles for all ages. This is also verified from Table 8 where
the 10th quantile has a BMI of 19.65 and the 95th quantile a BMI of 39.56
for a 20-year-old. The difference is even bigger for the 37 and 63-year-olds
where the difference is about 20 BMI units for both ages.

Table 8: QRCM Estimates of Hispanic with the standard errors in the paren-
thesis.

Hispanic people
Age and Height 10th quantile 50th quantile 95th quantile
20 Years, 165 cm 19.65(0.30) 25.42(0.41) 39.56(1.07)
37 Years, 171 cm 22.90(0.37) 29.63(0.39) 43.76(1.09)
63 years, 166 cm 23.94 (0.39) 29.53(0.39) 41.72(1.16)

In Table 9 we have the estimates for non-Hispanics whites aged 20, 37
and 63 of the 10th, 50th and 95th quantiles. For a 168 cm long 20-year-
old the estimates BMI values of the 50th quantile is 23.96 which indicates
normal weight. The estimated BMI values for the 50th quantile of a 167
cm long 37-year-old is 28.10 and for a 166 cm long 63-year-old is 29.50.
Both of these values indicate pre-obesity. As seen in Figure 13 there is a
big difference between the 10th and the 95th quantiles for all ages. This is
also verified from Table 9 where the 10th quantile has a BMI of 19.05 and
the 95th quantile a BMI of 37.63 for a 20-year-old. The difference is even
bigger for the 37 and 63-year-olds where the difference is over 20 BMI units
for both ages. Compared with the estimates for Hispanics, a 20-year-old
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non-Hispanic white is normal weight and the BMI values overall are smaller.
For a 37 and a 63-year-old the 50th quantiles both indicates pre-obesity, the
same as for the Hispanics.

Table 9: QRCM Estimates of non-Hispanic white with the standard errors
in the parenthesis.

Non-Hispanic white people
Age and Height 10th quantile 50th quantile 95th quantile
20 Years, 168 cm 19.05(0.18) 23.96(23) 37.63(0.66)
37 Years, 167 cm 21.52(0.23) 28.10(0.29) 44.67(0.73)
63 years, 166 cm 23.00 (0.25) 29.50(0.33) 43.33(0.89)

The two graphs in Figure 14 illustrate quantiles, with BMI on the y-axis,
for men and women separately who were born before, during and after World
War II. The black line represents a person that was 79 years old in 2015 and
hence was born before the war. The red line represents a person that was
73 years old in 2015, and therefore was born during the war and lastly the
green line represents a person of age 60 who was born a decade after the war
ended, in 1955.

Figure 14: Quantiles of BMI of Males (left) and Females (right) before,
during and after World War II.

The values in Table 10 represents the estimates of the 10th, 50th, and
95th quantiles of Males who were born before, during and after World War
II. The estimates for the 50th quantiles are 21.90 for a male born before
the war, 22.33 for a male born during the war and 23.39 for a male born a
decade after the war. These estimated BMI values represents pre-obesity for
all ages.
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Table 10: QRCM Estimates of Male before/during/after WWII with the
standard errors in the parenthesis.

Males before/during/after WWII
Age and Height 10th quantile 50th quantile 95th quantile
79 Years, 175 cm 21.90(0.61) 27.42(0.44) 36.38(0.99)
73 Years, 171 cm 22.33(0.33) 27.84(0.25) 37.60(0.59)
60 years, 179 cm 23.39(0.20) 29.24(0.22) 42.13(0.65)

In Table 11 we find the estimated BMI values of females born before,
during and after World War II for the 10th, 50th and 95th quantiles. These
values are all slightly higher than for the males, where the estimates of the
50th quantiles are pre-obesity or obesity. The difference between the 10th
and the 95th quantiles is quite large with a difference of about 20 units. This
goes for all ages in the Table 11.

Table 11: QRCM Estimates of Females before/during/after WWII with the
standard errors in the parenthesis.

Female before/during/after WWII
Age and Height 10th quantile 50th quantile 95th quantile
79 Years, 157 cm 23.22(0.66) 29.29(0.57) 41.68(1.55)
73 Years, 165 cm 23.09(0.38) 30.11(0.34) 44.00(0.99)
60 years, 163 cm 22.52(0.22) 30.43(1.70) 46.10(0.75)

There are many studies of the development of BMI from the last hundred
years in the U.S. This time line has been chosen because there has been rapid
increase in BMI since the beginning of the 20th century [27]. In one article
written by Komos and Brabec [21] in 2010, the trend of BMI is studied using
US adults. They investigated the four groups, black and white, male and
female, separately, with birth cohorts between 1882-1986. In their research
they found that for the cohorts in the beginning of the 20th century the BMI
started to increase and after the First World War the BMI values increased
rapidly for all groups. The estimated rate of difference of BMI values of
black females increased by 71%. The increase in BMI was rapid after the
First World War but during the Great Depression and the Second World
War, they found that it decreased. Then after the Second World War there
was an increase in BMI again. This increase took off about a decade after the
war, due to the fact that when the war ended there was a decline in income
which according to Komos and Brabec resulted in a lower availability of
labour saving technologies, and this caused people to stay at home to eat
their meals.

The increase of BMI in the first half of the 20th century can be seen as a
positive development for the well-being, as income increase and technological
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development elevated the health of the people. After the Second World War
the BMI values increased again, but now a large group of the population
reached so high values that it became a health hazard. This unhealthy
increase in BMI has a positive correlation with the launch of fast food chains.
According to Lin and Gurthrie [24], in 2008 the percent expenditure of food
prepared away from home, that includes restaurants, fast-foods and take-
out, was 41%. This corresponded to 32% of the calorie intake. Studies show
that compared to food prepared at home, food prepared away from home
has a lower nutrition level. This generates an increase in the calorie intake.
The study also found that adults and children who consume food prepared
away from home impairs the quality of their diet. A reduced diet can lead
to obesity, cancer and other health conditions. The number of people with
obesity in the United States is large compared to the rest of the world. In
2013 the percentage of adults aged over 20 with pre-obesity and obesity in
the United States was 70.9% [10]. The world wide the percentage of obesity
was 37% [25].

Figure 15 represents quantiles of BMI for male and females for the ages
40, 50 and 60. The left hand graph illustrates the quantiles of males for
the ages 40, 50 and 60. From the graph we can observe that the quantiles
for age 50 are slightly higher than for the other two age groups. Table 12
gives information about the estimates of the males. As seen in the left hand
graph in Figure 15, the BMI estimates for age 50 with a height of 180 cm
are higher for all quantiles than for the other ages. This might be due to
that the 50-year-old male is taller than the 40 and 60-year-old males. The
BMI values for the 50th quantile is, for a 40-year-old with a height of 169
cm, 28.11. The same estimate for a 50-year-old is 29.36 and for a 60-year-old
with height 169 cm, the BMI value is 28.63. The quantiles for the females
appears roughly the same for the different ages. In Table 13 some estimates
of females from the graph are stated. The 50th quantile for a 40-year-old
with height 167 cm has an estimated BMI value of 29.70. The estimated BMI
values of the 50th for ages 50 and 60 are both 30.60. The 20th quantiles and
above indicates obesity for both female and male. We then have to keep in
mind that about 71% of the U.S. population is pre-obese or obese which is
why the estimates are so high.
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Figure 15: Quantiles of BMI for Males (left) and Females (right) of different
ages.

Table 12: QRCM Estimates of Males with the standard errors in the paren-
thesis.

Male
Age and Height 10th quantile 50th quantile 95th quantile
40 Years, 169 cm 22.27(0.18) 28.11(0.18) 40.84(0.59)
50 Years, 180 cm 23.36(0.19) 29.36(0.20) 43.21(0.60)
60 years, 169 cm 22.93(0.19) 28.63(0.20) 40.04(0.64)

Table 13: QRCM Estimates of Females with the standard errors in the
parenthesis.

Female
Age and Height 10th quantile 50th quantile 95th quantile
40 Years, 167 cm 21.62(0.16) 29.70(0.25) 46.72(0.06)
50 Years, 170 cm 22.21(0.24) 30.60(0.32) 47.45(0.85)
60 years, 166 cm 22.57(0.24) 30.59(0.30) 46.40(0.82)

5 Discussion

In this thesis we used QRCM to estimate reference values of BMI given age,
race, height and gender of any given quantile.

This section states the limitations that surfaced during the process of
writing this thesis, some of my personal considerations about the results,
and suggestions for future research.

The advantages of using QRCM to construct reference values are that
it is an effective method to use in order to obtain accurate estimations of
BMI quantiles. The QRCM method used in this thesis gives both the graphs
of the quantiles for a given individual, and the estimates of the conditional
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BMI quantiles given a set of covariate values. The procedure to calculate the
estimates was simple as the implementation in R did not require many steps
to obtain the results. From the data we could perform QRCM and from the
result obtain the estimates. This method has an advantage in parsimony
to calculate reference values compared to the 2000 CDC reference values.
In the latter method, the calculations were more complex and the z-score
value obtained that corresponded to a percentile was taken from a normal
distribution.

The data set used in the analysis contained only four explanatory vari-
ables, so we were restricted to study the effect of these variables on the
outcome, BMI. Of course, there are other factors that explain the BMI val-
ues, such as socioeconomic status and place of living. DNA can also have
a key role in explaining extreme values of BMI, both high and low. Body
mass index is measured in height and weight. Because height was included
in the models, weight was an unnecessary variable to include in the data as
BMI is already a measure of weight relative to height.

Frumento and Bottai [3] used Monte Carlo simulation to obtain the es-
timates. In these data analyses we chose not to use a bootstrap method
because the sample size was large for the large-sample approximation to be
reliable.

A common factor for all of the BMI estimates that we have studied is that
the estimates of the 50th quantile are defined as pre-obese or obese. The data
that we have used is collected from the United States and the percentage of
obesity of adults is 70.9%, and this can explain why we got so high values of
BMI in the 50th quantiles. If we used data from Sweden the reference values
would probably be lower for all of the quantiles. This is why it is necessary
to compare a person’s BMI value with reference values calculated for the
individual’s country of living. There are cultural differences from country to
country that have an impact on the residents’ BMI values, such as differences
in supply of fast-food chains, the economic status in the country and many
other factors.

5.1 Future work

Using QRCM to estimate BMI is a good approach because it makes it possi-
ble to obtain the estimates for all quantiles. It would be a good method for
health researchers to use: not only can they study the median of the popu-
lation but also the other quantiles. To know the difference in BMI estimates
between the different quantiles gives more information on the population.
For example, the government is contemplating introducing more health class
and physical education in schools and they know that for children of a spe-
cific age group, the median, are normal weight, they decide that this is not
necessary since the children already are normal weight. If they were to study
the 95th quantile, that is 5% of the students, and discover that they are of
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obesity class III and that the 10th quantile, 10% are underweight, they know
that an action must be taken to help the children be normal weight.

In this thesis we have learnt about the theories of quantile regression
coefficients models but not mentioned the more general quantile parametric
models. Future work on this subject can be applied using parametric mod-
elling. Using QRCM to estimate BMI can be developed further to include
even more explanatory variables that could have a significant effect on BMI,
for example socioeconomic status, number of meals a month that is food not
prepared from home and the health status. Then even more reliable results
could be obtained which will give more information about the overall health
status in a country or region. To be able to use the reference values through-
out the world, data needs to be collected for the inhabitants in each country
and QRCM can be performed on the data to obtain accurate estimates of
BMI.
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Appendix

A1 ILM Estimates

In tables 14-23 the estimates of the β coefficients for respectively race for
the different genders are presented.

Table 14: Summary of estimates of β coefficients for Mexican-American
Males. The standard errors are within the parenthesis. The p-values repre-
sent the significance of the null hypothesis that the value of θ in each column,
is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 190 43 9.2 -21 35 5.0·10−5

cept (11) (31) (60) (78) (46)
Height -2.1 -0.5 -0.2 0.2 -0.5 3.1·10−13

Spline 1 (1.3) (0.4) (0.7) (0.9) (0.6)
Height 5.3·10−3 1.3·10−3 5.0·10−4 -1.4·10−4 1.3·10−3 3.1·10−13

Spline 2 (3.5·10−4) (9.9·10−4) (1.9·10−3) (2.5·10−3) (1.5·10−3)

Height -3.8·10−6 -9.7·10−7 -4.4·10−7 1.4·10−8 -9.7·10−7 3.1·10−13

Spline 3 (2.7·10−6) (7.5·10−7) (1.4·10−6) (1.9·10−6) (1.1·10−6)

Age -0.4 -0.2 -0.4 -0.3 -0.3 <2·10−16

Spline 1 (0.6) (0.2) (0.3) (0.4) (0.2)
Age 4.0·10−3 1.2·10−3 2.6·10−3 1.6·10−3 1.5·10−3 <2·10−16

Spline 2 (4.9·10−3) (1.5·10−3) (2.7·10−3) (3.5·10−3) (2.0·10−3)

Age -8.5·10−6 -2.4·10−6 -4.7·10−6 -2.7·10−6 -2.1·10−6 <2·10−16

Spline 3 (1.1·10−5) (3.5·10−6) (6.3·10−6) (8.2·10−6) (4.7·10−6)

p-value <2·10−16 0.02 7.9·10−12 0.4 0.4
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Table 15: Summary of estimates of β coefficients for Other Hispanic Males.
The standard errors are within the parenthesis. The p-values represent the
significance of the null hypothesis that the value of θ in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- -8.5 -31 320 130 8.4 1.6·10−7

cept (150) (49) (110) (120) (81)
Height -2.1 0.2 0.3 -0.5 -1.6 <2·10−16

Spline 1 (1.8) (0.6) (1.3) (1.4) (1.0)
Height -4.3·10−5 -6.6·10−4 1.6·10−3 4.5·10−3 1.1·10−3 <

2·10−16

Spline 2 (4.9·10−3) (1.5·10−3) (3.4·10−3) (3.4·10−3) (2.6·10−3)

Height -1.9·10−8 4.5·10−7 -1.4·10−7 -3.5·10−6 -9.7·10−7 <
2·10−16

Spline 3 (3.9·10−6) (1.2·10−6) (2.5·10−6) (2.8·10−6) (1.9·10−6)

Age -0.1 -0.3 -0.6 -0.3 -0.7 <2·10−16

Spline 1 (2.0) (0.7) (0.6 ) (0.9) (0.6)
Age 1.2·10−2 3.2·10−3 4.9·10−3 1.3·10−3 6.4·10−3 <2·10−16

Spline 2 (2.2·10−2) (8.4·10−3) (5.1·10−3) (9.0·10−3) (5.8·10−3)

Age -3.1·10−5 -8.2·10−6 -1.2·10−5 -1.7·10−6 -1.5·10−5 <2·10−16

Spline 3 (6.3·10−5) (2.4·10−5) (1.3·10−5) (2.5·10−5) (1.6·10−5)

p-value <2·10−16 0.0 0.0 0.0 0.0

Table 16: Summary of estimates of β coefficients for Non-Hispanic White
Males. The standard errors are within the parenthesis. The p-values repre-
sent the significance of the null hypothesis that the value of θ in each column,
is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 130 23 15 28 42 1.2·10−8

cept (73) (21) (49) (59) (35)
Height -1.2 -0.3 -0.2 -0.4 -0.5 1.1·10−13

Spline 1 (0.8) (0.2) (0.6) (0.7) (0.4)
Height 2.8·10−3 6.2·10−4 4.9·10−4 1.0·10−3 1.3·10−3 1.1·10−13

Spline 2 (2.1·10−3) (6.2·10−3) (1.4·10−3) (1.7·10−3) (1.0·10−3)

Height -1.9·10−6 -4.3·10−7 -3.8·10−7 -7.9·10−7 -9.4·10−7 1.1·10−13

Spline 3 (0.3) (9.0·10−2) (0.2) (0.3 ) (7.6·10−7)

Age 0.3 5.3·10−2 -0.1 -0.3 -8.3·10−2 <2·10−16

Spline 1 (0.3) (9.0·10−2) (0.2 ) (0.3) (0.2)
Age -2.7·10−3 -6.2·10−4 4.6·10−4 2.2·10−3 9.2·10−5 <2·10−16

Spline 2 (2.3·10−3) (7.8·10−4) (1.6·10−3) (2.3·10−3) (1.5·10−3)

Age 7.0·10−6 1.9·10−6 5.7·10−7 -3.8·10−6 1.1·10−6 <2·10−16

Spline 3 (6.7·10−6) (1.8·10−6) (3.8·10−6) (5.4·10−6) (3.5·10−6)

p-value <2·10−16 6.3·10−16 <2·10−16 0.5 0.5
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Table 17: Summary of estimates of β coefficients for Non-Hispanic Black
Males. The standard errors are within the parenthesis. The p-values repre-
sent the significance of the null hypothesis that the value of θ in each column,
is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 240 57 150 170 130 3.7·10−8

cept (400) (120) (750) (690) (320)
Height -2.5 -0.6 -1.6 -1.9 -1.4 7.8·10−15

Spline 1 (4.2) (1.2) (7.7) (7.1) (3.3)
Height 5.9·10−3 1.5·10−3 3.9·10−3 4.6·10−3 3.5·10−3 7.8·10−15

Spline 2 (9.1·10−3) (2.6·10−3) (1.7·10−2) (1.6·10−2) (7.3·10−3)

Height -4.0·10−6 -1.0·10−6 -2.8·10−6 -3.3·10−6 -2.4·10−6 7.8·10−15

Spline 3 (6.0·10−6) (1.7·10−6) (1.2·10−5) (1.1·10−5) (4.9·10−6)

Age -0.4 -0.1 -4.0·10−2 1.6·10−2 -0.3 <2·10−16

Spline 1 (0.6) (0.2) (0.6 ) (0.6) (0.4)
Age 3.3·10−3 7.7·10−4 -2.3·10−4 -4.0·10−4 2.1·10−3 <2·10−16

Spline 2 (5.8·10−3) (1.6·10−3) (5.6·10−3) (5.4·10−3) (3.7·10−3)

Age -7.6·10−6 -1.4·10−6 2.1·10−6 1.8·10−6 -3.9·10−6 <2·10−16

Spline 3 (1.5·10−5) (4.·10−6) (1.5·10−5) (1.4·10−5) (9.6·10−6)

p-value <2·10−16 0.0 3.8 ·10−11 0.6 0.6

Table 18: Summary of estimates of β coefficients for Other Race including
Multi-Racial Males. The standard errors are within the parenthesis. The
p-values represent the significance of the null hypothesis that the value of θ
in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 130 30 -2.6 -85 -8.4 0.1
cept (100) (27) (68) (90) (44)
Height -1.4 -0.4 -5.5·10−2 0.9 -9.9·10−3 <2·10−16

Spline 1 (1.1) (0.3) (0.8) (1.0) (0.5)
Height 3.7·10−3 1.1·10−3 3.2·10−4 -2.2·10−6 3.1·10−4 <2·10−16

Spline 2 (2.9·10−3) (8.0·10−4) (2.0·10−3) (2.7·10−3) (1.4·10−3)

Height -2.3·10−6 -8.4·10−7 -3.8·10−7 1.5·10−6 -4.0·10−7 <2·10−16

Spline 3 (2.1·10−6) (5.9·10−7) (1.5·10−6) (2.0·10−6) (1.1·10−6)

Age -0.2 -7.6·10−2 -6.3·10−2 1.2·10−2 -0.2 <2·10−16

Spline 1 (0.6) (0.2) (0.3 ) (0.4) (0.3)
Age 2.7·10−3 8.4·10−4 5.7·10−4 -1.4·10−3 1.5·10−3 <2·10−16

Spline 2 (5.3·10−3) (1.6·10−3) (2.3·10−3) (3.0·10−3) (2.3·10−3)

Age -7.8·10−6 -2.2·10−6 -1.0·10−6 4.2·10−6 -3.0·10−6 <2·10−16

Spline 3 (1.3·10−5) (4.0·10−6) (5.3·10−6) (6.9·10−6) (5.5·10−6)

p-value <2·10−16 0.0 1.1·10−7 0.6 0.6
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Table 19: Summary of estimates of β coefficients for Mexican-American
Females. The standard errors are within the parenthesis. The p-values
represent the significance of the null hypothesis that the value of θ in each
column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 190 34 400 440 170 0.0
cept (1200) (360) (3100) (2900) (1100)
Height -1.9 -0.4 -4.6 -5.0 -1.9 5.7·10−14

Spline 1 (14) (4.1) (34) (32) (12)
Height 4.6·10−3 9.2·10−4 1.1·10−2 1.2·10−2 4.6·10−3 5.7·10−14

Spline 2 (3.6·10−2) (1.1·10−2) (8.3·10−2) (7.8·10−2) (3.1·10−2)

Height -3.4·10−6 -7.2·10−7 -8.6·10−6 -9.1·10−6 -3.4·10−6 ·10−65.7 ·
10−14

Spline 3 (2.7·10−5) (7.9·10−6) (6.0·10−5) (5.610−5) (2.2·10−5)

Age 1.1 0.3 -0.3 -0.6 7.6·10−2 <2·10−16

Spline 1 (0.7) (0.2) (1.1 ) (1.2) (0.5)
Age -8.2·10−3 -2.4·10−3 1.9·10−3 4.9·10−3 -5.8·10−4 <2·10−16

Spline 2 (6.2·10−3) (1.9·10−3) (9.1·10−3) (9.0·10−3) (4.3·10−3)

Age 1.7·10−5 5.2·10−6 -4.0·10−6 -1.1·10−5 1.3·10−6 <2·10−16

Spline 3 (1.5·10−5) (4.7·10−6) (2.0·10−5) (2.2·10−5) (9.7·10−6)

p-value <2·10−16 0.0 1.4·10−8 0.9 0.9

Table 20: Summary of estimates of β coefficients for Other Hispanic Females.
The standard errors are within the parenthesis. The p-values represent the
significance of the null hypothesis that the value of θ in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 86 6.2 60 -5.5 3.7 0.2
cept (190) (52) (160) (190) (110)
Height -0.9 -8.7·10−2 -0.7 0.1 -1.1·10−2 0.0
Spline 1 (2.4) (0.7) (1.9) (2.3) (1.4)
Height 2.1·10−3 2.5·10−4 1.8·10−3 -4.1·10−4 -1.0·10−4 0.0
Spline 2 (6.8·10−3) (1.9·10−3) (5.2·10−3) (6.2·10−3) (3.8·10−3)

Height -1.7·10−6 -2.4·10−7 -1.4·10−6 3.8·10−7 1.1·10−7 0.0
Spline 3 (5.5·10−6) (1.5·10−6) (4.1·10−6) (4.9·10−6) (3.1·10−6)

Age 0.8 0.2 5.3·10−2 0.3 0.4 <2·10−16

Spline 1 (0.5) (0.2) (0.3 ) (0.5) (0.3)
Age -7.3·10−3 -1.9·10−3 -1.5·10−3 -2.6·10−3 -4.5·10−3 <2·10−16

Spline 2 (4.6·10−3) (1.3·10−3) (2.8·10−3) (4.2·10−3) (2.4·10−3)

Age 2.0·10−5 5.4·10−6 5.3·10−5 5.6·10−6 1.2·10−5 <2·10−16

Spline 3 (1.1·10−5) (3.2·10−6) (6.6·10−6) (9.9·10−6) (5.5·10−6)

p-value <2·10−16 0.0 1.1·10−5 0.2 0.2

44



Table 21: Summary of estimates of β coefficients for Non-Hispanic White
Females. The standard errors are within the parenthesis. The p-values
represent the significance of the null hypothesis that the value of θ in each
column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 170 39 -49 -61 15 1.0·10−10

cept (86) (26) (58) (81) (53)
Height -2.0 -0.5 0.6 -0.8 -0.2 3.0·10−16

Spline 1 (1.0) (0.3) (0.7) (1.0) (0.7)
Height 5.2·10−3 1.2·10−3 -1.8·10−3 -2.3·10−3 5.0·10−4 3.0·10−16

Spline 2 (2.8·10−3) (8.1·10−4) (1.9·10−3) (2.7·10−3) (1.8·10−3)

Height -3.8·10−6 -9.5·10−7 1.5·10−6 1.9·10−6 -3.5·10−7 3.0·10−6

Spline 3 (2.4·10−6) (6.3·10−7) (1.5·10−6) (2.1·10−6) (1.4·10−16)

Age -1.9·10−2 -1.0·10−2 -0.1 0.1 -8.7·10−2 <2·10−16

Spline 1 (0.4) (0.1) (0.2) (0.3) (0.2)
Age 7.2·10−4 1.7·10−4 6.9·10−4 -9.4·10−4 7.6·10−4 <2·10−16

Spline 2 (3.3·10−3) (9.0·10−4) (1.8·10−3) (2.5·10−3) (1.7·10−3)

Age -3.4·10−6 -6.9·10−7 -1.4·10−6 1.4·10−6 -2.3·10−6 <2·10−16

Spline 3 (7.2·10−6) (2.1·10−6) (4.3·10−6) (6.0·10−6) (3.9·10−6)

p-value <2·10−16 0.0 5.0·10−12 0.0 0.0

Table 22: Summary of estimates of β coefficients for Non-Hispanic Black
Females. The standard errors are within the parenthesis. The p-values
represent the significance of the null hypothesis that the value of θ in each
column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 110 1.6 -39 5.8 5.2 2.5·10−5

cept (130) (35) (87) (110) (57)
Height -1.2 -4.5·10−2 0.5 7.7·10−5 -0.7 8.8·10−13

Spline 1 (1.6) (0.4) (1.1) (1.3) (0.7)
Height 3.3·10−3 2.0·10−4 -1.4·10−3 -2.4·10−4 1.8·10−3 8.8·10−13

Spline 2 (4.2·10−3) (1.2·10−3) (2.8·10−3) (3.4·10−3) (1.9·10−3)

Height -2.6·10−6 -2.2·10−7 1.1·10−6 2.7·10−7 -1.5·10−6 8.8·10−13

Spline 3 (3.3·10−6) (9.2·10−7) (2.1·10−6) (2.7·10−6) (1.5·10−6)

Age 0.3 1.1·10−2 0.2 0.6 0.3 <2·10−16

Spline 1 (0.5) (0.2) (0.3 ) (0.3) (0.3
Age -2.8·10−3 -3.1·10−4 -2.2·10−3 -4.1·10−3 -2.6·10−3 <2·10−16

Spline 2 (5.2·10−3) (1.5·10−3) (2.2·10−3) (2.9·10−3) (2.4·10−3)

Age 8.7·10−6 1.5·10−6 5.3·10−6 6.9·10−6 6.5·10−6 <2·10−16

Spline 3 (1.4·10−5) (4.1·10−6) (5.2·10−6) (6.7·10−6) (6.3·10−6)

p-value <2·10−16 0.0 3.6·10−11 0.0 0.0
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Table 23: Summary of estimates of β coefficients for Other Race including
Multi-Racial Females. The standard errors are within the parenthesis. The
p-values represent the significance of the null hypothesis that the value of θ
in each column, is 0.

Intercept log(p) log(1− p) slp1 slp2 p-value
Inter- 340 76 160 74 140 4.6·10−5

cept (1200) (370) (2100) (200) (960)
Height -3.8 -0.9 -1.8 -0.7 -1.6 5.5·10−12

Spline 1 (14) (4.2) (23) (21) (2.6·10−2)

Height 9.7·10−3 2.3·10−3 4.5·10−3 1.4·10−3 4.0·10−3 5.5·10−12

Spline 2 (3.5·10−2) (1.1·10−2) (5.7·10−2) (5.2·10−2) (2.6·10−2)

Height -7.2·10−6 -1.7·10−6 -3.4·10−6 -8.4·10−7 -3.0·10−6 5.5·10−12

Spline 3 (2.5·10−5) (7.7·10−6) (4.1·10−5) (3.7·10−5) (1.9·10−5)

Age 0.5 7.7·10−2 0.2 0.2 0.1 <2·10−16

Spline 1 (0.8) (0.3) (0.5 ) (0.5) (0.4)
Age - 5.2·10−3 -1.1·10−3 -1.8·10−3 -1.4·10−3 -1.3·10−3 <2·10−16

Spline 2 (6.5·10−3) (2.1·10−3) (3.9·10−3) (4.2·10−3) (3.1·10−3)

Age 1.5·10−5 3.6·10−6 4.7·10−6 2.7·10−6 3.6·10−6 <2·10−16

Spline 3 (1.4·10−5) (4.8·10−6) (8.3·10−6) (9.7·10−6) (6.8·10−6)

p-value <2·10−16 0.1 0.0 0.9 0.9
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A2 Estimates from quantile parametric modelling

In tables 24-33 the estimates from the quantile parametric modelling is pre-
sented for race and gender separately with the corresponding graphs in fig-
ures 16-25.

Table 24: QRCM estimates of the 25th, 50th and 75th quantiles for Mexican-
American Males.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 81.8 20.6 41.5 122.1
cept 0.50 84.3 18.6 47.9 120.6

0.75 98.0 22.8 53.3 142.6
Height 0.25 -0.8 0.2 -1.2 -0.3
Spline 0.50 -0.8 0.2 -1.2 -0.4
1 0.75 -1.0 0.3 -1.5 -0.4
Height 0.25 1.8·10−3 0.7·10−3 0.5·10−3 3.1·10−3

Spline 0.50 2.0·10−3 0.6·10−3 0.8·10−3 3.2·10−3

2 0.75 2.6·10−3 0.8·10−3 1.1·10−3 4.1·10−3

Height 0.25 -1.2·10−6 5.1·10−7 -2.2·10−6 -2.1·10−7

Spline 0.50 -1.3·10−6 4.9·10−7 -2.3·10−6 -3.8·10−7

3 0.75 -1.8·10−6 6.0·10−7 -3.0·10−6 -6.3·10−7

Age 0.25 4.7·10−2 0.1 -0.1 0.2
Spline 0.50 0.1 0.1 -0.1 0.2
1 0.75 0.0 0.1 -0.2 0.3
Age 0.25 0.7·10−3 0.8·10−3 -0.9·10−3 2.2·10−3

Spline 0.50 0.7·10−3 0.8·10−3 -0.9·10−3 2.3·10−3

2 0.75 0.6·10−3 1.1·10−3 -1.4·10−3 2.3·10−3

Age 0.25 -2.8·10−6 1.7·10−6 -6.2·10−6 6.6·10−7

Spline 0.50 -3.1·10−6 1.9·10−6 -6.7·10−6 6.0·10−7

3 0.75 -2.9·10−6 2.4·10−6 -7.6·10−6 1.7·10−6
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Figure 16: Plotted estimates of splines and intercept for Mexican-American
Males.
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Table 25: QRCM estimates of the 25th, 50th and 75th quantiles for Other
Hispanic Males.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 78.0 17.0 44.6 111.4
cept 0.50 103.5 19.4 19.4 141.4

0.75 134.9 32.6 71.0 198.6
Height 0.25 -0.7 0.2 -1.1 -0.3
Spline 0.50 -1.0 0.2 -1.4 -0.5
1 0.75 -1.4 0.4 -2.1 -0.6
Height 0.25 1.5·10−3 0.6·10−3 0.4·10−3 2.6·10−3

Spline 0.50 2.2·10−3 0.6·10−3 1.1·10−3 3.4·10−3

2 0.75 3.5·10−3 1.0·10−3 1.6·10−3 5.4·10−3

Height 0.25 -9.2·10−6 4.3·10−7 -1.8·10−6 -7.5·10−8

Spline 0.50 -1.5·10−6 4.4·10−7 -2.3·10−6 -6.0·10−7

3 0.75 -2.4·10−6 7.1·10−7 -3.8·10−6 -1.1·10−6

Age 0.25 0.2 0.1 3.2·10−2 0.4
Spline 0.50 0.4 0.1 0.2 0.6
1 0.75 0.2 0.2 -0.1 0.6
Age 0.25 -0.7·10−3 0.9·10−3 -2.6·10−3 1.1·10−3

Spline 0.50 -2.3·10−3 1.0·10−3 -4.2·10−3 -0.2·10−3

2 0.75 -1.4·10−3 1.7·10−3 -4.7·10−3 2.0·10−3

Age 0.25 -1.3·10−7 2.3·10−6 -4.6·10−6 4.3·10−6

Spline 0.50 3.6·10−6 2.5·10−6 -1.2·10−6 8.5·10−6

3 0.75 1.8·10−6 4.1·10−6 -6.2·10−6 9.9·10−6
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Figure 17: Plotted estimates of splines and intercept for Other Hispanic
Males.
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Table 26: QRCM estimates of the 25th, 50th and 75th quantiles for Non-
Hispanic White Males.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 55.8 10.3 35.6 76.0
cept 0.50 63.8 12.7 38.9 88.6

0.75 92.5 19.8 53.7 131.2
Height 0.25 -0.4 -0.4 -0.7 -0.2
Spline 0.50 -0.5 0.1 -0.8 -0.2
1 0.75 -0.9 0.2 -1.3 -0.4
Height 0.25 0.9·10−3 0.3·10−3 0.3·10−3 1.5·10−3

Spline 0.50 1.5·10−3 0.4·10−3 0.4·10−3 2.0·10−3

2 0.75 2.1·10−3 0.6·10−3 0.9·10−3 3.2·10−3

Height 0.25 -5.3·10−7 2.3·10−7 -9.7·10−7 -8.4·10−8

Spline 0.50 -7.1·10−7 2.8·10−7 -1.3·10−6 -1.6·10−7

3 0.75 -1.4·10−6 4.4·10−7 -2.2·10−6 -5.1·10−7

Age 0.25 0.2 0.1 0.1 0.4
Spline 0.50 0.2 8.0·10−2 4.7·10−2 0.4
1 0.75 0.1 0.1 -0.1 0.3
Age 0.25 -1.0·10−3 0.6·10−3 -2.2·10−3 0.2·10−3

Spline 0.50 -5.5·10−4 0.7·10−3 -1.9·10−3 0.7·10−3

2 0.75 1.5·10−5 0.9·10−3 -1.8·10−3 1.9·10−3

Age 0.25 1.1·10−6 1.4·10−6 -1.5·10−6 3.8·10−6

Spline 0.50 -8.4·10−8 1.5·10−6 -3.0·10−6 -3.0·10−6

3 0.75 -1.2·10−6 2.1·10−6 -5.4·10−6 3.0·10−6
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Figure 18: Plotted estimates of splines and intercept for Non-Hispanic White
Males.
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Table 27: QRCM estimates of the 25th, 50th and 75th quantiles for Non-
Hispanic Black Males.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 60.9 12.5 36.4 85.4
cept 0.50 78.3 13.2 52.5 104.1

0.75 133.6 35.1 64.9 202.3
Height 0.25 -0.5 0.1 -0.8 -0.2
Spline 0.50 -0.7 0.2 -1.0 -0.4
1 0.75 -1.3 0.4 -2.1 -0.5
Height 0.25 1.0·10−3 0.4·10−3 0.3·10−3 1.8·10−3

Spline 0.50 1.5·10−3 4.1·10−3 0.7·10−3 2.3·10−3

2 0.75 3.1·10−3 1.1·10−3 1.0·10−3 5.1·10−3

Height 0.25 -6.4·10−7 2.8·10−7 -1.2·10−6 -1.0·10−7

Spline 0.50 -9.7·10−7 3.1·10−7 -1.6·10−6 -3.6·10−7

3 0.75 -2.0·10−6 7.7·10−7 -3.5·10−6 -5.3·10−7

Age 0.25 0.2 0.1 2.2 ·10−2 0.3
Spline 0.50 0.3 0.1 0.1 0.5
1 0.75 0.1 0.1 -0.2 0.4
Age 0.25 -0.3·10−3 0.7·10−3 -1.8·10−3 1.1·10−3

Spline 0.50 -0.7·10−3 1.0·10−3 -2.7·10−3 1.2·10−3

2 0.75 0.4·10−3 1.2·10−3 -2.0·10−3 2.7·10−3

Age 0.25 -9.6·10−6 1.8·10−6 -4.4·10−6 2.5·10−6

Spline 0.50 -4.2·10−7 2.5·10−6 -5.3·10−6 4.5·10−6

3 0.75 -3.0·10−6 2.5·10−6 -8.0·10−6 2.0·10−6
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Figure 19: Plotted estimates of splines and intercept for Non-Hispanic Black
Males.
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Table 28: QRCM estimates of the 25th, 50th and 75th quantiles for Other
Race including Multiracial Males.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 52.3 20.0 13.1 91.6
cept 0.50 34.7 21.8 -8.0 77.4

0.75 2.9 26.5 -49.1 55.0
Height 0.25 -0.4 0.2 -0.8 0.1
Spline 0.50 -0.1 0.3 -0.7 04
1 0.75 0.2 0.3 -0.4 0.8
Height 0.25 6.9·10−4 0.6·10−3 -0.5·10−3 1.2·10−3

Spline 0.50 7.8·10−5 7.0·10−3 -1.3·10−3 1.5·10−3

2 0.75 -7.0·10−4 0.8·10−3 -2.3·10−3 0.9·10−3

Height 0.25 -3.4·10−7 4.3·10−7 -1.2·10−6 5.0·10−7

Spline 0.50 1.5·10−7 5.5·10−7 -9.3·10−7 1.2·10−6

3 0.75 6.9·10−7 6.2·10−7 -5.3·10−7 2.0·10−6

Age 0.25 0.2 0.1 0.1 0.4
Spline 0.50 0.3 0.1 0.1 0.5
1 0.75 0.3 0.1 0.1 0.6
Age 0.25 -1.0·10−3 0.6·10−3 -2.2·10−3 0.2·10−3

Spline 0.50 -1.2·10−3 0.9·10−3 -3.4·10−3 -0.2·10−3

2 0.75 -2.2·10−3 1.0·10−3 -4.1·10−3 -0.2·10−3

Age 0.25 1.1·10−6 1.4·10−6 -1.6·10−6 3.9·10−6

Spline 0.50 3.3·10−6 2.2·10−6 -1.1·10−6 7.6·10−6

3 0.75 4.0·10−6 2.4·10−6 -6.2·10−7 8.7·10−6
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Figure 20: Plotted estimates of splines and intercept for Other Race includ-
ing Multi-Racial Males.
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Table 29: QRCM estimates of the 25th, 50th and 75th quantiles for Mexican-
American Females.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 60.5 58.5 -54.2 175.2
cept 0.50 80.0 31.0 19.3 140.7

0.75 99.8 164.7 -223.0 422.5
Height 0.25 -0.5 0.7 -1.8 0.8
Spline 0.50 -0.7 0.4 -1.5 3.6·10−2

1 0.75 -0.9 1.8 -4.5 2.7
Height 0.25 1.2·10−3 1.2·10−3 -2.2·10−3 4.5·10−3

Spline 0.50 1.2·10−3 1.1·10−3 -0.4·10−3 3.4·10−3

2 0.75 2.0·10−3 4.5·10−3 -6.8·10−3 1.1·10−2

Height 0.25 -7.4·10−7 1.3·10−6 -3.2·10−6 1.7·10−6

Spline 0.50 -1.1·10−6 8.6·10−7 -2.7·10−6 6.3e·10−7

3 0.75 -1.2·10−6 3.3·10−6 -7.7·10−6 5.2·10−6

Age 0.25 0.4 0.1 0.2 0.5
Spline 0.50 0.4 0.1 0.2 0.6
1 0.75 0.4 0.1 0.1 0.7
Age 0.25 -2.2·10−3 0.7·10−3 -3.5·10−3 -0.9·10−3

Spline 0.50 -2.0·10−3 0.9·10−3 -3.4·10−3 -0.2·10−3

2 0.75 -2.1·10−3 1.3·10−3 -4.5·10−3 0.4·10−3

Age 0.25 3.8·10−6 1.6·10−6 7.6·10−7 6.9·10−6

Spline 0.50 3.0·10−6 2.2·10−6 -1.3·10−6 7.4·10−6

3 0.75 2.8·10−6 2.9·10−6 -2.8·10−6 8.5·10−6
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Figure 21: Plotted estimates of splines and intercept for Mexican-American
Females.
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Table 30: QRCM estimates of the 25th, 50th and 75th quantiles for Other
Hispanic Females.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 53.3 26.0 2.3 104.3
cept 0.50 29.2 28.6 -26.9 85.3

0.75 -11.1 49.2 -107.4 85.3
Height 0.25 -0.5 0.3 -1.1 0.2
Spline 0.50 -0.2 0.4 -0.9 0.5
1 0.75 0.3 0.6 -0.9 1.5
Height 0.25 1.1·10−3 1.0·10−3 -0.7·10−3 3.0·10−3

Spline 0.50 0.4·10−3 1.0·10−3 -1.5·10−3 2.4·10−3

2 0.75 -1.0·10−3 1.7·10−3 -4.3·10−3 2.4·10−3

Height 0.25 -8.6·10−7 7.7·10−7 -2.4·10−6 6.6·10−7

Spline 0.50 -3.1·10−7 8.0·10−7 -1.9·10−6 1.3·10−6

3 0.75 7.9·10−7 1.4·10−6 -1.9·10−6 3.5·10−6

Age 0.25 3.5 0.1 -6.1·10−3 0.4
Spline 0.50 0.3 0.1 0.1 0.5
1 0.75 0.6 0.2 0.2 0.9
Age 0.25 -0.4·10−3 0.8·10−3 -2.0·10−3 1.2·10−3

Spline 0.50 -0.7·10−3 1.1·10−3 -2.8·10−3 1.4·10−3

2 0.75 -3.4·10−3 1.6·10−3 -6.4·10−3 -0.3·10−3

Age 0.25 -3.8·10−7 1.9·10−6 -4.0·10−6 3.3·10−6

Spline 0.50 -6.0·10−7 2.5·10−6 -5.4·10−6 4.2·10−6

3 0.75 5.3·10−6 3.7·10−6 -2.0·10−6 1.3·10−5
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Figure 22: Plotted estimates of splines and intercept for Other Hispanic
Females.
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Table 31: QRCM estimates of the 25th, 50th and 75th quantiles for Non-
Hispanic White Females.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 97.9 16.5 65.5 130.3
cept 0.50 108.9 18.6 72.5 145.2

0.75 134.0 29.8 75.5 192.1
Height 0.25 -0.9 0.2 -1.3 -0.5
Spline 0.50 -1.1 0.2 -1.5 -0.6
1 0.75 -1.4 0.4 -2.1 -0.7
Height 0.25 2.3·10−3 0.5·10−3 1.2·10−3 3.4·10−3

Spline 0.50 2.6·10−3 0.6·10−3 1.4·10−3 3.8·10−3

2 0.75 3.4·10−3 1.0·10−3 1.5·10−3 5.3·10−3

Height 0.25 -1.6·10−6 4.3·10−7 -2.5·10−6 -7.9·10−7

Spline 0.50 -1.8·10−6 4.9·10−7 -2.8·10−6 -8.9·10−7

3 0.75 -2.5·10−6 7.7·10−7 -4.0·10−6 -9.7·10−7

Age 0.25 0.2 0.1 0.1 0.4
Spline 0.50 0.4 0.1 0.3 0.5
1 0.75 0.5 0.2 0.3 0.7
Age 0.25 -1.0·10−3 0.6·10−3 -2.2·10−3 8.4·10−5

Spline 0.50 -2.0·10−3 0.7·10−3 -3.4·10−3 -5.6·10−4

2 0.75 -2.6·10−3 1.0·10−3 -4.6·10−3 -5.4·10−4

Age 0.25 1.2·10−6 1.4·10−6 -1.5·10−6 4.0·10−6

Spline 0.50 2.9·10−6 1.7·10−6 -4.1·10−7 6.2·10−6

3 0.75 3.4·10−6 2.4·10−6 -1.3·10−6 8.1·10−6
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Figure 23: Plotted estimates of splines and intercept for Non-Hispanic White
Females.
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Table 32: QRCM estimates of the 25th, 50th and 75th quantiles for Non-
Hispanic White Females.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 65.7 23.8 19.0 112.5
cept 0.50 66.3 23.6 20.0 112.6

0.75 116.5 31.5 54.8 178.3
Height 0.25 -0.5 0.3 -1.1 2.8·10−2

Spline 0.50 -0.5 0.3 -1.1 4.5·10−2

1 0.75 -1.1 0.4 -1.9 -0.4
Height 0.25 1.2·10−3 0.8·10−3 -0.3·10−3 2.8·10−3

Spline 0.50 1.1·10−3 0.8·10−3 -0.5·10−3 2.7·10−3

2 0.75 2.8·10−3 1.1·10−3 0.7·10−3 0.5·10−3

Height 0.25 -7.4·10−7 6.3·10−7 -2.0·10−6 4.9·10−7

Spline 0.50 -6.2·10−7 6.4·10−7 -1.9·10−6 6.8·10−7

3 0.75 -1.9·10−6 8.5·10−7 -3.5·10−6 -2.3·10−7

Age 0.25 0.2 0.1 0.1 0.4
Spline 0.50 0.3 0.1 0.1 0.5
1 0.75 0.5 0.1 0.3 0.8
Age 0.25 -0.9·10−3 0.8·10−3 -2.3·10−3 0.6·10−3

Spline 0.50 -0.1·10−3 0.9·10−3 -3.0·10−3 0.6·10−3

2 0.75 -2.8·10−3 0.1·10−3 -0.5·10−3 -0.5·10−3

Age 0.25 1.2·10−6 1.9·10−6 -2.5·10−6 4.8·10−6

Spline 0.50 1.1·10−6 2.0·10−6 -2.9·10−6 5.1·10−6

3 0.75 3.9·10−6 2.9·10−6 -1.8·10−6 9.6·10−6
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Figure 24: Plotted estimates of splines and intercept for Non-Hispanic Black
Females.
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Table 33: QRCM estimates of the 25th, 50th and 75th quantiles for Other
Race including Multi-racial Females.

Estim-
ates

Quan-
tiles

Beta, β Standard Er-
ror

Lower confi-
dence level

Upper confi-
dence level

Inter- 0.25 70.0 24.1 22.8 117.3
cept 0.50 42.4 42.9 -41.7 126.5

0.75 47.5 42.3 -35.4 130.5
Height 0.25 -0.6 0.3 -1.2 -0.1
Spline 0.50 -0.3 0.5 -1.3 0.8
1 0.75 -0.3 0.5 -1.3 0.8
Height 0.25 0.1·10−3 0.8 -8.2·10−5 2.9·10−3

Spline 0.50 0.4·10−3 1.4·10−3 -2.4·10−3 3.2·10−3

2 0.75 3.7·10−3 1.5·10−3 -2.5·10−3 3.2·10−3

Height 0.25 -9.2·10−7 5.9·10−7 -2.1·10−6 2.3·10−7

Spline 0.50 -7.1·10−8 1.1·10−6 -2.3·10−6 2.2·10−6

3 0.75 2.1·10−8 1.2·10−6 -2.2·10−6 2.3·10−6

Age 0.25 0.3 0.1 0.2 0.4
Spline 0.50 0.4 0.1 0.2 0.6
1 0.75 0.4 0.2 0.1 0.7
Age 0.25 -2.4·10−3 0.6·10−3 -3.7·10−3 -1.2·10−3

Spline 0.50 -2.8·10−3 1.0·10−3 -4.7·10−3 -0.83·10−3

2 0.75 -3.2·10−3 1.4·10−3 -6.0·10−3 -0.4 ·10−3

Age 0.25 5.7·10−6 1.5·10−6 2.8·10−6 8.5·10−6

Spline 0.50 6.2·10−6 2.4·10−6 1.5·10−6 1.1·10−5

3 0.75 7.1·10−6 3.5·10−6 2.9·10−7 1.4·10−5
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Figure 25: Plotted estimates of splines and intercept for Other Racial in-
cluding Multi-Racial Females.
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A3 R Code

The following R Code has been used when performing the data analysis.
“ ‘{r}

rm(list=ls())
library(qrcm)
library(splines)

# load the data
data <- read.table("Data.txt", fill = TRUE, header = TRUE)

# check the data
head(data)

# exclusion criteria
data <- data[!is.na(data$bmi)&data$age<80&data$gender==2,]

# fit the qrcm with an asymmetric logistic intercept and legandre splines
for the coefficients of age and height
s <- matrix(1,6,5)
s[1,4:5] <- 0
s[2:6,2:3] <- 0
qrcm1 <- iqr(bmi∼ slp(height,k=3) + slp(age,k=3), formula.p =∼ log(p)+log(1-
p)+slp(p,k=2), data=data)

#estimated parameters and standard errors
summary(qrcm1)

#p-values for testing that each parameter is equal to zero
round(1 - pchisq((summary(qrcm1)$coef/summary(qrcm1)$se)2, 1), 3)

#plot of all the regression coefficients
par(mfrow = c(3,3))
plot(qrcm1, ask=F)

#estimate regression coefficients at specified quantiles
predict(qrcm1, type = "beta", p = c(0.25,0.5,0.75))
#plot the estimated quantiles of BMI for two individuals
#plot(data$age, data$height)
names <- c("Age 5", "Age 31", "Age 75")
par(mfrow = c(1,1))
matplot(1:999/1000,
cbind(
c(predict(qrcm1, type = "QF", p = 1:999/1000, newdata = data.frame(height
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= 114, age = 5))$fit),
c(predict(qrcm1, type = "QF", p = 1:999/1000, newdata = data.frame(height
= 159, age = 31))$fit),
c(predict(qrcm1, type = "QF", p = 1:999/1000, newdata = data.frame(height
= 152, age = 75))$fit) ),
type="l", ylab="Estimated quantile function", xlab="Proportion" )

legend("topleft", inset=0.01, legend=names, col=c(1:5), lty=1:3, bg=
("white"), horiz=F)

#estimate the 0.95, 0.99, and 0.999 quantile of BMI for any subject with
given age and height
predict(qrcm1, type = "QF", p =c(.10,.50, .95), newdata = data.frame(height
= 161, age = 31))
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