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Abstract

Lower urinary tract symptoms in men are common when men get
older, and these symptoms can be measured with I-PSS (International
Prostate Symptom Score), a scale between 0-35. The density function
of the bounded outcome variable, I-PSS, is highly skewed to the right.
It can therefore be difficult to analyze this type of variables with stan-
dard regression methods such as OLS, since these methods give us
the effect of the explanatory variables on the mean of the response
variable.

Epidemiological studies commonly study how lifestyle and several
other factors affect health-related problems. We will therefore study
the effect physical activity has on lower urinary tract symptoms by
using logistic quantile regression, which is an appropriate method to
use when we have bounded outcomes. The method works well because
instead of the mean, it focuses on quantiles and it takes the bounded
interval into account.

The results show a negative relationship between total physical
activity and lower urinary tract symptoms, so men who are more
physical active will more likely have lower and milder symptoms.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: viviwong.96@gmail.com. Supervisor: Ola Hössjer Disa Hansson.



Sammanfattning

Hos äldre män är nedre urinvägssymptom ett vanligt förekommande prob-
lem. Dessa symptom kan mätas med hjälp av I-PSS (International Prostate
Symptom Score), en skala mellan 0-35. I-PSS, som är begränsad inom ett
intervall, är väldigt skev åt höger. Det kan därmed leda till sv̊arigheter och
felaktiga resultat om man använder sig av regressionsmetoder s̊a som OLS,
d̊a dessa undersöker effekten de förklarande variablerna har p̊a medelvärdet
av responsvariabeln.

Epidemiologiska studier undersöker hur livsstilsfaktorer och en rad andra
faktorer p̊averkar hälsorelaterade problem. I denna uppsats undersöker vi
vilken effekt fysisk aktivitet har p̊a nedre urinvägssymptom hos män genom
att använda oss av logistisk kvantilregression, vilket är en bra metod att
använda när responsvariabeln ligger inom ett begränsat intervall. Metoden
använder istället för medelvärdet kvantiler och tar hänsyn till det begränsade
intervallet.

Resultaten visar ett negativt förh̊allande mellan total fysisk aktivitet och
nedre urinvägssymptomer, vilket säger att personer som är mer fysiskt aktiva
kommer med högre sannolikhet att visa mindre omfattande och mildare
symptom.
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1 Introduction

In this study we estimate psychological outcomes. The characteristics of
these outcomes can lead to some issues when estimated with standard re-
gression methods, where the focus is on the mean. It has been quite difficult
during a long time to find articles about some simple and well performing
models for such type of outcome variables, until in 2010 when Bottai et al.
[4] published a paper about logistic quantile regression. This method has
been proved to work very well and has been used in many research papers
since [10, 13, 15, 27, 29].

In the following sections, we introduce some terms and methods, such as
quantile regression, that are used in the rest of this thesis.

1.1 Quantile regression

Using standard linear regression, which analyzes the relationship between
the covariates and the mean of the response variable, does not give the
whole picture of the distribution of the response variable conditional on the
covariates [6, 19, 29]. Quantile regression, on the other hand, models the
relationship between the independent variables quantiles and the response
variable instead [29]. This makes it easier to evaluate location, skewness
and other features [29], which can lead to a more complete picture of the
relationship between the explanatory variables and the outcome [6, 19].

The main reference for this part is Koenker [18, 19]. Estimating the
coefficients of quantile regression is similar to estimating OLS regression co-
efficients. For an OLS model, we know that we should solve for the following
problem to get the sample mean

min
µ∈R

n∑
i=1

(yi − µ)2,

where y1, ..., yn are the observations and µ the location parameter. For
multiple linear regression with q explanatory variables xi = (xi1, ..., xiq)

T ,
in order to get the estimated regression coefficients β = (β1, ..., βq)

T and
intercept β0, we have to solve

min
(β0,β)∈Rq+1

n∑
i=1

[yi − (β0 + βTxi)]
2.

For quantile regression we do not look at the sample mean, but instead
we focus on the pth sample quantile, which is given by the following mini-
mization problem

min
ξ∈R

n∑
i=1

lp(yi − ξ),
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where lp(·) is a tilted absolute function called the loss function, and ξ is a
scalar. The loss function can be described in more detail by the following
expression (see also Figure 5 in Appendix A1)

lp(u) =

{
up, if u ≥ 0,

u(p− 1), if u < 0.

A general quantile regression model for the pth quantile can according
to Koenker [19] be defined as

yi = βp,0 + βp,1xi1 + ...+ βp,qxiq + εi, where i = 1, ..., n,

where εi denotes the error term. Then the pth quantile of the conditional
distribution of yi given xi is

Qyi(p) = βp,0 + βp,1xi1 + ...+ βp,qxiq.

An advantage of using quantile regression is that quantiles have the following
property for a non-decreasing function h:

Qh(yi)(p) = h[Qyi(p)].

A link function can then be written [29] as

h[Qyi(p)] = βp,0 + βp,1xi1 + ...+ βp,qxiq. (1)

To obtain the estimated regression coefficients for any quantile, we should
solve the following minimization problem

min
β∈Rq+1

n∑
i=1

lp[yi − (βp,0 + βp,1xi1 + ...+ βp,qxiq)],

where β = (βp,0, ..., βp,q). For simplicity, this can be rewritten as

min
β∈Rq+1

n∑
i=1

lp[yi − (βp,0 + βTp xi)], (2)

where βp = (βp,1, ..., βp,q)
T .

1.2 Bootstrap

Collecting information of a whole population (e.g. every person in a city, or
all people with a specific disease) can be extremely difficult or even impos-
sible, instead a large sample that should be very accurate to the population
is usually gathered. It is hard to get an efficient sample, but an easy way
to obtain a good sample is to use the simple random sampling method.
The method consists of drawing n observations from the population with
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replacement, where every unit in the population has the same probability of
being selected [8].

Bootstrap can be seen as a simple random sampling from the sample
instead of the population. This method has been used in many different
fields. When the desire is to estimate a certain population parameter from
a sample but we do not make any parametric assumptions (for example the
assumption that the observations are normally distributed), then the boot-
strap often is a good option [7]. By applying bootstrap with replacement,
we resample k new samples by taking random samples from the original
dataset, each with same size as the original data. From each of these k
samples we compute the estimates of the desired parameters. Note that k is
recommended to be at least 100 for standard errors and 1000 for confidence
intervals [7, 8].

1.3 Bounded outcomes

Outcome variables that take on values within a bounded interval are called
bounded outcome variables [4, 29]. Problems can occur when analyzing
bounded outcome variables with traditional statistical methods, since the
frequency distributions of these variables can be unimodal, U-shaped, J-
shaped, or a variety of other shapes. By instead using methods that con-
strain the inference within the bounded interval, we can draw more reliable
conclusions [4].

Bounded response variables can be found in many different fields [29].
We continue by briefly give some examples of bounded outcomes.

1.3.1 Bounded outcomes in medicine

An example of medical bounded outcomes is the Glasgow Coma Scale, which
measures consciousness in an interval between 3 and 15 [26]. Visual Analog
Scale for Pain is another example, it takes values between 0 and 100 [4, 23].
A third example is another Visual Analog Scale (VAS), which lies between
0 and 100, which is a measurement for irritations in the eyes, nose, throat
and airways. The statistical analysis method that was used for this bounded
variable was logistic quantile regression [13].

1.3.2 Bounded outcomes in epidemiology

An example of epidemiological bounded response variables can be the Center
for Epidemiologic Studies Depression scale (CES-D), which measures the
level of depression within the interval 0 and 60 [4].

Another example is an ADHD symptoms counting. Parents report psy-
chiatric disorder symptoms of their children by filling in Diagnostic Interview
Schedule for Children Version IV (DISC-IV) modules. The total number of
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symptoms is then calculated and the score can be seen as a bounded outcome
[15].

Mini Mental State Examination (MMSE) is another example, which is
bounded between 0 and 30. It measures the person’s cognitive status, where
low values stand for cognitive impairment [10].

The method that was used in these studies to analyze the relationship
between the bounded outcomes was logistic quantile regression [4, 10, 15].

1.3.3 Bounded outcomes in finance

Finance is another field with bounded outcomes, for example different types
of recovery rates (e.g. credit recovery rate), which vary between 0 and 1 (0%
and 100%). Here 1 indicates full recovery, i.e. zero loss.

Recovery rates have been studied with the logistic quantile regression
model in [27], where they show that the logistic quantile regression method
was a better alternative to use than other methods.
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2 Background

When we have bounded outcomes, classical standard regression models may
be inefficient and impractical as we stated before. A better way to analyze
such outcomes is to use logistic quantile regression [4]. In this section, we
introduce the logistic quantile regression model. We begin by highlighting
some important properties of quantiles and transformations in Section 2.1.
In Section 2.2 we describe logistic regression. In Section 2.3 the method used
in this thesis, namely, logistic quantile regression is presented. We conclude
by explaining bootstrap in Section 2.4.

2.1 Quantiles and transformations

Unlike the mean, quantiles can analyze transformations of the outcome vari-
able. The main reference for this section is Koenker [19].

For a numeric outcome Y , the cumulative distribution function (CDF)
can be written as F (y) = P (Y ≤ y), and the pth quantile of Y is given
by Q(p) = F−1(y). The inverse function of the CDF of F is monotonically
increasing and continuous [6, 11, 19].

The useful property quantiles have is the following

Qh(y)(p) = h[Qy(p)], (3)

where h(·) is a non-decreasing function. This means that if g(·) is a non-
decreasing function, the following equality must hold

Q[g(Y )] = g[Q(Y )]⇐⇒ Q(Y ) = g−1(Q[g(Y )]),

thus taking the inverse of Q[g(Y )] will give us g−1(Q[g(Y )]), and the inverse
of g[Q(Y )] is Q(Y ).

The equality in Equation (3) holds, because if h(·) is a monotone func-
tion, the following will be implied

P (Y ≤ y) = P [h(Y ) ≤ h(y)].

2.1.1 Expectation

The advantageous property for quantiles does not hold for transformations
of the mean. In other words

E[h(Y )] 6= h(E[Y ]),

although there are exceptions. Since the mean does not have such a use-
ful property as the quantiles, quantile regression might be a better option
compared to those regression methods that only take the mean into consid-
eration.
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Example 2.1: The function h(x) = x2 is monotonically increasing for
x ∈ [0,+∞). For simplicity, let therefore x take the following values: 1, 2
and 3. Then h(x) for these values are 1, 4 and 9 respectively. See Table 1
for some descriptive statistics.

Table 1: Mean and median of the x- and the h(x)-values.
Mean Median

x: 1 2 3 2 2

h(x): 1 4 9 14/3 4

We can then see that E[h(x)] 6= h(E[x]) since

E[h(x)] =
1 + 4 + 9

3
=

14

3

and
h(E[x]) = h(2) = 22 = 4.

On the other hand

Qh(x)(0.5) = 4 = 22 = h(2) = h[Qx(0.5)].

2.2 Logistic regression

This part is based on Agresti [1]. Assume that we have an outcome variable
with only two different outcomes, for example: success (denoted by 1) and
failure (denoted by 0). Let the probability of success be denoted by π, then
the odds of a success is given by the following formula

Ω =
π

1− π
,

which is positive and shows how likely it is that the outcome gives a success
compared to a failure. For instance, if Ω < 1, then a failure is more likely to
happen than a success. Ω = 1 means that a failure is as likely as a success
and finally if Ω > 1, then a failure is not as likely to happen as a success.

Assume that we have n observations and q explained variables, xi =
(xi1, xi2, ..., xiq), where i = 1, ..., n, and let π(xi) denote the probability
of success for xi. Then the logistic regression model can be expressed in the
following way

log

[
π(xi)

1− π(xi)

]
= logit [π(xi)] = β0 + β1xi1 + ...+ βqxiq,

and this implies the following equality

π(xi)

1− π(xi)
= exp(β0 + β1xi1 + ...+ βqxiq)⇐⇒
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⇐⇒ π(xi) = [1− π(xi)] exp(β0 + β1xi1 + ...+ βqxiq)⇐⇒

⇐⇒ π(xi) [1 + exp(β0 + β1xi1 + ...+ βqxiq)] = exp(β0+β1xi1+...+βqxiq)⇐⇒

⇐⇒ π(xi) =
exp(β0 + β1xi1 + ...+ βqxiq)

1 + exp(β0 + β1xi1 + ...+ βqxiq)
.

2.3 Logistic quantile regression

The fact that the density functions of bounded outcomes can have different
shapes is a reason that standard regression models are not appropriate to
use. Therefore, quantile regression is preferable, but unfortunately it does
not take the bounded interval of the response variables into consideration.
In other words, the regression line may not lie between the upper limit and
lower limit of the outcome variable. We therefore use a method that does
that instead, the logistic quantile regression method, which is a combination
of quantile regression and logistic regression [4].

This section is based on Bottai et al. (2010) [4, 29], who found an easy
method to analyze bounded response variables. Logistic quantile regression
will not only analyze the relationship of the explained variables by looking
at the quantiles, but also take the range of bounded outcome values into
account.

Assume that we have n observations and q explained variables, xi =
(xi1, xi2, ..., xiq), where i = 1, 2, ..., n, and a bounded continuous response
variable yi, which lies between the known interval (ymin, ymax). Note that
ymin and ymax are constants which denote the limits of the outcome variable.
Thus, a continuous bounded outcome between 0 and 1 reminds us of a
probability. Bottai et al. chose the following logistic link function

h(yi) = logit(yi) = log

(
yi − ymin
ymax − yi

)
, (4)

which transforms the bounded interval to [0, 1].
The logit function of Qyi(p) will then be

h[Qyi(p)] = logit[Qyi(p)] = log

[
Qyi(p)− ymin
ymax −Qyi(p)

]
,

which is equal to Equation (1). The next step is to solve Qyi(p) from
the following equality

log

[
Qyi(p)− ymin
ymax −Qyi(p)

]
= βp,0 + βp,1xi1 + ...+ βp,qxiq.
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We begin by taking the exponential on both sides,

Qyi(p)− ymin
ymax −Qyi(p)

= exp(βp,0 + βp,1xi1 + ...+ βp,qxiq),

multiplying with the denominator of the LHS and collecting theQyi(p)−terms
gives,

Qyi(p)[1+exp(βp,0+βp,1xi1+...+βp,qxiq)] = ymax exp(βp,0+βp,1xi1+...+βp,qxiq)+ymin.

Dividing both sides by [1 + exp(βp,0 + βp,1xi1 + ... + βp,qxiq)] will give the
desired function

Qyi(p) =
ymax exp(βp,0 + βp,1xi1 + ...+ βp,qxiq) + ymin

1 + exp(βp,0 + βp,1xi1 + ...+ βp,qxiq)
. (5)

To obtain the estimate of the regression coefficients and intercept, βp,i
for i = 0, 1, ..., q, we should solve

(β̂p,0, β̂p) = min
(β0,β)∈Rq+1

n∑
i=1

lp[h(yi)− (βp,0 + βp,1xi1 + ...+ βp,qxiq)],

which can be written as

(β̂p,0, β̂p) = min
(β0,β)∈Rq+1

n∑
i=1

lp[logit(yi)− (βp,0 + βTp xi)],

where βp = (βp,1, ..., βp,q)
T [10].

Note that the estimates of the logistic quantile regression can be obtained
by using quantile regression where we regress the transformed outcome on
xi [29] (see and compare Equation (2)).

When we obtain the desired estimates, we can take advantage of the
favorable property shown in Equation (3) and get inference on Qyi(p) [10].

2.4 Bootstrap

We use bootstrap to obtain the standard errors, confidence intervals and
p−values of the estimates. The reason is that the design matrix bootstrap
has been shown to be a better alternative to use for quantile regressions,
especially if the data is heteroskedastic (the variance is not constant) [4,
5, 15]. Design matrix bootstrap, also called (x, y)−pairs bootstrap, is an
effective method to use when we have independent variables that are not
identical [18].

The following parts are based on theory outlined in Andrews and Buchin-
sky (2000), Buchinsky (1995), Efron and Tibshirani (1994), and elsewhere
[2, 5, 12, 14, 18].
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Using bootstrap to obtain the standard error:

1. We shall draw k bootstrap samples (z∗1, z∗2, ..., z∗k) with the same
size as the original sample. Each observation in a bootstrap sample
consist of a pair (x∗, y∗) where x∗ = (x∗1, ..., x

∗
q) and each such pair is

drawn with replacement from the n pairs in the sample. Each pair in
a bootstrap sample is therefore drawn with equal probability 1/n.

2. Estimate the regression coefficient for all k new samples, β̂∗mp,i , for
i = 1, ..., q and m = 1, ..., k, where m is the mth bootstrap sample.

3. The next step is to compute the standard error by calculating the
standard deviation of the k samples. The reason why we compute the
standard error with the standard deviation is because of the unknown
variance of the parameter estimates. In other words

ŜEboot =

√∑k
m=1(β̂

∗m
p,i − β

∗
)2

(k − 1)
.

Here β
∗

denote the mean of the bootstrapped regression coefficients.
It can be written as

β
∗

=

∑k
m=1(β̂

∗m
p,i )

k

Bootstrap for confidence interval with k bootstrap replicates:
The confidence interval can be directly calculated from the non-parametric
bootstrap resampling (we will use the xy-pairs bootstrap). The bootstrap
confidence interval can be obtained by following steps:

1. Compute the estimates of the regression coefficients.

2. Calculate the bootstrapped standard error.

3. Construct the 100(1 − α)-confidence interval of each parameter by
using the Wald-interval formula

CI = (β̂p,i ± z(1−α)/2ŜEboot),

where z(1−α)/2 is the (1 − α)/2 quantile of a standard normal distri-
bution. A 95%-confidence interval will therefore be given by

(β̂p,i ± 1.96 · ŜEboot).

9



Obtaining the p-value by using k bootstrap replicates:
The p−value tells us the probability to get at least the same or a more
extreme value of a test statistic T than the observed outcome under the null
hypothesis, H0.

1. We need to compute the T -values for the estimated regression coeffi-
cients for all resampled datasets, by using bootstrap.

2. We obtain the p−value by calculating the probability that we get a
value of the test statistic from the resamples than for the original
dataset. We can define the bootstrapped p−value as

p̂boot =
1

k

k∑
m=1

1(T ∗mboot > T ),

where m denotes the mth bootstrap sample, m = 1, ..., k, so T ∗mboot is the
mth bootstrapped test statistic. T is the test statistic of our original
data.
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3 Data analysis

The main reference for this section is the article by Orsini et al. [30]. We use
the same data as they did except that we have fewer explanatory variables.

3.1 Research question

Lower urinary tract symptoms (LUTS) in men are more common as they
get older. The term LUTS describes several different symptoms associated
with lower urinary tract problems [3]. One common cause of LUTS is benign
prostatic hyperplasia (BPH) [30].

The LUTS can be measured with the International Prostate Symptom
Score (I-PSS), where higher scores indicate severe symptoms [30].

Finding what effect lifestyle and other factors such as environment has on
health-related problems, is a big part of epidemiological studies [17]. Physi-
cal activity is associated with lifestyle and many epidemiological researchers
have studied the relationship between physical activity and various kind of
diseases [16, 22, 24]. Our research question will be: what is the effect of
total physical activity on lower urinary tract symptoms?

3.2 Previous research

A study on long-term physical activity and lower urinary tract symptoms in
men showed that total physical activity affects lower urinary tract symptoms
significantly. The results showed that inactive men have approximately twice
the risk of getting lower urinary tract symptoms than physically active men
[30].

Another research study found that the risk for lower urinary tract symp-
toms was lower for physical active men [9].

Other studies have derived the same results, that decreasing physical
activity is associated with higher levels of lower urinary tract symptoms
[25, 28].

3.3 Description of data

The data was part of the Cohort of Swedish Men. A questionnaire was sent
out between 1997-1998 to all 45 to 79-year-old men that lived in Västmanland
and Örebro counties in Sweden. The questions in the survey asked about the
presence and severity urination symptoms, physical activity, education and
more. Out of the men that handed in the questionnaire, a total of 30, 377
were included in the study in the end.

11



3.3.1 Variables

The data we received had already been adjusted/filtered and consisted of
four variables: age, total physical activity (TPA), the Swedish version of
International Prostate Symptom Score (I-PSS) and a dummy variable for
high I-PSS (HIGH-IPSS), where 1 indicates high I-PSS score and 0 low
I-PSS score.

The physical activity score was measured by six questions about physi-
cal activity/inactivity for different categories such as occupational activity
and household work at different ages. The intensity of these activities is
measured in metabolic equivalents (MET), where one MET equals to one
kcal/kg/hour. The reported time was multiplied with the intensity to obtain
the physical activity score.

I-PSS on the other hand was measured by seven questions concerning
the presence of urination symptoms with five alternatives each. One of
the questions was asking the participants how many times they go to the
toilet each night, with five possible answers: never, once, twice, three times,
four times and more than five times. This implies that I-PSS is a bounded
variable that lies within the interval 0 and 35. An I-PSS score equal to or
is higher than 8 (value 1 of the binary variable ”HIGH-IPSS”), means that
the person shows moderate to severe lower urinary tract symptoms, while a
score of 7 or lower implies the opposite.

See the Table 2 for a briefly summary of the variables.

Table 2: Minimum value, maximum value, mean and median of the variables
in the data.

Variable Min Max Mean Median

IPSS 0 35 5.091 3

TPA 25.5 61.2 41.5 40.7

Age 45 79 59.3 58

HIGH-IPSS 0 1 0.2273 0

3.3.2 Missing data

Dealing with missing data is a very common problem in questionnaire stud-
ies. For instance, a total of 100, 303 men received the survey, but 51, 658
did not give any responses to the questionnaire. Out of those 48, 645 men
that answer the survey, 92 sent in an empty survey and 15, 529 did not an-
swer every question about physical activity and lower urinary tract symp-
toms. These persons were therefore excluded from the study and addition-
ally, 2, 647 were excluded from the study for other reasons.
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3.4 Models

We follow the steps described by Orsini and Bottai (2011) [29], our main
reference in this section. Another paper by Bottai et al. [4] stated that we
can add a small value strictly greater than 0 (ε) to prevent getting undefined
values such as log(0) or some numbers divided by 0. We will therefore use
the following formula

h(yi) = logit(yi) = log

(
yi − ymin + ε

ymax − yi + ε

)
, (6)

instead of using Equation (4).
From the first reference above,[29], we can see that the authors used

ε = 0.5. Moreover, since 0.001 and 0.5 are the more commonly used values
of ε in articles [4, 10, 29], we plotted the distribution of logit(I-PSS) against
total physical activity (TPA) for three different values of ε: 0, 0.001 and 0.5
(see Figure 3). From Figure 3, we can see that the plot with ε = 0.5 looks
more similar to the plot where ε = 0 than the plot where ε = 0.001 does, so
it might therefore be better to choose ε = 0.5 rather than ε = 0.001.

The four models used in the thesis will be described in Section 3.4.1 and
Section 3.4.2, a summary of the models can be found in Table 3.

Table 3: The regression models used in the thesis. The interval variables
(Interval1, Interval2, Interval3,...,Interval12) are categorical variables of the
variable TPA, where TPA is a continuous variable. Note that Interval1 is
our reference variable in model 1 and 2.

Model 1 h(yi) = βp,0 + βp,1xInterval2 + βp,2xInterval3 + · · ·+ βp,11xInterval12 + εi

Model 2 same as model 1 but with the explanatory variable age added

Model 3: h(yi) = βp,0 + βp,1xTPA + εi

Model 4: same as model 3 but with the explanatory variable age added
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3.4.1 Categorical explanatory variables

Let us divide the total physical activity, our explanatory variable, into twelve
different interval variables (almost equally sized, see Table 4 for some de-
scriptive statistics about these variables). Figure 1 show us boxplots of
I-PSS over these variables. The first logistic quantile regression model we
will use is

h(yi) = βp,0 + βp,1xInterval2 + βp,2xInterval3 + ...+ βp,11xInterval12 + εi,

where the lowest interval variable, xInterval1, will be our reference variable.
We add the variable xAge to the second regression model.

We also use F-test to test the joint hypothesis that none of the interval
variables will have an effect on I-PSS.

Table 4: Minimum value, maximum value, mean and median of the interval
variables (TPA divided into twelve variables). The lowest interval, Interval
1 (marked with *), is the reference interval.

Variables: Min Max Mean Median

Interval 1 * 25.5 35.6 34.15121 34.5

Interval 2 35.7 36.9 36.35906 36.4

Interval 3 37 37.9 37.42931 37.5

Interval 4 38 38.7 38.38495 38.4

Interval 5 38.8 39.7 39.28406 39.3

Interval 6 39.8 40.7 40.20631 40.2

Interval 7 40.8 42 41.37865 41.4

Interval 8 42.1 43.4 42.7949 42.8

Interval 9 43.5 44.8 44.17201 44.2

Interval 10 44.9 46.2 45.52942 45.5

Interval 11 46.3 48.7 47.36826 47.3

Interval 12 48.8 61.2 51.68351 51.3

14



Figure 1: Boxplots of I-PSS over twelve almost equally sized classes of TPA.
Boxplots

3.4.2 Continuous explanatory variables

Instead of having total physical activity (TPA) as categorical predictors, we
additionally set up a simple regression model with only TPA as a continuous
explanatory variable. The simple regression model can be described with
the following equation

h(yi) = βp,0 + βp,1xTPA + εi,

and by adding the predictor xAge, we get a multiple regression model (which
will be our fourth model).

3.4.3 The best fitting epsilon

We use ε = 0.5 and it seems to be a good choice, since Orsini and Bottai
[29] used it and it showed to give a better fit compared to using ε = 0.001
(see Figure 3). Let us investigate if there is another value of the ε that gives
a better fit and if the results of that ε-value differ much.

We follow what Siao et al. [27] did in 2016. They tried twelve differ-
ent values of ε: 10−11, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.08, 0.1, 0.2, 0.3
and 0.4999. They used two methods with these values, and we also use them
when applying the logistic quantile regression models. Then we check the
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pseudo-R2 values for these ε-values. The pseudo-R2 (here denoted R1) or
the goodness of fit for quantile regression can be computed by the following
formula according to Koenker and Machado [20]:

R1(p) = 1− V̂ (p)

Ṽ (p)
,

where β̂(p) is the unrestricted estimated regression coefficient and it is the
value obtained from the following minimization problem

V̂ (p) = min
(βp,0,β)∈Rq+1

n∑
i=1

lp[h(yi)− (βp,0 + βTp xi)].

The restricted estimated regression coefficient β̃(p) on the other hand is the
minimization of

Ṽ (p) = min
(βp,0,βp∗)∈Rq+1−t

n∑
i=1

lp[h(yi)− (βp,0 + βTp∗x∗)],

where t is the number of effect parameters put to zero for the restricted
model. When some regression coefficients in the model are set to zero, we
call the model a restricted regression model. To obtain the pseudo R2 values
in the software R, we used the code Koenker [21] wrote. This is one method
Siao et al. [27] applied.

The other method that Siao et al. [27] used, is based on the following
formula ∑n

i=1 |Q̂yi(p|ε1)− Q̂yi(p|ε2)|
n

to compute some numerical values, where ε1 and ε2 are two consecutive ε-
values and n is the total number of observations. For this method, they tried
the following values of ε: 10−11, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.08, 0.1,
0.2, 0.3, 0.4999, 1, 2, 3 and 5 . The formula Q̂yi(p|ε) is obtained by inserting

the estimated intercept and regression coefficients, β̂p,i, into the following
equation (we get this formula (Equation (7)) instead of Equation (5) by
rewriting Equation (6))

Qyi(p) =
(ymax + ε) exp(βp,0 + βp,1xi1 + ..+ βp,qxiq)− (ε− ymin)

1 + exp(βp,0 + βp,1xi1 + ..+ βp,qxiq)
. (7)

In other words

Q̂yi(p|ε) =
(ymax + ε) exp(β̂p,0 + β̂p,1xi1 + ..+ β̂p,qxiq)− (ε− ymin)

1 + exp(β̂p,0 + β̂p,1xi1 + ..+ β̂p,qxiq)
.
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Siao et al. [27] then chose a value of ε, where the average value of the
absolute values of the quantiles between two consecutive ε is less than 0.01
for all ε greater than or equal to the chosen value (since their outcome
was a proportion). The reason is that the Q̂yi values level off and are
about the same above the chosen value. Our data on the other hand is
bounded between 0 to 35, so instead of checking if the average of the absolute
differences of Q̂yi(p|ε) is lower than 0.01, we check if the average is smaller
than 1.

Lastly, we choose ε visually, by plotting the logit of I-PSS against TPA
for those quantiles in the previous method [10].

3.5 Software

We use the software R to analyze the data. The following packages are
needed: ”quantreg” (quantile regression package), ”Hmisc” and ”car”. The
quantile regression package is required when estimating logistic quantile re-
gression model. In order to fit the logistic quantile regression model, we use
the ”rq” (quantile regression) code and we need to insert the logistic trans-
formation of I-PSS as the response variable instead of I-PSS. The second
package will be useful when we split the explanatory variable, total physical
activity (TPA), into almost equally sized categorical interval variables. We
will also use the ”car” package to compute F-tests.

3.6 Results

Figure 2: A histogram of I-PSS that shows the 0.05, 0.25, 0.5, 0.75, 0.95
quantiles, the mean and the density function.
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Figure 2 shows that we have a very skewed density function, and we can
also see that the mean does not say much about the data, so using standard
regression such as OLS would probably not be a good option as we wrote in
the introduction part. Instead logistic quantile regression would indeed be a
better method to use, thus we can interpret different regressions in different
quantiles and get a better view of the data.

We start by showing the results of the regression models where we used
ε = 0.5. As we stated before, we used the value 0.5 because the plot where
ε = 0.5 looks more similar to the original sample compared to the plot with
ε = 0.001 (see Figure 3).

Figure 3: Three different plots that show the distribution of the logistic
transformation of I-PSS against TPA with different values on epsilon.

From Figure 1 we can see that higher total physical activity score seems
to be associated with lower I-PSS score for our data sample, which is what
many other research papers in this field have demonstrated. To see if this
is really the case, we look at the regression results of our models.

3.6.1 Regression results of models with interval variables

The result from the first regression model with categorical explanatory vari-
ables can be found in Table 5. The table shows that every coefficient is
negative and gives a significant result at the 5% significant level, we also see
that we can reject the null-hypothesis that the interval variables does not
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have an effect on the I-PSS score (β0.5,1, β0.5,2 , ..., β0.5,11 = 0). Figure 6
in Appendix A1 shows the plots of the estimated regression coefficients over
different quantiles.

Table 5: Estimates of the following model h(yi) = βp,0 + βp,1xInterval2 +
βp,2xInterval3+...+βp,11xInterval12+εi. The columns correspond to the quan-
tile (p), variable, estimated coefficient, standard error, t−value, p−value and
95% confidence interval, where 1000 bootstrap samples were drawn to ob-
tain the standard errors, p−values and confidence intervals. The result of
the F-test, where we test the hypothesis that none of the intervals do have
an effect on I-PSS, can also be seen.

p Variable Coeff SE t-value p-value 95% CI

Intercept -1.946 0.0252 -77.265 0.000 (-1.995, -1.897)
Interval 2 -0.283 0.0252 -11.220 0.000 (-0.332, -0.233)
Interval 3 -0.283 0.0252 -11.220 0.000 (-0.332, -0.233)
Interval 4 -0.283 0.0308 -9.179 0.000 (-0.343, -0.222)
Interval 5 -0.283 0.0252 -11.220 0.000 (-0.332, -0.233)

0.5 Interval 6 -0.283 0.0252 -11.220 0.000 (-0.332, -0.233)
Interval 7 -0.283 0.0252 -11.220 0.000 (-0.332, -0.233)
Interval 8 -0.283 0.0564 -5.014 0.000 (-0.393, -0.172)
Interval 9 -0.283 0.0343 -8.235 0.000 (-0.350, -0.215)
Interval 10 -0.283 0.110 -2.561 0.0105 (-0.499, -0.0663)
Interval 11 -0.283 0.144 -1.967 0.0492 (-0.564, -0.00103)
Interval 12 -0.649 0.0252 -25.783 0.000 (-0.699, -0.600)

F-test:
F-value 18.373 p−value: <2.2e-16

The result of the second model where the predictor age is added into
the first model are reported in Table 6. All the coefficients of the interval
variables in Table 6 have a negative value when p = 0.5. We can also see from
the table that the estimated coefficient of age is positive. To get a better
view of the estimated regression coefficients of the variables over different
quantiles, see Figure 7 in Appendix A1. The coefficients of the interval
variables are decreasing over different quantiles according to the figure.
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Table 6: Estimates for the model h(yi) = βp,0+βp,1xInterval2+βp,2xInterval3+
...+βp,11xInterval12+βp,12xAge+εi. The quantile (p), variables, estimated co-
efficients, standard errors, t−values, p−values and 95% confidence intervals
are shown, where we used 1000 bootstrap replicates to obtain the standard
errors, p−values and confidence intervals. The F-test, where we test the
joint hypothesis (β0.5,1, β0.5,2, ..., β0.5,11 = 0), are also shown.

p Variable Coeff SE t-value p-value 95% CI

Intercept -4.276 0.0864 -49.498 0.000 (-4.445, -4.107)
Interval 2 -0.0766 0.0478 -1.602 0.109 (-0.170, 0.0171)
Interval 3 -0.130 0.0449 -2.894 0.00381 (-0.218, -0.0419)
Interval 4 -0.153 0.0490 -3.119 0.00182 (-0.249, -0.0568)
Interval 5 -0.115 0.0508 -2.257 0.0240 (-0.214, -0.0151)

0.5 Interval 6 -0.244 0.0476 -5.131 0.000 (-0.338, -0.151)
Interval 7 -0.229 0.0446 -5.141 0.000 (-0.317, -0.142)
Interval 8 -0.306 0.0497 -6.144 0.000 (-0.403, -0.208)
Interval 9 -0.306 0.0501 -6.103 0.000 (-0.404, -0.207)
Interval 10 -0.344 0.0523 -6.577 0.000 (-0.446, -0.241)
Interval 11 -0.420 0.0541 -7.764 0.000 (-0.526, -0.314)
Interval 12 -0.435 0.0588 -7.404 0.000 (-0.551, -0.320)
Age 0.0382 0.00131 29.258 0.000 (0.0356, 0.0408)

F-test:
F-value 18.515 p−value: <2.2e-16

3.6.2 Regression results of models with continuous variables

The estimates of the simple regression model where TPA was considered as
a continuous variable instead of categorical predictors can be found in Table
7 and the results of the multiple regression model (where the explanatory
variable age is added to the simple regression model) are summarized in
Table 8. Figure 8 and Figure 9 in Appendix A1 show some plots of the esti-
mated coefficients over different quantiles (p) for these two logistic quantile
regression models.
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Table 7: Estimates for the model h(yi) = βp,0 + βp,1xTPA + εi. We used
1000 bootstrap replicates to get the standard errors, p−values and confidence
intervals.
p Variable Coeff SE t-value p-value 95% CI

0.25 Intercept -3.135 0.000 -9.621e+15 0.000 (-3.135 , -3.135)
TPA 0.000 0.000 -3.808 1.4e-04 (-3.55e-17, -1.14e-17)

0.5 Intercept -1.314 0.417 -3.148 0.00165 (-2.132, -0.496)
TPA -0.0229 0.0105 -2.194 0.0282 (-0.0434, -0.00245)

0.75 Intercept -0.264 0.101 -2.608 0.00910 (-0.463, -0.0657)
TPA -0.0264 0.00236 -11.181 0.000 (-0.0310, -0.0218)

0.95 Intercept 1.014 0.171 5.943 0.000 (0.679, 1.348)
TPA -0.0222 0.00429 -5.174 0.000 (-0.0306, -0.0138)

Table 8: Estimates for the following model h(yi) = βp,0 + βp,1xTPA +
βp,2xAge + εi, where p = 0.25, 0.5, 0.75 and 0.95. 1000 bootstrap replicates
were used to calculate the standard errors, p−values and 95% confidence
intervals.
p Variable Coeff SE t-value p-value 95% CI

Intercept -3.849 0.124 -31.111 0.000 (-4.091, -3.606)
0.25 TPA -0.0291 0.00386 -7.535 0.000 (-0.0367, -0.0215)

Age 0.0325 0.00263 12.350 0.000 (0.0273, 0.0376)

Intercept -3.375 0.103 -32.841 0.000 (-3.577, -3.174)
0.5 TPA -0.0268 0.00216 -12.456 0.000 (-0.0311, -0.0226)

Age 0.0379 0.00107 35.331 0.000 (0.0358, 0.0400)

Intercept -2.871 0.107 -26.908 0.000 (-3.080, -2.662)
0.75 TPA -0.0233 0.00189 -12.320 0.000 (-0.0271, -0.0196)

Age 0.0417 0.00111 37.567 0.000 (0.0395, 0.0439)

Intercept -1.773 0.186 -9.556 0.000 (-2.137, -1.409)
0.95 TPA -0.0179 0.00332 -5.386 0.000 (-0.0244, -0.0114)

Age 0.0422 0.00181 23.284 0.000 (0.0387, 0.0458)
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3.6.3 Pseudo-R2 and average of the absolute differences of Q̂yi(p|ε)

Let us now summarize the result from the pseudo-R2 values in Table 9. It
shows that ε = 0.4999 gives the highest value for all four regression models.

The results of the average values of |Q̂yi(p|ε1) − Q̂yi(p|ε2)|, (where the
variable age was excluded from the model), can be found in Table 10. Table
11 in Appendix A1 gives the results of the average values when the variable
age was added into the model. The tables show that every value of the aver-
age of the absolute differences of Q̂yi(p|ε) are strictly less than 1. According
to the method in [27], one should therefore choose ε = 10−11, although Table
10 indicates that ε has a small impact on the result. The regression results
when ε is set to be 10−11 can be seen in Appendix A2 (page 40).

Table 9: Summary of the pseudo-R2 values for the four different regression
models (Model 1 indicates the first categorical model and Model 2 the second
categorical model, while Model 3 stands for the first continuous regression
model and Model 4 for the second continuous regression model) with p = 0.5,
the median. The values in blue depict the highest pseudo-R2 values.

ε Model 1 Model 2 Model 3 Model 4

10ˆ(-11) 0.00078428 0.0079329 8.9896e-05 0.0079198
0.0001 0.0016112 0.016299 0.00018468 0.016272
0.0005 0.0018006 0.018216 0.00020639 0.018185
0.001 0.0018965 0.019186 0.00021738 0.019154
0.005 0.0021627 0.021882 0.00024786 0.021846
0.01 0.0023002 0.023277 0.00026358 0.023239
0.05 0.0026834 0.027188 0.00030717 0.027143
0.08 0.0028116 0.028512 0.00032159 0.028465
0.1 0.0028742 0.029164 0.00032859 0.029116
0.2 0.0030708 0.031243 0.00035018 0.031192
0.3 0.0031809 0.032446 0.00036179 0.032392
0.4999 0.0033022 0.033837 0.00037372 0.033779
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Table 10: The average values of |Q̂yi(p|ε1) − Q̂yi(p|ε2)|. ε1 and ε2 are two
consecutive ε−values. The first row shows the results of the average value
when ε1 = 10−11 and ε2 = 0.0001. The regression model we used was
h(yi) = βp,0 + βp,1xTPA + εi. The last row gives NA (not available values)
thus we do not have ε2-value when ε1 = 5.

ε p = 0.25 p = 0.5 p = 0.75 p = 0.95

10ˆ(-11) 6.2106e-16 1.6512e-06 7.4814e-07 5.0602e-08
0.0001 3.2288e-16 6.6032e-06 2.9923e-06 2.0240e-07
0.0005 2.8092e-16 8.2508e-06 3.7400e-06 2.5298e-07
0.001 8.0213e-16 6.5875e-05 2.9902e-05 2.0230e-06
0.005 3.8783e-16 8.2019e-05 3.7334e-05 2.5268e-06
0.01 2.5547e-16 0.00064342 0.00029691 2.0136e-05
0.05 2.2848e-16 0.00046819 0.00022065 1.5010e-05
0.08 2.6786e-16 0.00030554 0.00014614 9.9638e-06
0.1 6.5048e-17 0.0015798 0.00071945 4.9306e-05
0.2 1.1318e-16 0.0045108 0.00070117 4.8466e-05
0.3 1.1793e-15 0.0011085 0.0013494 9.4442e-05
0.4999 1.2652e-15 0.0048082 0.0023189 0.00022284
1 1.5259e-15 0.0062339 0.0051577 0.00039469
2 7.2892e-16 0.0038600 0.0042437 0.00033776
3 1.2625e-15 0.0045061 0.0040694 0.00054429
5 NA NA NA NA

Plotting the logit of I-PSS against TPA with the ε-values seen in Table
10 (see Figure 10 in Appendix A1) shows that ε between 0.4999 and 2 gives
a plot resembling the original data. We therefore also perform regression
analysis with ε = 1 and the regression results with this ε-value can be found
in Appendix A3 (page 46).

3.7 Interpretation

In this section, we interpret the results we summarized in the tables of the
result section. We also briefly interpret the results in Appendix A2 and A3.

3.7.1 First model

Let us interpret the results from the first model (see Table 5) first. The
estimated coefficients in that table show that a lower TPA score seems to
lead to a higher chance of getting higher I-PSS score. We see that if a person
has a TPA score between 35.7-36.9 (Interval 2), he will probably get a logit
transformed I-PSS score with approximately 0.283 lower value than a person
with a TPA score lower than 35.7 (Interval 1). We also see from Table 5
that a person with a TPA score that lies within Interval 3 to Interval 11 will
more likely get 0.283 lower value of the transformed I-PSS compared to a
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person with TPA score that lies between the values in Interval 1. Similarly,
we find that a person with a TPA score within Interval 12 will more likely
get 0.649 lower value of the transformed I-PSS score than a person with
TPA score in Interval 1.

We can also see that every coefficient gives a significant result at the 5%
confidence level (thus the p−values are strictly less than 0.05), so the hy-
pothesis that the difference of the coefficients of Interval 1 and each interval
variable in the table is equal to zero can be rejected at the 5% level. The
result from the F-test tells us that the joint hypothesis can be rejected at
an extremely small percentage level. This implies that the interval variables
seem to have an effect on the I-PSS score, so total physical activity may
affect LUTS.

3.7.2 Second model

The results from the second model (see Table 6),

h(yi) = βp,0+βp,1xInterval2+βp,2xInterval3+...+βp,11xInterval12+βp,12xAge+εi,

(where p = 0.5) also show that higher TPA scores are more likely associated
with lower I-PSS scores. The estimated coefficients of each interval variable
are negative, which implies that the I-PSS score is lower for an individual
with a TPA score greater than 35.6 compared to a person with TPA score
within Interval 1. The estimated coefficient of Interval 2 is −0.0766, so a
person with a TPA score within Interval 2 will probably get 0.0766 smaller
logit transformed I-PSS score than a person with TPA score in Interval
1. The lowest coefficient of the interval predictors is −0.435 and it is the
estimated coefficient of Interval 12. This implies that a person with a TPA
score within the highest interval will more likely have a 0.435 lower value of
the logit I-PSS compared to an individual with a TPA score lower than or
equal to 35.6 (Interval 1). We can also see from Table 6 that the estimated
coefficient of the variable age is 0.0382, which means that raising the age by
1 year will lead to an increase of the logit of I-PSS by 0.0382 units. In other
words, the older a person is, the more likely it is to get a higher I-PSS score.

Almost all p−values are smaller than 0.05, with Interval 2 as an excep-
tion, which means that the variables in the table give a significant result at
the 5% level. This implies that we cannot reject the hypothesis that the dif-
ference of the estimated coefficient of Interval 1 and Interval 2 is zero. The
results from the F-test tell us that the joint hypothesis that every coefficient
is all equal to zero can be rejected.

The overall results seem to show that total physical activity and age do
have some sort of effect on the I-PSS score. A weaker effect of total physical
activity on lower urinary tract symptoms can be seen when the explanatory
variable age is added to the regression model for TPA score in Interval 12
and activity score lower than Interval 8. On the other hand, the effect when
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TPA score is between Interval 8 and 11 gives lower values when the age
variable is included in the model.

3.7.3 Third model

Table 7 shows that the estimated coefficient of the variable TPA is approx-
imately 0.000, −0.0229, −0.0264,−0.0222 for p equal to 0.25, 0.5, 0.75 and
0.95 respectively of the third regression model. This means that increas-
ing the TPA by one unit, the logit of I-PSS will increase by a small value,
approximately zero, when p = 0.25 and the logit of I-PSS will decrease by
0.0229, 0.0264 and 0.0222 units in the model where p = 0.5, 0.75 and 0.95
respectively. TPA seems to not have an effect on I-PSS for the logistic quan-
tile regression model with lower quantiles, but starting somewhere between
p = 0.25 and p = 0.5 it seems to have a negative effect on LUTS. From
Figure 8 we see that the estimated coefficient of TPA starts to decrease
and becomes negative around p = 0.3 and 0.4, and the coefficient seems to
stay between −0.03 and −0.02 for the model where the quantile is greater
than the median. The estimated coefficient of the intercept is negative for
p = 0.25, 0.5, 0.75, while it gives a positive value when p = 0.95 (Figure 8
show that the coefficient gets positive around p = 0.8).

Every coefficient from Table 7 are significant at the 5% level, thus the
p−values are all strictly less than 0.05. This implies that the null hypothesis
that TPA does not have an effect on I-PSS can be rejected, in other words
TPA seems to affect I-PSS.

3.7.4 Fourth model

The results of the multiple regression model (see Table 8) tells us that the
logit of I-PSS score will decrease by 0.0291 when the TPA score increases
by one unit where p = 0.25, and the logit of I-PSS will decrease by 0.0268,
0.0233 and 0.0179 when we increase the TPA level by one unit where p =
0.5, 0.75 and 0.95 respectively. We can also see a positive trend between age
and the logit of I-PSS, so older men will more likely have moderate or severe
lower urinary tract symptoms (higher I-PSS score). It is shown in Table 8
that the estimated coefficient of age when p = 0.25 is 0.0325, which implies
that increasing the age by one year will lead to an increase in the logit of
I-PSS by 0.0325 units.

The p−values of all estimated coefficients are strictly smaller than 0.05,
which gives significant results. It is therefore very reasonable to assume that
both continuous explanatory variables TPA and age do have some effects on
the LUTS.

We also see that the effect TPA has on I-PSS is stronger when age is
excluded from the regression model when p = 0.75 or 0.95 and weaker when
p = 0.25 and 0.5.
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3.7.5 The model with the best fitted epsilon

The ε-value that gives the highest pseudo-R2 value:
From Table 9 we see that the ε-value with the highest pseudo-R2 for each
model is ε = 0.4999, which is approximately 0.5, so the results should not
differ much compared to our analyses with ε = 0.5.

The ε-value obtained by looking at the average of the absolute
differences of Q̂yi(p|ε):
The results from the average values of |Q̂yi(p|ε1− Q̂yi(p|ε2)| (shown in Table
10 and 11) are all smaller than 1 (ε ≥ 10−11 gives average values less than
1), which means that the values of Q̂(p|ε) are nearly the same no matter of
the choice of ε. It should therefore be appropriate to choose ε = 0.5 as we
did (in Model 1, 2, 3 and 4).

Siao et al. [27] chose the smallest ε1-value that satisfy∑n
i=1(|Q̂yi(p|ε1 − Q̂yi(p|ε2)|)

n
< 0.01,

for each ε1−value equals to and is greater than that ε1−value (e.g. if the
values of 1/n

∑n
i=1(|Q̂yi(p|ε1− Q̂yi(p|ε2)|) < 0.01 for each ε1 ≥ 0.001 and for

each quantiles, then we should choose ε = 0.001).
They used 0.01 because the outcome variable was a proportion between

0 and 1. Our response variable is bounded between 0-35, which is not
a proportion, we therefore check if the average values are smaller than 1
instead of 0.01. Let us interpret the results of the regression models when
ε is set to 10−11 (ε ≥ 10−11 gives values smaller than 1). The results of
the simple categorical regression model can be found in Table 14 in the
Appendix A2. We can see that higher TPA scores are associated with lower
I-PSS scores from the results. A male individual with TPA score within
Interval 2, 3, ..., 11 are assumed to have approximately 0.319 lower logit
I-PSS score than a man with a TPA score strictly lower than 35.7 (Interval
1). The table also shows that the logit I-PSS score will be almost 0.756
lower for a man with TPA score in Interval 12 compared to a male with a
TPA level within Interval 1. The coefficients show significance on the 5%
confidence level (with exception for Interval 11) and the F-test concludes
that the joint null hypothesis of no effect of TPA score can be rejected.

The results from the model where the variable age is included (Table 13
in Appendix) also seem to show that higher TPA lead to lower I-PSS values.

The continuous regression models (see Table 14 and Table 15) show that
increasing TPA lead to a decreasing I-PSS score.

The ε-value obtained visually:
Figure 10 in Appendix plots the logit of the I-PSS distribution against the
desired explanatory variable TPA. We see that ε-values around 0.4999 and 2
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give plots more similar to the original data and this is the reason why ε = 1
was used as we stated before.

The results of each regression model where we take ε = 1 are summarized
in Table 16, 17, 18 and 19. These show similar results as when ε was set to
0.5 and 10−11, in other words a negative relationship between higher TPA
score and I-PSS can be seen. The results do not really differ much for the
three different ε values we used.
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4 Discussion

In this thesis we have used logistic quantile regression in order to investigate
the effect total physical activity has on lower urinary tract symptoms. When
fitting the regression models to data, the results show (regardless if ε was
set to 10−11, 0.5 or 1) a negative trend between total physical activity and
International Prostate Symptom Score, I-PSS, which means that physical
inactivity seems to be related to a higher I-PSS score (more severe lower
urinary tract symptoms). It does not seem to matter which values of ε we
choose, as we stated in the interpretation section, the models fits for different
ε give similar results and the average of the absolute differences of Q̂yi(p|ε)
gave nearly the same values regardless of which ε we used.

4.1 Limitations

Orsini et al. [30] discussed some possible limitations, and one of them was
that the result might differ if those who did not answer to the questionnaires
would have answered. For example, those men who did not respond to the
survey might exercise more or less compared to those we observed, which
can lead to over- and underestimation of the total physical activity score.
They also discussed that the mean of MET is not an optimal measurement
for total physical activity, because the males in the survey are not assumed
to perform different physical activities.

Another limitation might be difficulties of measuring the exact total
physical activity. Especially when one of the questions in the questionnaire
asked the men about the usual number of hours spent on physical activities
when they were 30 years old, but it can be hard to remember that. Orsini et
al. [30] briefly discussed that these reported physical activity values might
therefore not be valid.

Our data consists of three variables, one of which is the response variable.
There are probably many other explanatory variables that might affect the
I-PSS. Some of these may have a confounding effect on the relation between
physical activity and I-PSS, for instance.

4.2 Possible future work

Future studies should take physical activity into consideration, because total
physical activity is shown to have some sort of negative effect on lower
urinary tract symptoms in our study and several other researches have also
seen a negative trend between physical activity and I-PSS [9, 25, 28, 30].
Thus, since it seems like higher physical activity is associated with having
milder symptoms, we should encourage both younger and older people to
exercise and be more physically active.
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4.3 Personal Considerations

We have a quite large sample, which leads to more accurate results. Another
strength is that we used logistic quantile regression in order to see how the
data behaves for different quantiles (see Figure 4). Thirdly, choosing ε = 0.5
was a good choice since two out of three methods showed that the value 0.5
gave better fits and more accurate results. The results of the method when
we calculated the average of the absolute differences of Q̂yi(p|ε) showed that
the Q̂yi(p|ε)-values was nearly the same for all the ε-values we tried, so this
implies that choosing ε = 0.5 will probably not change the regression results
much.

Figure 4: The simple OLS regression line (red) does not take the bounded
interval into account, thus when the TPA score is between 90 and 100, the
I-PSS score is assumed to be lower than 0. The predicted transformed values
of the logistic quantile regression lines (p = 0.25, 0.5, 0.75, 0.95) on the other
hand, approaches the lower limit (ymin=0) when TPA increases (they take
the bounded interval into account).

Predicted regression lines

As we stated in Section 4.1 Limitations, I-PSS might depend on some
other variables that we do not have data for, like genetic causes, biological
causes, different environmental conditions, different health conditions and
more.

We computed the F-statistics for OLS models, which may lead to biased
results. Another possibility is measurement errors in the observations due
to that some individuals were not honest when answering some question in
the survey.

29



5 References

[1] Agresti, A. (2002): Categorical Data Analysis(Second Edition). Hobo-
ken, New Jersey: Wiley-Interscience.

[2] Andrews., D.W.K., & Buchinsky, M. (2000): A Three-Step Method for
Choosing the Number of Bootstrap Repetitions. Econometrica, Volume
68, No. 1, 23-51.

[3] Andrology Australia (2014): Lower Urinary Tract Symptoms
(LUTS) in men. Available at: https://andrologyaustralia.org/

your-health/lower-urinary-tract-symptoms-luts-in-men/ [Ac-
cessed 12 Apr. 2018].

[4] Bottai, M., Cai, B., & McKeown, R.E. (2010): Logistic quantile regres-
sion for bounded outcomes. Statistics in Medicine, Volume 29, Issue 2,
309-317. DOI: 10.1002/sim.3781.

[5] Buchinsky, M. (1995): Estimating the asymptotic covariance matrix for
quantile regression models A Monte Carlo study. Journal of Economet-
rics, Volume 68, Issue 2, 303-338. DOI: 10.1016/0304-4076(94)01652-G.

[6] Cade, B.S., & Noon, B.R (2003): A gentle introduction to
quantile regression for ecologists. Frontiers in Ecology and the
Environment, Volume 1, Issue 8, 412–420. DOI: 10.1890/1540-
9295(2003)001[0412:AGITQR]2.0.CO;2.

[7] Chernick M.R. (2008): Bootstrap Methods: A Guide for Practition-
ers and Researchers(Second Edition). Hoboken, New Jersey: Wiley-
Interscience.

[8] Chernick, M.R., & Friis, R.H. (2003): Introductory Biostatistics for the
Health Sciences: Modern Applications Including Bootstrap. Hoboken,
New Jersey: Wiley-Interscience. ISBN 0-471-41137-X.

[9] Choo M. S., Han J.H., Shin T.Y., Ko K., Lee W.K., Cho S.T., Lee
S.K., & Lee S.H. (2015): Alcohol, Smoking, Physical Activity, Protein,
and Lower Urinary Tract Symptoms: Prospective Longitudinal Cohort.
International Neurourology Journal, Volume 19, Issue 3, 197–206. DOI:
10.5213/inj.2015.19.3.197.

[10] Columbu, S., & Bottai, M. (2016): Logistic Quantile Regression to
Model Cognitive Impairment in Sardinian Cancer Patients. In Topics
on Methodological and Applied Statistical Inference, Studies in Theo-
retical and Applied Statistics, Di Battista, T., Moreno E. & Racugno,
W. eds. Springer, Cham, Switzerland, 65-73. DOI: 10.1007/978-3-319-
44093-4 7.

30

https://andrologyaustralia.org/your-health/lower-urinary-tract-symptoms-luts-in-men/
https://andrologyaustralia.org/your-health/lower-urinary-tract-symptoms-luts-in-men/


[11] Davino, C., Furno, M., & Vistocco, D. (2013): Quantile Regression :
Theory and Applications. Wiley. ISBN 9781119975281.

[12] Efron, B. & Tibshirani, R.J. (1994): An introduction to the bootstrap.
New York: Chapman & Hall.

[13] Ernstg̊arda, L., & Bottai, M. (2011): Visual analogue scales: how can
we interpret them in experimental studies of irritation in the eyes, nose,
throat and airways? Journal of Applied Toxicology, Volume 32, Issue
10, 777-782. DOI: 10.1002/jat.1681.
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Appendixes

A1 Plots and a table

Plots

Figure 5: The tilted absolute value function (or loss function) can be seen
in the following plots. The second plot illustrate the tilted absolute value
function for four different quantiles (p = 0.25, 0.5, 0.75, 0.95).

The tilted absolute value function for quantile regression
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Figure 6: Plots of the coefficient behavior of each variable in our first model
over different quantiles (p). The black dots in the plots denote the esti-
mated coefficient of the specific variable (see the title of each plot) for the
following values of p: i/20 for i = 1, 2,...,19. We can also see a grey col-
ored shade around the approximate regression line (black dash-dotted curve)
which show the 95% confidence intervals of the coefficients. The red straight
line shows the corresponding OLS estimate of the regression coefficient and
the red dashed lines around the OLS estimate show the 95% confidence
interval.

34



Figure 7: The regression coefficients of the second model, where the variable
age is included in the categorical regression model, are shown. We have the
quantile p on the x-axis and the black dots show the estimated coefficient
of the variable for p = 0.05, 0.1, 0.15, ..., 0.95. The black lines between the
dots show the approximate regression line and the grey shades are the 95%
confidence intervals of the estimated regression coefficients. The red dashed
lines show the 95% confidence interval of the estimated OLS regression co-
efficients when OLS method is used instead of logistic quantile regression.
The red solid lines show us the estimated OLS regression coefficients of the
variables.
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Figure 8: Plots of the estimated coefficients of the intercept and the TPA
variable of the third model (h(yi) = βp,0 + βp,1xTPA + εi). The black dots
in the plots show the estimated coefficient of a certain variable (intercept
in one plot and effect of TPA in the other) for the following quantiles (p):
0.05, 0.1, 0.15,..., 0.95. An approximate regression line can be shown with
the black lines between the dots. The grey shades around the regression
line show the 95% confidence intervals of the regression coefficients. The
red lines illustrate the estimated OLS regression coefficients and their 95%
confidence intervals.
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Figure 9: Plots of the estimated coefficients of the variables: intercept, TPA
and age over different quantiles, for the fourth model. The grey parts show
the 95% confidence intervals of the estimated coefficients and the red lines
illustrate the estimated OLS regression coefficients and the 95% confidence
intervals of these coefficients.
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Figure 10: Different plots over the logit(IPSS) distribution against TPA for
all the ε values we tested to find the best fit. The first plot with ε = 0
corresponds to the original data of the logit(IPSS) distribution as function
of TPA.
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The average values of the absolute differences of Q̂yi(p|ε)

Table 11: The average values of |Q̂yi(p|ε1)− Q̂yi(p|ε2)|, where ε1 and ε2 are
two consecutive ε values. The first row shows the results of the average
value when ε1 = 10−11 and ε2 = 0.0001. The regression model we used
was h(yi) = βp,0 + βp,1xTPA + βp,2xAge + εi. Note that NA stands for non
available value in the last row. This is due to not having ε2-value when
ε1 = 5.

ε p = 0.25 p = 0.5 p = 0.75 p = 0.95

10ˆ(-11) 8.3369e-06 6.9578e-06 6.4128e-06 6.2909e-07
0.0001 3.3337e-05 2.7827e-05 2.5649e-05 2.5162e-06
0.0005 4.1649e-05 3.4774e-05 3.2055e-05 3.1450e-06
0.001 0.00033229 0.00027781 0.00025622 2.5150e-05
0.005 0.00041313 0.00034632 0.00031973 3.1411e-05
0.01 0.0032183 0.0025196 0.0018752 0.00025023
0.05 0.0023171 0.0019020 0.0025947 0.00018645
0.08 0.0015011 0.0017690 0.0014016 0.00012373
0.1 0.0070264 0.0065230 0.0041050 0.00061180
0.2 0.0063196 0.0060435 0.0042855 0.00060062
0.3 0.010912 0.011026 0.010026 0.0013419
0.4999 0.020546 0.021724 0.018067 0.0028356
1 0.019136 0.031081 0.029358 0.0047892
2 0.011339 0.019005 0.023112 0.0040606
3 0.010865 0.025957 0.033136 0.013225
5 NA NA NA NA
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A2 Results when ε = 10−11

Table 12: Estimates when ε = 10−11 for the model h(yi) = βp,0 +
βp,1xInterval2 + βp,2xInterval3 + ...+ βp,11xInterval12 + εi. The regression vari-
ables, estimated coefficients, standard errors, t−values, p−values and 95%
confidence intervals when p = 0.5 are shown. 1000 bootstrap replicates
were used to get the standard errors, p−values and confidence intervals.
We can also see the result of the F-test, where we test the joint hypothesis
(β0.5,1 = β0.5,2 = ... = β0.5,11 = 0).

p Variable Coeff SE t-value p-value 95% CI

Intercept -2.048 0.0285 -71.923 0.000 (-2.103, -1.992)
Interval 2 -0.319 0.0285 -11.220 0.000 (-0.375, -0.264)
Interval 3 -0.319 0.0285 -11.220 0.000 (-0.375, -0.264)
Interval 4 -0.319 0.0348 -9.179 0.000 (-0.388, -0.251)
Interval 5 -0.319 0.0285 -11.220 0.000 (-0.375, -0.264)

0.5 Interval 6 -0.319 0.0285 -11.220 0.000 (-0.375, -0.264)
Interval 7 -0.319 0.0285 -11.220 0.000 (-0.375, -0.264)
Interval 8 -0.319 0.0664 -4.814 0.000 (-0.449, -0.189)
Interval 9 -0.319 0.0397 -8.040 0.000 (-0.397, -0.242)
Interval 10 -0.319 0.131 -2.439 0.0147 (-0.576, -0.0627)
Interval 11 -0.319 0.171 -1.873 0.0611 (-0.654, 0.0148)
Interval 12 -0.756 0.0285 -26.542 0.000 (-0.811, -0.700)

F-test:
F-value 11.354 p−value: <2.2e-16

See Figure 11 on the next page for a better view of the estimated coefficients.
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Figure 11: Plots of the estimated coefficients of the intercept and the interval
variables (Interval 2, 3,..., 12) when ε = 10−11. The black dots in the plots
denote the estimated coefficient of the specific variable for the following
quantiles (p): i/20 where i = 1,2,...,19. The grey color depicts the 95%
confidence intervals of the coefficients, the red lines show the estimated OLS
regression coefficients and the red dashed lines correspond to 95% confidence
intervals of the estimated OLS coefficients.
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Table 13: Results of fitting the regression model h(yi) = βp,0+βp,1xInterval2+
βp,2xInterval3 + ... + βp,11xInterval12 + βp,12xAge + εi, where ε = 10−11. The
table lists the variables, estimated coefficients, standard errors, t−values,
p−values and 95% confidence intervals where p = 0.5, where 1000 bootstrap
replicates were used to obtain the standard errors, p−values and confidence
intervals . The result of the F-test, where we test the joint hypothesis
(β0.5,1 = β0.5,2 = ... = β0.5,11 = 0) is also shown.

p Variable Coeff SE t-value p-value 95% CI

Intercept -4.742 0.0867 -54.687 0.000 (-4.912, -4.572)
Interval 2 -0.0880 0.0569 -1.545 0.122 (-0.200, 0.0236)
Interval 3 -0.131 0.0526 -2.511 0.0121 (-0.235, -0.0289)
Interval 4 -0.172 0.0559 -3.082 0.00206 (-0.282, -0.0627)
Interval 5 -0.128 0.0581 -2.208 0.0272 (-0.242, -0.0144)

0.5 Interval 6 -0.264 0.0541 -4.876 0.000 (-0.370, -0.158)
Interval 7 -0.260 0.0525 -4.955 0.000 (-0.363, -0.157)
Interval 8 -0.348 0.0568 -6.130 0.000 (-0.460, -0.237)
Interval 9 -0.348 0.0584 -5.965 0.000 (-0.463, -0.234)
Interval 10 -0.392 0.0610 -6.428 0.000 (-0.512, -0.273)
Interval 11 -0.480 0.0619 -7.756 0.000 (-0.602, -0.359)
Interval 12 -0.484 0.0693 -6.980 0.000 (-0.620, -0.348)
Age 0.0440 0.00124 35.600 0.000 (0.0416, 0.0464)

F-test:
F-value 11.736 p−value: <2.2e-16

We can see Figure 12 on the next page to get a better picture of the
estimated coefficients over different quantiles.
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Figure 12: Plots of the estimated coefficients of the intercept, the interval
variables and the variable age when ε = 10−11. The black dots in the plots
show the estimated coefficient of the specific variable for the following quan-
tiles: i/20 where i = 1,2,...,19. The grey color depicts the 95% confidence
intervals of the coefficients, the red lines show the estimated OLS regres-
sion coefficients and the red dashed lines correspond to the 95% confidence
intervals of the estimated OLS coefficients.
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Table 14: Results of fitting the model h(yi) = βp,0 + βp,1xTPA + εi, where
ε = 10−11. The variables, estimated coefficients, bootstrapped standard
errors, t−values, p−values and 95% confidence intervals of four different
quantiles (0.25, 0.5, 0.75, 0.95) are shown. 1000 bootstrap replicates were
used to obtain the standard errors, p−values and confidence intervals.
p Variable Coeff SE t-value p-value 95% CI

0.25 Intercept -3.526 0.000 -2.611e+15 0.000 (-3.526, -3.526)
TPA 0.000 0.000 -1.286 0.199 (-1.051e-16, 2.183e-17)

0.5 Intercept -1.295 0.496 -2.611 0.00903 (-2.268, -0.323)
TPA -0.0269 0.0124 -2.169 0.0301 (-0.0513, -0.00259)

0.75 Intercept -0.255 0.107 -2.377 0.0174 (-0.466, -0.0449)
TPA -0.0279 0.00251 -11.105 0.000 (-0.0328, -0.0229)

0.95 Intercept 1.043 0.176 5.942 0.000 (0.699, 1.387)
TPA -0.0228 0.00441 -5.174 0.000 (-0.0315, -0.0142)

See Figure 13 below for a more complete picture of the estimated coef-
ficients over different quantiles.

Figure 13: The estimated coefficients of the variables intercept and TPA
over different quantiles when ε = 10−11 (the black dotted values are the
estimated regression coefficients, while the black lines between the dots show
an approximation of the regression coefficients in between). The grey color
in the plots shows the 95% confidence intervals of the coefficients. The red
lines on the other hand show the estimated OLS coefficients and their 95%
confidence intervals.
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Table 15: Results of fitting the model h(yi) = βp,0 + βp,1xTPA + βp,2xAge +
εi. We used ε = 10−11. 1000 bootstrap replications were used to get the
standard errors, p−values and 95% confidence intervals.
p Variable Coeff SE t-value p-value 95% CI

Intercept -4.481 0.165 -27.139 0.000 (-4.805, -4.157)
0.25 TPA -0.0389 0.00520 -7.487 0.000 (-0.0491, -0.0287)

Age 0.0435 0.00350 12.408 0.000 (0.0366, 0.0504)

Intercept -3.695 0.122 -30.384 0.000 (-3.933, -3.457)
0.5 TPA -0.0312 0.00277 -11.265 0.000 (-0.0366, -0.0258)

Age 0.0438 0.00127 34.471 0.000 (0.0413, 0.0462)

Intercept -3.017 0.115 -26.187 0.000 (-3.243, -2.792)
0.75 TPA -0.025 0.00205 -12.182 0.000 (-0.0291, -0.0210)

Age 0.0444 0.00118 37.616 0.000 (0.0421, 0.0467)

Intercept -1.824 0.191 -9.542 0.000 (-2.198, -1.449)
0.95 TPA -0.0185 0.00343 -5.391 0.000 (-0.0252, -0.0118)

Age 0.0435 0.00187 23.228 0.000 (0.0398, 0.0472)

The following figure (Figure 14) gives a more detailed picture of the
estimated coefficients.

Figure 14: The estimated coefficients of each variable over different quantiles
when ε = 10−11. The grey color in the plots shows the 95% confidence
intervals of the coefficients and the red lines on the other hand illustrate the
estimated OLS coefficients and their 95% confidence intervals.
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A3 Results when ε = 1

Table 16: Results of fitting the model h(yi) = βp,0 + βp,1xInterval2 +
βp,2xInterval3 + .. + βp,11xInterval12 + εi with ε = 1. 1000 bootstrap repli-
cates were used to compute the standard errors, p−values and confidence
intervals. We can also see the result of the F-test, where the joint hypothesis
(β0.5,1 = β0.5,2 = ... = β0.5,11 = 0) was tested.

p Variable Coeff SE t-value p-value 95% CI

Intercept -1.856 0.0226 -82.024 0.000 (-1.901, -1.812)
Interval 2 -0.254 0.0226 -11.220 0.000 (-0.298, -0.210)
Interval 3 -0.254 0.0226 -11.220 0.000 (-0.298, -0.210)
Interval 4 -0.254 0.0277 -9.179 0.000 (-0.308, -0.200)
Interval 5 -0.254 0.0226 -11.220 0.000 (-0.298, -0.210)

0.5 Interval 6 -0.254 0.0226 -11.220 0.000 (-0.298, -0.210)
Interval 7 -0.254 0.0226 -11.220 0.000 (-0.298, -0.210)
Interval 8 -0.254 0.0492 -5.164 0.000 (-0.350, -0.158)
Interval 9 -0.254 0.0303 -8.374 0.000 (-0.313, -0.194)
Interval 10 -0.254 0.0957 -2.654 0.00796 (-0.441, -0.0664)
Interval 11 -0.254 0.125 -2.039 0.0415 (-0.498, -0.00982)
Interval 12 -0.571 0.0226 -25.251 0.000 (-0.616, -0.527)

F-test:
F-value 18.067 p−value: <2.2e-16

Figure 15 on the next page gives a more detailed picture of the estimated
coefficients.

46



Figure 15: The estimated coefficients of each variable over different quantiles
when ε = 1. The grey color in the plots illustrates the 95% confidence
intervals of the coefficients and the red lines on the other hand illustrate the
estimated OLS coefficients and their 95% confidence intervals.
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Table 17: A summary of fitting the regression model h(yi) = βp,0 +
βp,1xInterval2 + βp,2xInterval3 + .. + βp,11xInterval12 + βp,12xAge + εi, with
ε = 1. The table lists the variables, estimated coefficients, standard er-
rors, t−values, p−values and 95% confidence intervals where p = 0.5, 1000
replicates were used to get the standard errors, p−values and confidence
intervals. The result of the F-test, where we test the joint hypothesis
(β0.5,1 = β0.5,2 = ... = β0.5,11 = 0) is also shown.

p Variable Coeff SE t-value p-value 95% CI

Intercept -3.907 0.0756 -51.653 0.000 (-4.055, -3.759)
Interval 2 -0.0672 0.0426 -1.578 0.115 (-0.151, 0.0163)
Interval 3 -0.103 0.0389 -2.653 0.00798 (-0.179, -0.0270)
Interval 4 -0.134 0.0413 -3.255 0.00113 (-0.215, -0.0535)
Interval 5 -0.101 0.0435 -2.317 0.0205 (-0.186, -0.0156)

0.5 Interval 6 -0.220 0.0414 -5.320 0.000 (-0.301, -0.139)
Interval 7 -0.202 0.0396 -5.0973 0.000 (-0.279, -0.124)
Interval 8 -0.269 0.0438 -6.145 0.000 (-0.355, -0.183)
Interval 9 -0.269 0.0432 -6.220 0.000 (-0.354, -0.184)
Interval 10 -0.302 0.0469 -6.454 0.000 (-0.394, -0.211)
Interval 11 -0.370 0.0469 -7.879 0.000 (-0.462, -0.278)
Interval 12 -0.388 0.0522 -7.435 0.000 (-0.491, -0.286)
Age 0.0336 0.00115 29.217 0.000 (0.0314, 0.0359)

F-test:
F-value 18.08 p−value: <2.2e-16

See Figure 15 on the next page for a more complete picture of the esti-
mated coefficients over different quantiles.
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Figure 16: The estimated coefficients of each variable over different quantiles
when ε = 1. The grey color in the plots shows the 95% confidence intervals
of the coefficients. The red lines on the other hand show the estimated OLS
coefficients and their 95% confidence intervals.
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Table 18: Summary of fitting the model h(yi) = βp,0 +βp,1xTPA + εi, where
ε = 1. The variables, estimated coefficients, bootstrapped standard errors,
t−values, p−values and 95% confidence intervals of four different quantiles
(0.25, 0.5, 0.75, 0.95) are shown in the table. We used 1000 bootstrap repli-
cates to obtain the standard errors, p−values and confidence intervals.
p Variable Coeff SE t-value p-value 95% CI

0.25 Intercept -2.862 0.000 -8.874e+15 0.000 (-2.862, -2.862)
TPA 0.000 0.000 -3.169 1.530e-03 (-2.937e-17, -6.924e-18)

0.5 Intercept -1.318 0.362 -3.646 0.00027 (-2.027, -0.610)
TPA -0.0199 0.00905 -2.193 0.0283 (-0.0376, -0.00211)

0.75 Intercept -0.273 0.0958 -2.853 0.00434 (-0.461, -0.0855)
TPA -0.0250 0.00223 -11.228 0.000 (-0.0294, -0.0206)

0.95 Intercept 0.986 0.166 5.944 0.000 (0.661, 1.311)
TPA -0.0216 0.00417 -5.175 0.000 (-0.0297, -0.0134)

Figure 17 below plots the estimated coefficients over different quantiles.

Figure 17: Illustration of the estimated regression coefficients of the intercept
in the first plot and the estimated regression coefficients of the explanatory
variable TPA in the second plot for different quantile values. Here we use
ε = 1. The grey color depicts the 95% confidence intervals of the coefficients,
the red lines show the estimated OLS regression coefficients and the red
dashed lines correspond to 95% confidence intervals of the estimated OLS
coefficients.
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Table 19: Results for the model h(yi) = βp,0 +βp,1xTPA+βp,2xAge+ εi with
ε = 1. The standard errors, p−values and 95% confidence intervals were
obtained by 1000 bootstrap replicates.
p Variable Coeff SE t-value p-value 95% CI

Intercept -3.433 0.0978 -35.094 0.000 (-3.625, -3.241)
0.25 TPA -0.0235 0.00237 -9.919 0.000 (-0.0281, -0.0189)

Age 0.0262 0.00176 14.851 0.000 (0.0227, 0.0296)

Intercept -3.134 0.0866 -36.213 0.000 (-3.304, -2.965)
0.5 TPA -0.0237 0.00172 -13.766 0.000 (-0.0271, -0.0203)

Age 0.0338 0.00096 35.182 0.000 (0.0319, 0.0356)

Intercept -2.736 0.101 -27.088 0.000 (-2.934, -2.538)
0.75 TPA -0.0223 0.00182 -12.245 0.000 (-0.0259, -0.0187)

Age 0.0396 0.00105 37.882 0.000 (0.0375, 0.0416)

Intercept -1.725 0.184 -9.374 0.000 (-2.086, -1.364)
0.95 TPA -0.0173 0.00315 -5.487 0.000 (-0.0235, -0.0111)

Age 0.0410 0.00180 22.771 0.000 (0.0375, 0.0445)

Figure 18 below gives a more complete picture of the estimated coeffi-
cients over different quantiles.

Figure 18: Plots of the estimated coefficients of the intercept, TPA and age
over different quantiles when ε = 1. The grey color in the plots shows the
95% confidence intervals of the coefficients. The red lines on the other hand
illustrate the estimated OLS coefficients and their 95% confidence intervals.
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Abbreviations

Table 20: Some abbreviations used in the thesis
I-PSS (sometimes IPSS in figures and tables) International Prostate Symptom Score

LUTS Lower urinary tract symptoms

TPA (sometimes tpa in figures) Total physical activity
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