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Abstract

In this thesis we present geometric rates in survival analysis and

two different types of regression models to estimate them: quantile

regression and generalized linear models. With the latter we esti-

mated the instantaneous geometric rate and the instantaneous geo-

metric odds models. We used data from a Swedish prospective cohort

study among patients at Intensive Care Units to fit an instantaneous

geometric odds model to estimate the risk of death within different

renal disease groups. From this we observed that the risk of death

was at the highest in the beginning of the study. The risk of death

is approximately the same for all of the patients with different renal

diseases except for the patients with acute-on-chronic kidney disease

who had the highest risk of death.
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Sammanfattning

I denna uppsats introducerar vi geometriska intensiteten för överlevnadsanalys
och tv̊a olika typer av regressions modeller för att estimera dem. Det första tillvägag̊angssättet
är att använda sig av kvantilregression. Ett annat sätt att estimera geometriska in-
tensiteten är med hjälp av generaliserade lineära modeller. Med denna metod f̊ar
vi momentana geometriska intensitet och momentana geometrisk odds-modellerna.
Vi använder data fr̊an en svensk prospektiv kohortstudie bland patienter p̊a akuten
och anpassar en momentan geometrisk odds modell för att estimera risken att dö
för patienter med olika njursjukdomar. Fr̊an detta s̊ag vi att risken att dö är högst
i början av studien. Risken att dö var ungefär samma för alla patientier med oli-
ka njursjukdomar förutom dem patienterna med akut-p̊a-kronisk njursjukdom som
hade den högsta risken att dö.
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1 Introduction

In this paper we use data from a study at Karolinska Institutet, which is prospectively
collected from the Swedish intensive care registry and other registries [13]. The study
concluded 103 363 adult patients and we have randomly extracted 2000 of them. With
predictors such as age and survival time, we fit an instantaneous geometric odds model
and illustrate how the geometric rates change over time.

1.1 Background

The survival time is the time from the first observation to the event of interest. The
probability for an individual to survive beyond time t is the survival function S(t),
which is often given as the proportion of the observations that have not failed at time t
of the total amount of observations. The difference between analysis of survival data and
other types of data is that the survival data does not include the time to failure for all
observations. The individuals that do not fail before the study ends are called censored
observations [12]. One application of this is for example studying time to death: some
of the individuals included in the study will be alive when the study ends, so called
censored observations. Survival functions are very popular to use in medical research
when estimating time to some event.

The Kaplan-Meier method is a common non-parametric way of estimating the sur-
vival function. This method is based on calculating the probability of event A, the
individual has not failed at time t, and event B, the individual will survive at time t+1.
Therefore the multiplicative rule of probability is used to calculate the Kaplan-Meier
curve; P (A∩B) = P (A)P (B|A). The advantage with the Kaplan-Meier method is that
it only includes the times at which the failure occurs, not the time points in between
[12].

Another popular way to model risk of failure/time to an event is the hazard function.
This is the risk per unit of time that the event occurs at time t given that it has not
occurred before that, for instance the risk rate to die at time t given that the individual is
alive at time t. Therefore, the hazard function gives the instantaneous death rate for an
individual that has survived to time t. The hazard function is defined as h(t) = f(t)/S(t),
where f(t) is the density function of the life length [6].

1.1.1 Geometric rates

Geometric rates are often used in economic development and demography when calculat-
ing the compound annual growth rate of wealth and population, respectively. However,
this method is not common in survival analysis. The following are some examples from
studies where the geometric rate was used to calculate the growth rate.

The compound annual growth rate was used when studying the growth of online
learning [2]. The research group studied the growth in students taking at least one online
course in higher education institutes in the U.S between 2002 and 2006. For the largest
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institutions the compounding annual growth rate was (1 387 982/586 122)1/4−1 ≈ 24.1%.
This means that the number of students on average increased by 24.1% every year.

In another research report [14], the investigators studied the effect of financial inclu-
sion programs on poor households in India in 2007-2012. The research included gender
dimension and studied the difference between households represented by females and
males. The compound annual growth rate was used when calculating the annual growth
rate of income. The result was that the annual percentage change on income for females
due to the effect of the financial inclusion programs was (15 023/10 179)1/5−1 ≈ 8.10%.
The corresponding percentage for males was (19 128/15 271)1/5− 1 ≈ 4.61%. The effect
of the financial inclusion program was therefore almost twice as large for women than
for men.

1.1.2 Incidence rates

The incidence rate is defined as the number of events divided by the person-time which
is the sum of the observation times.

For example, in [3] incidence rates were used to estimate risk of heart failure in
person-years. The incidence rate of heart failure was obtained by dividing the number
of cases of incident heart failure by the sum of person-years of the individuals in the
study that did not have heart failure previously. The incidence rate of heart failure was
calculated for different age categories every five-year interval. The incidence rate for
individuals of age 55-59 years was 4/2 888.6 ≈ 0.0014 per person-year. The incidence
rate for persons of age 90 or higher was 86/1 813.5 ≈ 0.0474 per person-year. This
implies that the risk of heart failure is approximately 34 times higher for the latter
group than for the first.

The incidence rate was also used in another study [15] to estimate the risk of gas-
trointestinal stromal tumors. The incidence rates were age-adjusted which means that
it was weighted according to the proportions of individuals in the respective age groups.
The overall age-adjusted incidence rate between 1992-2000 was 0.68 per 100 000 person-
years. The incidence rate for white people was 0.60 per 100 000 person-years which is a
bit lower than the overall. For black people the incidence rate was higher than the over-
all, 1.16 per 100 000 person-years. The results suggest that the risk of gastrointestinal
stromal tumor is approximately 93% higher for black persons than for white.

It is important to notice that the incidence rate and the geometric rate are not the
same and should not be interpreted as such. This follows from the definition of these
two concepts. For instance, for the time variabel T ∼ exp(λ) the survival function is
S(t) = exp(−λt), from this it follows that the geometric rate will be 1 − exp(−λ) ,
whereas the incidence rate λ. [4]

1.2 Outline

In Section 2, we introduce the geometric rates in survival analysis and give an overview
of the theory behind the geometric rates. We also discuss about the software used in this
thesis. We present our data and state our research question in Section 3. In addition,
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we fit several instantaneous geometric odds models to the data and choose the one with
the best fit by the lowest AIC score. The instantaneous geometric rates for the different
renal diseases are also illustrated in this section. In Section 4, we discuss our results and
future work. The link programs to calculate the log and logit link functions and their
derivatives are presented in Appendix A 6. Furthermore, the complete summaries of the
instantaneous geometric odds models, obtained in Section 3, are shown in Appendix B
7.
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2 Method

2.1 Geometric rates

In this section we introduce the theory of instantaneous geometric rates and how they
can be estimated with generalized linear models. Moreover, we give a short summary of
the theory behind the instantaneous geometric rates.

2.1.1 Generalized linear models

According to [1], generalized linear models are often preferable when the outcome vari-
able is not normally distributed. These models are identified by three main components:
a random component, a systematic component and a link function.

The random component specifies the outcome variable, Y , with independent obser-
vations, (y1, ..., yN ) and their distribution. The probability density function or mass
function for the outcome from a distribution that belongs to the natural exponential
family is

f(yi; θi) = a(θi)b(yi) exp(yiQ(θi))

where Q(θi) is the natural parameter and the value of parameter θi varies for i = 1, ..., N .
The systematic component specifies the predictor variables in the model. The linear

predictor can be written as

ηi =

k∑
j=0

βjxij ,

where xij is the value of predictor j for observation i and normally xij is 1 for the
intercept, β0.

The link function describes the interaction between the linear predictor and the
mean of the outcome variable. Let µi = E(Yi) be the mean of the outcome variable. The
systematic component ηi is linked to the mean by ηi = g(µi). Hence

g(µi) =

k∑
j=0

βjxij ,

for i = 1, ..., N .
The canonical link is a link function that transforms the mean to the natural param-

eter. For some regression models the canonical link function is the logit function, given
by

Q(θ) = log

(
θ

1− θ

)
.

This is because the natural parameter is the log odds for a binary Bernoulli variable
with expected value θ. This is the logit of θ. Regression models that use a canonical
logit link are called logistic regression models.
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When the outcome is binary, we also denote the mean of the outcome variable’s
distribution as E(Y ) = P (Y = 1) = π(x). The regression model for this type of
outcome, the logistic regression model, is then given by

π(x) =
exp(β0 +

∑
j βjxij)

1 + exp(β0 +
∑

j βjxij)
,

where j = 1, ..., k and i = 1, ..., N . As mentioned above, the canonical link for this type
of model is the logit link.

The systematic component can be generalized as

ηi = g(µi) =
∑
j

sj(xij), (1)

where sj(·) is a smooth function of covariate j.

2.1.2 Restricted cubic splines

Restricted cubic splines are widely used in survival analysis to estimate the smooth
functions in (1) [8]. The restricted cubic splines with k knots, t1 < ... < tk, are defined
as:

C(u) = β0 + β1u+

k−2∑
j=1

θjCj(u),

where C1(u)...Ck−2(u) are cubic terms. These are given by

Cj(u) = max(0, u− tj)3 − max(0, (u− tk−1)3)(tk − tj)
(tk − tk−1)

+
max(0, (u− tk)3)(tk−1 − tj)

(tk − tk−1)
,

for j = 1, ..., k − 2.
The restricted cubic splines have continuous first and second derivatives. They are

also linear in the tails for u < t1 and u > tk. The restricted cubic spline is a linear
function with respect to the parameters β0, β1, θj [8].

The number of knots and their positions have to be defined. Usually for survival data
the recommended number of knots is three to five. For a covariate with range 0 to 100,
the common locations for the knots are at {5, 50, 95}, {5, 25, 75, 95} and {5, 25, 50, 75, 95}
percentiles for 3,4 and 5 knots respectively. According to [8], using these quantiles is
recommended because it makes the data analysis more objective and comparable.

2.1.3 Quantile regression

In a typical regression model we want to estimate rates of change in the mean of the
response variable distribution. The idea of quantile regression is to fit regression curves
to different quantiles of this distribution. Quantile regression describes more completely
the relationship between predictor variables, especially when the variances are heteroge-
neous. This is when predictor variables cause a change in the mean as well as a change
in the variance of the distribution of the response variable [5].
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Figure 1: Quantile regression ρ function. Figure from [9] p.6

As stated in [9], the random variable, X, is described by its probability distribution
F (x) = P (X ≤ x) and the pth quantile of X is given by

F−1(p) = inf{x : F (x) ≥ p}

for 0 < p < 1. The median of the distribution of X is F−1(1/2). The quantiles are
derived from the following optimization problem: assume that a loss function is given
by

ρp(u) = u(p− I(u < 0))

for 0 < p < 1, it is then of interest to find a value x̂ that minimizes the loss. The loss
function is shown in Figure 1. This implies that the following expectation is minimized

E[ρp(X − x̂)] = (p− 1)

∫ x̂

−∞
(x− x̂)dF (x) + p

∫ ∞
x̂

(x− x̂)dF (x). (2)

After differentiating (2) with respect to x̂, we have

0 = (1− p)
∫ x̂

−∞
dF (x)− p

∫ ∞
x̂

dF (x) = F (x̂)− p.

It is known that F (x) is monotone and thus the solution is given by any element of
{x : F (x) = p}. In order to obtain a unique solution put x̂ = F−1(p), otherwise the
solution is the interval of the pth quantile.

The optimization problem gives rise to solutions for more general problems. The
sample mean solves the following equation

minµ

n∑
i=1

(yi − µ)2.

When the conditional mean E(Y |x) is expressed as µ(x) = x′β, the parameter β can be
estimated with

minβ

n∑
i=1

(yi − x′iβ)2,
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where xi = (xi1, . . . , xip)
T . Analogously, the pth quantile, α(p) solves the minimization

problem

minα

n∑
i=1

ρp(yi − α).

Hence, the pth conditional quantile function is defined as Qy(p|x) = x′β(p) and in order
to estimate β(p) the quantile regression problem is formulated as

minβ

n∑
i=1

ρp(yi − x′iβ). (3)

The solution to the quantile regression problem in (3) is referred to as the regression
quantile β̂(p).

For instance, a linear regression model for a sample with one covariate and indepen-
dent and identically distributed errors is

yi = β0 + xiβ1 + ui.

The quantile functions yi are

Qy(p|x) = β0 + xiβ1 + F−1
u (p),

where Fu is the distribution function of the errors.

2.1.4 Quantile regression for geometric rates

As suggested in [4], let T be a continuous time variable on the positive real line. The
geometric rate over the time interval (0, t) is

g(0, t) = 1− S(t)1/t (4)

where S(t) is the survival function of T . We can interpret the geometric rate as the
average probability of the event in interest per unit of time over the time interval (0, t).

If the proportion of events that occurs in time t ∈ (0,∞) is p ∈ (0, 1), then p =
P (T ≤ t) = 1− S(t). The geometric rate over the proportion interval (0, p) is then

g(0, p) = 1− (1− p)1/Q(p)

where Q(p) = t is the quantile function of T . The interpretation of this is similar to
the interpretation of (4), but instead of time interval we obtain the geometric rate as a
function of the quantile p.

When p is fixed, the function 1 − (1 − p)1/t is monotonically decreasing in t for
t > 0. This implies that g(0, p) is the (1− p) -quantile of the transformed time variable
T ∗ = 1− (1− p)1/T , i.e.

P (T ∗ ≤ g(0, p)) = 1− p. (5)
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Let βp ∈ Rk be a vector of regression coefficients and x ∈ Rk a set of predictor
variables. The conditional geometric rate is

g(0, p|x) = x′βp.

By estimating the (1− p)-quantile of the transformed time variable T ∗i = 1− (1− p)1/Ti

with ordinary quantile regression, we can estimate the regression coefficients, given the
observations ti (of Ti) and xi, i = 1, ..., n. The components of the coefficient vector
βp can be interpreted as the change in the geometric rate for one-unit increase in the
corresponding components of the predictor variables, x. This interpretation is analogous
to interpretation of the regression coefficient for other regression methods.

It might be of interest to model the coefficient differences between two sets of co-
variates x0 and x1 or the rate ratios between the covariates. The first is easily obtained
by

g(0, p|x1)− g(0, p|x0) = (x1 − x0)′βp.

Suppose that log(g(0, p|x)) = x′γp for a vector γp ∈ Rk. Then the rate ratio is given by

g(0, p|x1)

g(0, p|x0)
= exp[(x1 − x0)′γp].

Similarly to the equation (5) the transformation of the time variable log[1− (1− p)1/t]
is monotonically decreasing in t for t > 0. The coefficient vector γp can therefore be
estimated by estimating the (1− p)-quantile of T ∗i = log[1− (1− p)1/Ti ] for i = 1, . . . , n.
[4]

2.1.5 Instantaneous geometric rates

The geometric rate between two different times t1 and t2, 0 < t1 < t2 < +∞ is

g(t1, t2) = 1−
(
S(t2)

S(t1)

) 1
t2−t1

where S(t1) and S(t2) are evaluations of the survival function at time points t1 and t2.
The instantaneous geometric rate is the geometric rate over decreasing time intervals

(t, t+ ∆t). This is given by

g(t) = lim
∆t→0+

[
1−

(
S(t+ ∆t)

S(t)

)1/∆t
]

= lim
∆t→0+

[
1− exp

(
logS(t+ ∆t)− logS(t)

∆t

)]
= 1− exp

(
∂ logS(t)

∂t

)
= 1− exp

(
−f(t)

S(t)

)
= 1− exp(−h(t))

(6)
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where f(t) is the probability function of T and h(t) ≡ f(t)/S(t) the hazard function.
The instantaneous geometric rate in (6) corresponds to the instantaneous probability of
the event of interest per unit of time. [7]

2.1.6 Instantaneous geometric rates as GLM

As suggested in [7] the instantaneous geometric rate can be estimated via generalized
linear models by using non-standard link functions. Two models are presented in [7]:
the proportional instantaneous geometric rate model and the proportional instantaneous
geometric odds model.

Let ti, i = 1, ..., n be n possibly censored observations of the time variable and di be
the event indicator, where di takes value 0 for a censored observation and 1 for an event.
Furthermore, let xi = (x1i, ..., xqi)

′ be a vector of predictor variables and β = (β1, ..., βq)
′

be an unknown parameter vector. The proportional instantaneous geometric rate model
is then given by

gi(t|xi) = g0(t) exp(x′iβ). (7)

Taking the logarithm of (7), the following is obtained

log(gi(t|xi)) = log(g0(t)) + x′iβ. (8)

By taking the logarithm of the instantaneous geometric rate in (6), we obtain

log[1− exp(−hi(t))|xi] = s(t; γ) + x′iβ, (9)

where s(t; γ) is a smooth parametric function dependig on a vector of unknown param-
eters γ = (γ1, ..., γr)

′.
By dividing each individual’s follow-up into intervals, the baseline log instantaneous

geometric rate via smooth function s(t; γ) can be modelled with cubic splines based on
r knots. Let then tij be the length of the jth time interval, the time at risk, of the ith
individual. In addition, let dij be the event indicator, where dij = 1 if the event occurs
for individual i in interval j and dij = 0 otherwise.

According to [7], from equation (9) the following link function, l(·), is obtained

ηij ≡ l(µij) = log

[
1− exp

(
−µij
tij

)]
, (10)

where µij is the expected value of dij , which is assumed to belong to a distribution
from the exponential family. After some calculations the following derivatives of (10)
are obtained

µ = l−1(η) = −t log(− exp(η) + 1),
∂µ/∂η = t exp(η)(− exp(η) + 1)−1,

∂2µ/∂η2 = t exp(η)(exp(η)− 1)−2.
(11)

Moreover, the proportional instantaneous geometric odds model is introduced in [7].
It is given by

gi(t|xi)
1− gi(t|xi)

=
g0(t)

1− g0(t)
exp(x′iβ). (12)
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This can be written as equation (9) by taking the logit of (6)

logit[1− exp(−hi(t))|xi] = s(t; γ) + x′iβ. (13)

From (13), the second nonstandard link function is obtained

ηij ≡ l(µij) = logit

[
1− exp

(
−µij
tij

)]
. (14)

Similarly, after some calculations the following derivatives for the link function are ob-
tained

µ = l−1(η) = t log(1 + exp(η)),
∂µ/∂η = t exp(η)(1 + exp(η))−1,

∂2µ/∂η2 = t exp(η)(1 + exp(η))−2.
(15)

The difference between (7) and (12) is that in the first equation the estimated ex-
ponentiated coefficients can be interpreted as the instantaneous geometric rate ratios.
In (12) the exponentiated coefficients can be interpreted as the instantaneous geometric
odds ratios. [7]

2.2 Software

We perform our data analysis with Stata software that is commonly used in medical
statistics. The build-in commands such as stset, glm and predict are used in the data
analysis. In addition we use two user-written programs, rcsgen and logit igr. The first
one [10] is used to generate the restricted cubic splines for the survival time distribution.
The latter, presented in Section 6, is used to calculate the logit link function and its
derivatives for the instantaneous geometric odds model. The purpose of the program is
to calculate the derivatives of the link function fast and effectively. The link function for
the instantaneous geometric rate model is also presented in Section 6. The derivatives
of the link functions are calculated in equations (11) and (15).
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3 Data analysis

In this section we describe some applications of the instantaneous geometric odds model
to estimate the risk of death. We used data from a cohort study [13] at Karolinska
Institute. The purpose of that research was to study long-term mortality and end-stage
renal disease incidence in patients with and without chronic kidney disease.

3.1 The research question

We want to estimate the risk of death within different renal disease groups with age,
sex and observation time as covariates. Our main interest is to study if there are any
differences in the odds of death between the groups and how the odds of death fluctuates
with time.

3.2 Description of data

The data was prospectively collected from Swedish Intensive Care registry, SIR, and
other Swedish national health registries such as the Swedish cause of death register and
the national patient register. The Swedish renal register was used to collect data on
individuals with end-stage renal disease before and after the Intensive Care Unit (ICU)
admission. The observations are from January 1, 2005 to December, 31 2011 meaning
that the total follow-up time is 7 years. The study included all first ICU admissions of
patients older than 18 years. The researchers excluded patients that miss disease severity
scores, intervention codes and diagnosis codes for acute kidney injury. The total amount
of patients included in the study was 103 363. The Swedish personal identification
number was used to identify the patients in the different registries. [13]

We have randomly extracted 2000 observations from this study. There are five vari-
ables in our data set where the binary outcome variable is death. The outcome variable
follows a Poisson distribution.

The first three variables are age, sex, and the number of days the patients were
observed until death or censoring. The covariate age is continuous and it obtains values
within a range between 18 and 98 years. The binary predictor variable sex obtains value
1 when the patient is a female and 0 for a male. The maximum days of observation or
censoring is 2 454, which is approximately 6 years and 9 months.

The fourth variable is a categorical variable with five levels. The different levels
in this variable determine the disease of the patient. The first level is acute kidney
injury, AKI, with 111 observations. The second level is only chronic kidney disease and
it includes 53 observations. The third level has the smallest amount of observations,
22, and it includes patients with acute-on-chronic kidney disease, AOC. End-stage renal
disease, ESRD, is the fourth level with 25 observations. The patients with no renal
disease belong to the last level and it consists of 1789 observations. The fifth level is
used as control and is the reference level of the categorical variable in our analysis.
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3.3 Analysis and results

We start by preparing the data set for our analysis. First we declare the data set as
survival data and set death as the failure event. Because we are interested in the risk of
death yearly, not daily, we transform the survival times from days to years. We split the
follow-up time of each patient into intervals with length of one week. Then we generate
a new variable that is the time at risk within each interval. We proceed by generating
the restricted cubic splines for the observed survival times with 4 knots. The knots are
placed at the minimum, maximum, 33th percentile and 67th percentile of the survival
times’ distribution. This generates three new variables that we call RCS1, RCS2 and
RCS3 in our analysis. These are the first, second and third quantiles of the survival time
distribution, respectively.

We are interested in finding a suitable instantaneous geometric odds model to our
data with generalized linear models and therefore we use the logit igr link function,
that was introduced in section 2.2.

The first model, Model 1, includes only the categorical variable renalgroup where the
group with no renal disease is the reference level. The parameter estimates, confidence
intervals and Akaike’s Information Criterion (AIC) of the model are shown in Table
1. Complete summaries of the results are found in Section 7. As expected all of the
coefficients for the different levels in the categorical variable are positive meaning that
the odds of death is higher for the patients with a renal disease compared with those
with no renal disease. The highest risk of death is for patients having acute-on-chronic
kidney disease. The odds ratio for this group is exp(2.245) ≈ 9.4 which indicates that
the odds of death is 9.4 times higher for patients with acute-on-chronic kidney disease
than for patients with no renal disease. The AIC for this model is 11076.3.

Next, in Model 2, we add the restricted cubic spline terms RCS1, RCS2 and RCS3
to Model 1. The coefficient estimates for the restricted cubic spline terms are difficult
to interpret. We notice that the coefficient estimates for the renal diseases, except for
only chronic kidney disease, are slightly smaller in this model than in the first model;
the effect they have on the outcome variable has decreased. As in the first model, all of
the coefficient estimates are significant despite the ESRD. The second model gives a bit
better fit to the data due to the smaller AIC.
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Model 1 Model 2 Model 3 Model 4 Model 5

AKI 1.188∗∗∗ 0.984∗∗∗ 0.991∗∗∗ 0.578∗∗ 0.573∗∗

[0.855,1.522] [0.580,1.388] [0.585,1.398] [0.155,1.001] [0.148,0.998]

Chronic only 1.337∗∗∗ 1.504∗∗∗ 1.511∗∗∗ 0.726∗ 0.718∗

[0.895,1.778] [0.953,2.055] [0.960,2.062] [0.147,1.305] [0.138,1.298]

Acute-on-chronic 2.245∗∗∗ 1.674∗∗∗ 1.691∗∗∗ 1.554∗∗ 1.541∗∗

[1.392,3.099] [0.788,2.560] [0.803,2.579] [0.596,2.512] [0.577,2.504]

ESRD 0.611 0.555 0.576 0.779 0.770
[-0.0284,1.250] [-0.192,1.301] [-0.175,1.328] [-0.0227,1.581] [-0.0301,1.571]

RCS1 -26.06∗∗∗ -26.08∗∗∗ -26.65∗∗∗ -26.65∗∗∗

[-28.52,-23.61] [-28.53,-23.63] [-29.24,-24.07] [-29.23,-24.07]

RCS2 -694.4∗∗∗ -694.8∗∗∗ -709.7∗∗∗ -709.5∗∗∗

[-766.4,-622.3] [-766.7,-622.8] [-785.2,-634.1] [-785.1,-634.0]

RCS3 22.28∗∗∗ 22.29∗∗∗ 22.76∗∗∗ 22.76∗∗∗

[19.93,24.63] [19.94,24.64] [20.30,25.22] [20.30,25.22]

Sex 0.0764 -0.0520
[-0.133,0.286] [-0.273,0.169]

Age 0.0615∗∗∗ 0.0617∗∗∗

[0.0540,0.0691] [0.0541,0.0694]

Constant -1.618∗∗∗ 2.782∗∗∗ 2.752∗∗∗ -1.016∗∗∗ -1.008∗∗∗

[-1.705,-1.531] [2.492,3.073] [2.447,3.056] [-1.516,-0.515] [-1.512,-0.504]

N 188399 188399 188399 188399 188399
AIC 11076.3 9705.7 9707.2 9351.1 9352.9

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

AKI Acute Kidney Injury ESRD End-stage renal disease

Table 1: Summary of parameter estimates, confidence intervals and values of Akaike’s Informa-
tion Criterion (AIC) for five different instantaneous geometric odds ratio models
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Model 3 includes also the sex of the patient as a covariate. However, we see from Table
1 that the coefficient estimate for this covariate is not significant. The odds ratio for sex
is approximately 1.08 implying that the odds of death is 8% higher for a female patient
than for a male. The 95% confidence interval for the odds ratio is (0.88, 1.33). When
the confidence interval includes 1, there is no significance at the 5% significance level,
so we cannot be sure of the effect the covariate has on the outcome and the estimated
effect is also very small. In this model the coefficient estimates are very close to the ones
in Model 2. AIC is higher in this model compared to Model 2, 9707.2 respective 9705.7.
We therefore conclude that Model 3 fits the data worse than Model 2.

In the fourth model we add age as a predictor variable to Model 2. We notice from
Table 1 that the coefficient estimate for the predictor variable age is significant and the
odds ratio is approximately 1.06 meaning that the odds of death rises by 6% as the age
increases. All the other coefficient estimates are significant in this model except from
ESRD. The odds ratio for ESRD is 2.18 and the 95% confidence interval is (0.98, 4.86).
Because the confidence interval includes 1, the effect the covariate has on the outcome
is not significant at the 5% level. The coefficient estimate for AKI is 0.578 which implies
that the odds ratio is 1.78. This suggests that the odds of death is 78% higher for a
patient with acute kidney injury than for a patient with no renal disease. AIC of this
model is the smallest so far, 9351.1.

Model 5 is the saturated model that includes all predictor variables. The coefficient
estimate for the covariate sex is negative, signaling that the risk of death is higher for
men than for women. In fact, the odds ratio is 0.94 which implies that the risk of death
decreases by 6% if the patient is a female. This is the opposite effect compared to Model
3. However, the 95% confidence interval for this odds ratio is (0.76, 1.18) which includes
1 and therefore the effect of the covariate is insignificant and small. AIC for this model
is 9352.9 which is higher than for Model 4. Thus we choose Model 4.

In order to illustrate the instantaneous geometric odds for the different renal diseases,
we calculate the linear prediction of the link function. Age has to be set to a fixed value,
otherwise we obtain the instantaneous geometric odds for all ages, which makes the
outcome difficult to interpret. We start with the average age, which is 59, and obtain
Figure 2.

We notice from Figure 2 that the odds of death for all groups is at the highest in the
beginning of the study and then it decreases drastically during the first half year. After
the odds reach their minimum at around six months from the study begin, they start to
increase modestly. Although after three years the odds of death starts to decrease again.
The odds of death is highest for those who have acute-on-chronic renal disease. For the
other renal diseases the risk of death is approximately the same and not surprisingly, it
is the lowest for the patients without any renal disease.

Figures 3 and 4 show the instantaneous geometric odds for patients of ages 22 and
84 respectively, which are the 5th and 95th percentiles of the age’s distribution. Notice
that the curves for the instantaneous geometric odds shift upwards when the patients
get older and downwards for the younger patients. The shift is very intuitive and is
explained by the positive effect age has on the outcome. For instance, the instantaneous
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Figure 2: The instantaneous geometric odds for renal diseases at age 59, as a function
of follow-up time in years. The vertical axis in on a log scale.

geometric odds for a person with acute-on-chronic disease after one year is approximately
0.025 at age 22. The odds of death then increases to around 0.25 at age 59 and to 1.1
at age 84.

We proceed by adding an interaction term to our instantaneous geometric odds model
to assay the interplay between the categorical variable and the restricted cubic splines of
the time variable. It is in our interest to study different combinations of the interaction
terms in order to choose the model that fits data the best. We start by introducing an
interaction term between RCS1 and the categorical variable, in order to obtain Model 6.
The coefficient estimates for the covariates are shown in Table 2. We have excluded the
coefficient estimates for the interaction terms from the table because they are impossible
to interpret. The complete summaries are found in Section 7. The coefficient estimate
for chronic only kidney disease is lower than in Model 4, that we chose earlier. The odds
of death for a patient with chronic kidney disease is approximately 20% higher than for
a patient with no renal disease. In Model 4 the the odds of death was approximately
107% higher. The coefficient estimates for the other renal diseases are higher in this
model compared to Model 4 meaning that the positive effect the diseases have on the
odds of death is higher in this model. The only interaction term that is significant is
between RCS1 and acute-on-chronic kidney disease.
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Figure 3: The instantaneous geometric odds for renal diseases at age 22, as a function
of follow-up time in years. The vertical axis in on a log scale.
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Figure 4: The instantaneous geometric odds for renal diseases at age 84, as a function
of follow-up time in years. The vertical axis in on a log scale.
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Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

AKI 0.825∗∗ 0.723∗∗ 0.707∗∗ 0.822∗ 0.698∗ 0.805∗ 3.001∗∗∗

[0.254,1.396] [0.246,1.200] [0.241,1.173] [0.0913,1.553] [0.0598,1.337] [0.0863,1.523] [1.253,4.750]

Chronic only 0.180 0.407 0.452 0.215 0.237 0.209 0.639
[-0.687,1.047] [-0.305,1.119] [-0.235,1.139] [-0.868,1.297] [-0.728,1.202] [-0.855,1.273] [-1.277,2.556]

Acute-on-chronic 2.836∗∗∗ 2.460∗∗∗ 2.388∗∗∗ 2.438 1.988∗ 2.325∗ 10.01∗∗

[1.236,4.435] [1.084,3.836] [1.054,3.722] [-0.0103,4.887] [0.275,3.701] [0.0126,4.638] [3.345,16.67]

ESRD 1.187 0.944 0.910 1.761∗ 1.503 1.724 3.100
[-0.173,2.547] [-0.0994,1.988] [-0.0862,1.907] [0.000620,3.521] [-0.0161,3.022] [-0.00634,3.454] [-0.611,6.810]

RCS1 -26.55∗∗∗ -26.60∗∗∗ -26.61∗∗∗ -26.58∗∗∗ -26.67∗∗∗ -26.60∗∗∗ -25.26∗∗∗

[-29.14,-23.96] [-29.18,-24.01] [-29.20,-24.02] [-29.18,-23.97] [-29.27,-24.07] [-29.20,-24.00] [-27.94,-22.58]

RCS2 -707.1∗∗∗ -708.3∗∗∗ -708.8∗∗∗ -708.2∗∗∗ -710.4∗∗∗ -708.8∗∗∗ -670.0∗∗∗

[-782.7,-631.5] [-784.0,-632.7] [-784.4,-633.1] [-784.3,-632.2] [-786.5,-634.3] [-784.9,-632.8] [-748.4,-591.7]

RCS3 22.68∗∗∗ 22.72∗∗∗ 22.73∗∗∗ 22.72∗∗∗ 22.79∗∗∗ 22.74∗∗∗ 21.48∗∗∗

[20.21,25.14] [20.25,25.18] [20.27,25.20] [20.24,25.20] [20.30,25.27] [20.26,25.22] [18.92,24.03]

Age 0.0614∗∗∗ 0.0615∗∗∗ 0.0615∗∗∗ 0.0614∗∗∗ 0.0615∗∗∗ 0.0614∗∗∗ 0.0608∗∗∗

[0.0538,0.0689] [0.0539,0.0690] [0.0539,0.0690] [0.0539,0.0690] [0.0540,0.0691] [0.0539,0.0690] [0.0533,0.0683]

Constant -1.031∗∗∗ -1.029∗∗∗ -1.028∗∗∗ -1.036∗∗∗ -1.025∗∗∗ -1.034∗∗∗ -1.138∗∗∗

[-1.531,-0.530] [-1.529,-0.528] [-1.529,-0.528] [-1.538,-0.533] [-1.527,-0.523] [-1.536,-0.531] [-1.644,-0.631]

N 188399 188399 188399 188399 188399 188399 188399
AIC 9350.8 9351.3 9351.2 9357.3 9357.1 9357.1 9343.7

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

AKI Acute Kidney Injury ESRD End-stage renal disease

Table 2: Summary of parameter estimates, confidence intervals and values of Akaike’s Information Criterion (AIC) for seven
different instantaneous geometric odds ratio models
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We also include interaction terms between RCS2 and RCS3 and the categorical vari-
able in order to obtain Model 7 and Model 8, respectively. The coefficient estimates for
the covariate age are the same as in Model 4. Here as well, the coefficient estimates for
the renal diseases are higher than in Model 4, despite the coefficient estimate for chronic
only kidney disease. In Model 7, the only significant interaction term is between acute-
on-chronic kidney disease and RCS2. The only significant interaction term in Model 8
is between acute-on-chronic kidney disease and RCS3. The AIC scores of these models
are higher than for Model 4 meaning that these models have worse fit to data. Although
the difference in the AIC scores is very small.

Next, we introduce one more interaction term to the models and obtain Model 9,
Model 10 and Model 11. We have interaction terms between RCS1 and the categorical
variable as well as RCS2 and the categorical variable in Model 9. In Model 10 the
interaction terms are between the categorical variable and RCS2 and RCS3. Model 11
includes interaction terms between the renal diseases and RCS1 and RCS3. None of
the interaction terms in these three models are significant. The AIC scores of these
models are larger than the AIC scores for the models with only one interaction term and
therefore they have worse fit.

Finally, we add third interaction term and obtain Model 12 that therefore includes
interaction terms between all of the restricted cubic spline terms and the categorical
variable. We choose this model because it has the lowest AIC score. This model has even
a better fit to data than Model 4, the model with no interactions, that we chose earlier
due to its lower AIC score. The interaction terms between the all of the restricted cubic
spline terms and acute-on-chronic kidney disease are significant. Also the interaction
terms between the restricted cubic spline terms and acute kidney injury are significant.
Other interaction terms are not significant. The estimated coefficient for acute kidney
injury is 3.001 which implies that the odds of death for a patient with this disease is
approximately 20 times higher than for a patient with no renal disease. The odds of
death for a patient with acute-on-chronic kidney disease is approximately 22 247 times
higher than for a patient with no renal disease. The estimated coefficient for age is close
to the estimated coefficient in Model 4.

We perform Wald-test (see [1] p.11) to test if at least one of the 12 coefficient esti-
mates of the interaction terms of Model 12 are significantly different from zero. The test
statistic Zw = 23.97 is obtained and we compare it against a chisquare distributed ran-
dom variable χ2

12 with 12 degrees of freedom. We get the p−value P (χ2
12 > Zw) = 0.0205,

thus we can reject the null hypothesis that no interaction term is different from zero.
Hence we choose the model with the interaction terms, Model 12.

Because we are not able to interpret the coefficients for the interaction terms between
the restricted cubic spline terms and the renal diseases, we illustrate the instantaneous
geometric odds ratio (IGOR) as a function of follow-up time. We predict the IGOR
using the chosen model and calculate 95% confidence interval for the IGOR. Figure 5
shows the IGOR for the patients with acute kidney injury. The IGOR varies quite a
lot and we see the odds of death is at its highest in the very beginning of the study.
The confidence interval is wide in the very beginning but it quickly gets narrower. After
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Figure 5: Instantaneous geometric odds ratio for AKI with 95% confidence intervals for
Model 12. The vertical axis is on a log scale.

four years of observation the confidence intervals get wider again and hence the IGOR
becomes more uncertain.

The IGOR for chronic kidney disease is shown in Figure 6. We notice that the IGOR
decreases during the first months but then starts to increase steadily. The confidence
intervals become really wide after the first three years. Hence the actual IGOR after four
years is uncertain. The lowest risk for death for patients with chronic kidney disease is
at around half year after study begins.

In figure 7 we see the IGOR and its 95% confidence intervals for the patients with
acute-on-chronic kidney disease. The follow-up time for this group is at most one year
and 7 months because after that the IGOR is very uncertain. This is due to the small
amount of observations in this group. We see that the IGOR is really high, approximately
10 000, in the beginning of the study and it drops rapidly to values below 1 during the
first half year. After that it increases again, meaning that the odds of death rises.
Just before one-year follow-up the IGOR starts to decrease again. This means that the
highest risk of death is during the first year and if the patient survives the first year, the
odds of survival is higher.

The IGOR and confidence intervals for end-stage renal disease are illustrated in
Figure 8. The confidence intervals are quite wide, which is partially explained by the
small number of observations. As seen in Figure 8, the odds of death is highest in the
beginning and decreases during the first half year. After two years the odds of death
starts to increase. This means that if the patient survives the first half year the odds of
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Figure 6: Instantaneous geometric odds ratio for chronic kidney disease with 95% confi-
dence intervals for Model 12. The vertical axis is on a log scale.

survival the following two years is constant but after that the odds of survival decreases.
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Figure 7: Instantaneous geometric odds ratio for acute-on-chronic kidney disease with
95% confidence intervals for Model 12. The vertical axis is on a log scale.
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Figure 8: Instantaneous geometric odds ratio for ESRD with 95% confidence intervals
for Model 12. The vertical axis is on a log scale.
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4 Discussion

In Section 3.3 we concluded that the model with the best fit to data is Model 12. This
model includes interaction terms between all the restricted cubic spline terms and the
categorical variable with renal diseases. Since sex is not included as a predictor variable
in this model, we can say that the sex has no effect on the odds of death for this dataset.
From Figures 2-4 we saw that the patients with acute-on-renal kidney disease have
the highest odds of death. The patients who have either ESRD, AKI or only chronic
kidney disease have approximately the same risk of death. The first half year after the
study begins is the most crucial time for the survival. The risk of death is the highest
during this time but if the patient survives this time period the risk of death decreases.
Figures 5-6 show that the odds of death becomes more uncertain, due to wider 95%
confidence intervals, after four years for AKI and chronic kidney disease, which makes
our conclusions more vague. For acute-on-chronic kidney disease the odds of death gets
unsure already after the first year. Due to wide 95% confidence intervals for the odds
ratio for ESRD, we cannot say with certainty how large effect the disease has on the
odds of death.

4.1 Limitations

We choose to use generalized linear models instead of quantile regression in Section 3.3.
The reason for this choice was that we wanted to illustrate the instantaneous geometric
rate. The instantaneous geometric rate model was fitted at first but it failed to converge;
the model was ill-defined. When the probability to die is close to 1, the log-likelihood
function is negative and very close to 0 and therefore the maximum likelihood estimates
cannot be found. Thus we decided to proceed with the instantaneous geometric odds
model that uses the logit link function instead of the log link. A study on related
problems with failed convergence can be found in [16].

It is important to notice that the amount of observations is relatively small, 2000, and
that we have not separated the dataset into testing data and validation data. Therefore
we have not tested the prediction ability of the models. Thus our conclusions should be
considered with caution.

4.2 Future work

In future research it would be interesting to fit also Cox proportional hazards model,
which is a very common method in survival analysis, to data and compare the results.
The exponentiated coefficient estimates of this model represent the hazard ratios which
indicate the effect of the covariate on the hazard rate [11]. The hazard rate describes
the risk to die, but per definition it is not a probability. However, the geometric rate,
given in equation (6) is the average probability to die over time interval (0, t). Due to
this, the geometric rate seems more appropriate method to estimate the occurrence of
death. The relationship between these two are therefore of interest.
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Another future aspect that could be of interest is to perform the same analysis as in
Section 3.3 with simulated data instead, this in order to analyze if the simulated data
gives similar results as when using original data. Knowing the true (simulated) data
gives us the possibility to test how well the models really perform and to verify if our
conclusions are correct.
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6 Appendix A

To program the log link function for the instantaneous geometric rate model Discacciati
and Bottai [7] use equation (11) and provide the following link program log igr in Stata.

*! version 1.0.0 - 07dec2016

capture program drop log_igr

program define log_igr

\space version 7

\space args todo eta mu return

if ‘todo´ == -1 { /* Title */

global SGLM_lt "Log IGR"

global SGLM_lf "log(1-exp(-u/$SGLM_p))"

capture confirm numeric variable $SGLM_p

if _rc != 0 {

noi di as error "argument ($SGLM_p) to log_igr " /*

*/ "link function must be a numeric variable"

exit 198

}

exit

}

if ‘todo´ == 0 { /* eta = g(mu) */

gen double ‘eta´ = log(-exp(-‘mu´/$SGLM_p)+1)

exit

}

if ‘todo´ == 1 { /* mu = g^-1(eta) */

gen double ‘mu´ = -$SGLM_p*log(-exp(‘eta´)+1)

exit

}

if ‘todo´ == 2 { /* (d mu)/(d eta) */

gen double ‘return´ = $SGLM_p*exp(‘eta´)*(-exp(‘eta´)+1)^(-1)

exit

}

if ‘todo´ == 3 { /* (d^2 mu)/(d eta^2) */

gen double ‘return´ = $SGLM_p*exp(‘eta´)*(exp(‘eta´)-1)^(-2)

exit

}

noi di as err "Unknown call to glm link function"

exit 198

end

The following is the link program logit igr for the instantaneous geometric odds
model that uses the derivatives in equation (15).

*! version 1.0.0 - 07dec2016
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capture program drop logit_igr

program define logit_igr

version 7

args todo eta mu return

if ‘todo´ == -1 { /* Title */

global SGLM_lt "Logit IGR"

global SGLM_lf "logit(1-exp(-u/$SGLM_p))"

confirm numeric variable $SGLM_p

if _rc != 0 {

noi di as error "argument ($SGLM_p) to logit_igr " /*

*/ "link function must be a numeric variable"

exit 198

}

exit

}

if ‘todo´ == 0 { /* eta = g(mu) */

gen double ‘eta´ = logit(1-exp(-‘mu´/$SGLM_p))

exit

}

if ‘todo´ == 1 { /* mu = g^-1(eta) */

gen double ‘mu´ = -$SGLM_p*log((exp(‘eta´)+1)^(-1))

exit

}
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if ‘todo´ == 2 { /* (d mu)/(d eta) */

gen double ‘return´ = $SGLM_p*exp(‘eta´)*(exp(‘eta´)+1)^(-1)

exit

}

if ‘todo´ == 3 { /* (d^2 mu)/(d eta^2) */

gen double ‘return´ = $SGLM_p*exp(‘eta´)*(exp(‘eta´)+1)^(-2)

exit

}

noi di as err "Unknown call to glm link function"

exit 198

end

32



7 Appendix B

This appendix includes the complete summaries of the instantaneous geometric odds
models introduced in Section 3.3. Figures 9-13 show the summaries for the models
without interaction terms. The summaries for the models with interaction terms are
found in Figures 14-20.

Figure 9: Summary of Model 1
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Figure 10: Summary of Model 2
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Figure 11: Summary of Model 3
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Figure 12: Summary of Model 4
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Figure 13: Summary of Model 5
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Figure 14: Summary of Model 6
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Figure 15: Summary of Model 7
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Figure 16: Summary of Model 8
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Figure 17: Summary of Model 9
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Figure 18: Summary of Model 10
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Figure 19: Summary of Model 11
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Figure 20: Summary of Model 12
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