
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Predicting Drug Effects
Using Bayesian Artificial Neural Networks for Drug Discovery

Carl Samuelsson

Matematiska institutionen

Kandidatuppsats 2018:18
Matematisk statistik
Juni 2018

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2018:18

http://www.math.su.se

Predicting Drug Effects

Using Bayesian Artificial Neural Networks for Drug Discovery

Carl Samuelsson∗

June 2018

Abstract

Challenges like using predictive modelling of pharmaceutical drug
effects can become noticeably more difficult if the model fails to ex-
press predictive uncertainty. Taking this into account is of great im-
portance when developing more complex models. In this paper, we
cover the theoretical framework of Bayesian Artificial Neural Networks
(BANNs). The aim is to be able to apply this class of models in prob-
lem domains like drug discovery, where predictive uncertainty is a
crucial aspect. In order to compute the intractable posterior distribu-
tion for a network model, we use variational inference to approximate
the true posterior distribution by a variational posterior distribution.
Moreover, our work covers other central areas for using BANN models
such as hyperparameter optimisation and pre-processing of the data,
e.g. by Principal Component Analysis. Although our empirical results
did not suggest satisfactory performance for the explored BANN mod-
els, we humbly believe future research oriented more heavily towards
model fitting could yield considerably better results.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: c.samuelsson94@gmail.com. Supervisor: Ola Hössjer and Disa Hansson.

Sammanfattning

Komplexiteten i att kunna tillämpa prediktiv modellering för läke-
medelseffekter är starkt präglat av modellens förmåga att kvantifiera
den prediktiva osäkerheten. Att beakta detta är således önskvärt vid
utveckling av mer komplexa prediktionsmodeller. I denna uppsats av-
handlas teorin för Bayesianska Artificiella Neurala Nätverk (BANN) i
syfte att kunna tillämpa dessa modeller i problemområden som läke-
medelsframtagning där den prediktiva osäkerheten är en viktig aspekt.
Då a posteriori-fördelningen för en nätverksmodell är svårbehandlad,
används variationsmetoder för att approximera den sanna a posteriori-
fördelningen med en enklare typ av fördelning. Uppsatsen täcker även
andra aspekter som är av central betydelse för användandet av BANN-
modeller som hyperparametersoptimering och förbehandling av data,
exempelvis genom principalkomponentanalys. Våra resultat gav ingen
empirisk grund för att godta BANN-modeller som adekvata för pro-
blemändamålet. Vi tror emellertid att framtida arbete, orienterat mer
kring modellanpassning, kan generera markant bättre resultat.

Foreword and Acknowledgements
This work constitutes a bachelor’s thesis of 15 ECTS in Mathematical Statis-
tics at Stockholm University.

First and foremost, I would like to thank my supervisors Ola Hössjer and
Disa Hansson for theoretical discussions, encouragement and feedback that
have been crucial for my work. I would also like thank my external supervi-
sors Thomas Arctaedius and Birger Moëll at Ayond AB for formalising the
project on business grounds and for providing great insights within the in-
dustry. In the same context, I am thankful towards Prosilico AB for letting
me use their dataset for this project.

I want to emphasise that I have been lucky to participate in numerous in-
teresting discussions and learning from the very best within the industry;
much thanks to the non-profit organisation Stockholm AI. While too many
to mention explicitly, I would like to thank friends, co-workers and fellow
students who directly or indirectly have contributed to my learning path.
In particular, I would like to acknowledge Amir Hossein Rahnama, Daniel
Collin, Mihai Chiru, Arthur Pesah, Pontus Eklund and my brother Daniel
Samuelsson for either theoretical advice and discussions, technical help with
implementation or for proof reading. Lastly, the support gained from my
closest friends, family and my girlfriend Julia has been essential for my work.

Contents

1 Introduction 4
1.1 Drug discovery . 4

1.1.1 ADME . 4
1.1.2 Predictive modelling 5

1.2 Bayesian Artificial Neural Networks 5
1.3 Problem formulation and purpose 6

1.3.1 Data . 7
1.4 Outline . 8

2 Network models for regression 9
2.1 Graphical view on the regression model 9
2.2 Introducing depth . 12
2.3 Hyperparametric model choices 13
2.4 A Bayesian perspective . 14

3 Theory 16
3.1 Artificial Neural Networks . 16

3.1.1 Deep architecture . 16
3.1.2 Activation through bias 19
3.1.3 Adding nonlinearity . 19
3.1.4 Objectives and training the model 21
3.1.5 Universal approximation theorem 27
3.1.6 Normalising the data 28
3.1.7 Model validation . 28

3.2 Hyperparameter optimisation 30
3.2.1 Grid search . 31
3.2.2 Random search . 31
3.2.3 Sequential Model-based Global Optimisation 31

3.3 Bayesian Artificial Neural Networks 34
3.3.1 Estimating the posterior distribution 35

3.4 Dimensionality reduction . 38

1

3.4.1 Principal Component Analysis 38

4 Experiments 41
4.1 Outline . 41

4.1.1 Data pre-processing . 41
4.1.2 Prior beliefs and model assumptions 42
4.1.3 Hyperparameters and trials 43
4.1.4 Model criticism . 44

4.2 Results . 45

5 Discussion 46
5.1 Interpreting the results . 46
5.2 Improving our model . 48

5.2.1 Prior beliefs . 49
5.2.2 Weighted objective . 50
5.2.3 Heteroscedasticity . 51

5.3 Working with dimensionality 52
5.3.1 Instabilities of PCA and more robust alternatives . . . 52

5.4 Generative models . 53
5.4.1 The reversed regression problem 53
5.4.2 Variational Autoencoders 53

5.5 Other methods for measuring uncertainty 55

6 Conclusion 56

Appendices 61

2

Abbreviations

ADME Absorption, Distribution, Metabolism, Excretion
ANN Artificial Neural Network
BANN Bayesian Artificial Neural Network
EI Expected Improvement
ELBO Evidence Lower Bound
GLM General Linear Model
MAP Maximum-a-posteriori
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimate
MSE Mean Squared Error
PCA Principal Component Analysis
ReLU Rectified Linear Unit
SMBO Sequential Model-based Global Optimisation
TPE Tree-structured Parzen Estimator

3

Chapter 1

Introduction

1.1 Drug discovery
The development and discovery of new efficient drugs has arguably played
an essential part for the advancements of modern society. Pharmacology,
the study of drug effects, can mainly be divided into two subfields; phar-
macodynamics and pharmacokinetics. While pharmacodynamics describes
the effects of the drug on the body (therapeutic effects), pharmacokinet-
ics describes the opposite: the effect of the biological system on the drug
(McFadden, 2013, p.42). In the context of developing drugs, the knowledge
from the pharmacokinetics is crucial for deciding route of administration,
frequency of administration, dosage and even if a given substance can suc-
cessfully interact with the body under regulatory guidelines (Czarnik and
Mei, 2007, p.401).

1.1.1 ADME

One common way to model complicated phenomena within the field of phar-
macokinetics in a simpler way for conceptualisation, is through a qualitative
model called ADME (Absorption, Distribution, Metabolism and Excretion)
(McFadden, 2013, pp.43-49).

As a quick overview of the ADME scheme, we list below the four differ-
ent parts of the abbreviation ADME and what they mean with regard to
interpretation.

• Absorption. Describes how the drug is absorbed into the bloodstream
in terms of administration.

4

• Distribution. Describes how a drug is distributed into different com-
partments of the body. For instance, a given drug may be distributed
with a larger concentration into a number of compartments, such as
different organs, instead of solely being distributed into and remained
within the bloodstream compartment.

• Metabolism. Describes how the body is changing a given drug towards
similar substances that are eliminated later on.

• Excretion. Describes how substances are removed from the body.

1.1.2 Predictive modelling

Previously, the ADME aspects of a developed drug were tested first in the
later phases of development through expensive clinical trials on humans or
animals (Czarnik and Mei, 2007, p.401). This was problematic in the sense
that if a candidate treatment that had shown promising results regarding its
therapeutic effects failed to meet up its pharmacokinetic requirements, all the
work spent on developing the specific candidate became useless. Naturally, a
need of predicting or simulating the ADME attributes of a given drug arose
for more efficient drug discovery, where ADME properties can be accounted
for earlier on in the development.

In order to use predictive modelling for the qualitative ADME attributes, a
quantitative representation is needed. For this work, we will not cover the
aspects of deciding a proper quantitative representation, as we lack proper
domain knowledge. Instead, as will be covered in Section 1.3, we will use
only one quantitative parameter that corresponds to the qualitative aspects
of distribution (the letter D in the ADME abbreviation).

1.2 Bayesian Artificial Neural Networks
In a classification competition back in 2003, organised for the Conference
and Workshop on Neural Information Processing Systems (NIPS), the win-
ners used Bayesian Artificial Neural Networks to model a drug discovery
problem. Their dataset, called Dorothea (Guyon et al., 2007), consisted of
many more variables (100 000) than observations (1 150) with a sparse char-
acterisation. Subsequently, their dataset resembles the dataset we will use
for this thesis, which will be elaborated on later.

5

Furthermore, Bayesian Artificial Neural Networks exceed non-Bayesian Ar-
tificial Neural Networks in terms of depicting predictive uncertainty (Laksh-
minarayanan et al., 2016), which in problem domains like drug discovery is
a desirable property for a predictive model.

An Artificial Neural Network can (much simplified) be thought of as a se-
quence of multiple General Linear Models (GLMs), where the output from
one GLM is used as input to the next GLM in the sequence. The Bayesian
interpretation of an Artificial Neural Network, referred to as Bayesian Artifi-
cial Neural Networks, is to view the model parameters as some multivariate
random variable that follows a specific probability distribution. A more elab-
orate introduction on this topic can be found in an upcoming chapter.

1.3 Problem formulation and purpose
In this thesis, we look into the theory of Bayesian Artificial Neural Networks
from a mathematical and statistical point of view. Since the typical reader
is not expected to possess much knowledge within the specific domain of
Bayesian Artificial Neural Networks, the main scope of this thesis is centred
around building the necessary theoretical toolbox for using these models.

Subsequently, the application of the covered theory in the context of drug
predictions should merely be seen as a proof-of-concept approach, i.e. the
purpose of this work is not to find a state-of-the-art model for any drug dis-
covery problem; instead we investigate whether Bayesian Artificial Neural
Networks can be used for modelling the prediction of drug effects. Practical
aspects such as more exhaustive empirical experiments should be seen as a
natural next step for this work.

The specific problem of interest regarding drug effects is modelled by a set
of ADME values mentioned in Section 1.1.1 and 1.1.2. In other words, our
interpretation of the problem of successfully predicting drug effects is to min-
imise the error between model predictions of the set of ADME values and
their true values measured from clinical tests. We will assume for our work
that the quantitative ADME parameters can answer the qualitative question
regarding drug effects in terms of pharmacokinetics.

Lastly, in order to infer the ADME values for a given drug, we will use a set
of its molecular properties which we will denote as X. We can graphically
visualise our objective of inferring a multivariate mapping F : X → Y where

6

Y = (A,D,M,E)T as in Figure 1.1. In the general case, multiple quantitative
parameters could correspond to each element in the Y -vector, and then Y
would be a vector of vectors. However, the used terminology for our work
will implicitly assume that each element in Y is a scalar, although this view
could easily be generalised.

X

A

D

M

E

Biochemical model

Figure 1.1: Graphical model for ADME predictions. The grey box, denoted
as the Biochemical model, is to be interpreted in the sense that these ADME
predictions will be used for further qualitative modelling, outside the scope
of this work.

Moreover, as we will cover more extensively in Section 1.3.1, we only possess
the target attribute of a single distribution parameter (corresponding to the
letter D in the ADME abbreviation) for test purposes. Subsequently, we will
also assume that the complexity of finding a univariate mapping F : X → D,
is representative for the complexity of the mapping for the original four-
dimensional target value Y . Under this assumption, empirical results for our
work could be seen representative for the real case of interest, with Y as
output.

1.3.1 Data

The data set that reflects the mapping from X to D, consists of 606 obser-
vations with 6 909 explanatory variables with ordinal integer values which
have been anonymised due to confidentiality reasons. Each of the 606 entries
represents a particular pharmaceutical drug, the explanatory variables its
different molecular properties and the response variable the estimated loga-
rithmic volume of distribution (Hill, 2012, p.152) based on clinical trials on
volunteering healthy humans.

The first thing we can notice about this dataset is its particularly high di-
mensionality and sparsity, as depicted in Table A.1 of Appendix A. Another

7

noteworthy observation is that the different variables are highly correlated
with each other, indicated by the large condition number (see Table A.1 of
Appendix A).

1.4 Outline
The structure of the thesis is as follows. Chapter 3 covers the central theory
and background for what is later applied in Chapter 4 as empirical results
for the research problem. However, as much of the work is centred around
presenting a theory assumed to be new for the reader, we begin with Chap-
ter 2. This chapter provides some intuition regarding network models and
their Bayesian interpretation before laying out the theory more thoroughly.
Then in Chapter 5, we continue with interpretation of the experiment, ideas
of further research and shortcomings with our modelling. Finally, Chapter 6
summarises the paper by reviewing whether our objective was fulfilled.

8

Chapter 2

Network models for regression

Many regression models in the field of statistics can be described in simple
terms of input and output. In the context of supervised problems, i.e. where
the model gets to infer a mapping from previously observed data pairs, the
regression models are usually constructed to perform some operation on its
input data X such that its output Ŷ is to be interpreted as the prediction of
the true response value Y .

For network models however, we can abstract this view further by combining
multiple standard regression models to form a network of elementwise opera-
tions in order to obtain the prediction. In this section, we will try to capture
some intuition behind how these networks can be interpreted in terms of
simpler regression models.

2.1 Graphical view on the regression model
Although not typically defined as networks, we can see that standard models
such as the multiple linear regression model and the multiple logistic re-
gression both fall under the category of single layer models. The purpose
of this section is to make the reader familiar with a graphical representa-
tion of common regression models in order to later construct more complex
and abstract models. While Section 3.1 will cover more precise definitions,
this section and the following one aim to provide some intuition. In order
to do this, we strive to orientate the reader with graphical representations
of network models through examples to hopefully make the learning path
smoother.

Example 2.1.1 (Multiple linear regression). Consider a linear regression
model with four explanatory variables and one (real valued) outcome. From

9

the theory of statistical linear models we know that given a vector of the
effect parameters θ = (θ1, θ2, θ3, θ4)

T and the intercept α are known, we get
a prediction ŷ of the outcome y, by computing

ŷ = α + θ1x1 + θ2x2 + θ3x3 + θ4x4 ,

assuming that y = ŷ + ε for some ε ∼ N (0, σ2).

We can visualise our model’s operations graphically as a network of element-
wise operations, as shown in Figure 2.1. The nodes in the input layer denote
the multiplications θixi for i ∈ {1, 2, 3, 4}. Although the additive operation
of adding the intercept α is not explicitly shown in Figure 2.1, we could think
of it as a separate input to the output layer if we would like expand our net-
work graph. Lastly, we note that the node in the output layer represents
the additive operation

∑
i θixi (plus the intercept) before finally returning ŷ.

However, in the next example we will see that the values passed on from the
nodes do not necessarily have to be the same as what is computed within the
scope of the node’s linear operations.

x1

x2

x3

x4

ŷ

Input layer

Output layer

Figure 2.1: Graphical view of the multiple linear regression model.

Example 2.1.2 (Multiple logistic regression). Consider a binary classifi-
cation problem with 0 and 1 as outcomes, which we will approach with a
logistic regression model with four explanatory variables. The idea is to ex-
tend the multiple linear regression model from Example 2.1.1 by applying
the so called Sigmoid function that maps the real number line to the reals
within the range of [0, 1]. The output could then be interpreted as proba-
bilities for a specific event of interest in the context of classification problems.

The Sigmoid function is defined as

10

s(x) =
1

1 + e−x
,

where if we substitute x above with ŷ from Example 2.1.1 we can define
the logistic regression model for 1 outcome variable and four explanatory
variables as

ŷlogistic =
1

1 + exp
(
−α−

∑4
i=1 θixi

) .
However, visualising the logistic regression model in a similar fashion as in
previous example, we note from Figure 2.2 that this model would be drawn
in exactly the same way as for the linear regression model. The key point
here is that we apply a function on the scalar value returned by node in the
output layer to represent our prediction. Therefore, the logistic regression
model can be thought of as a slight extension of the linear regression model
where we simply apply the Sigmoid function on the output.

x1

x2

x3

x4

ŷ

Input layer

Output layer

Figure 2.2: Graphical view of the multiple logistic regression model.

Example 2.1.3 (Multinomial logistic regression). While regression prob-
lems typically contain a one-dimensional outcome, in a more general setting
that does not always have to be the case. Consider a classification task with
four outcomes and four explanatory variables. We could model this problem
with a so called Multinomial logistic regression model, which is an extension
of the standard logistic regression model to predict probabilities for more
than one event. This translates into our prediction ŷ being a vector, i.e.
ŷ = (ŷ1, ŷ2, ŷ3, ŷ4)

T in the case of four outcomes.

Since the linear operations from Example 2.1.1 and Example 2.1.2 (before
applying the Sigmoid function) need to be applied for all four outcomes

11

individually, we need to define our effect parameters θ as a 4 × 4-matrix
instead of a four-dimensional vector as before. Analogously, our intercept α
needs to be a four-dimensional vector instead of a scalar. Therefore we may
describe the model by first computing the affine transformation of input data
x = (x1, x2, x3, x4)

T as

θx+ α , (2.1)

and then apply the Sigmoid function for each component of the output vector,

ŷ = s(θx+ α) ,

where s(·) denotes the operation of applying the Sigmoid function element-
wise on a given vector.

Graphically, we can visualise the Multinomial logistic regresion model as in
Figure 2.1.3. We are once again excluding the intercept α here, but the reader
should be able to visualise how each component of the intercept vector could
be drawn into the output layer, if desired.

x1

x2

x3

x4

ŷ1

ŷ2

ŷ3

ŷ4

Input layer Output layer

Figure 2.3: Graphical view of the multivariate logistic regression model.

Remark. The affine transformation in Equation (2.1) is more widely known
in statistics as the General Linear Model (GLM) and would have the same
graphical representation as in Figure 2.3 (compare with Figure 2.1 and Fig-
ure 2.2).

2.2 Introducing depth
Having liberated our view on regression models to only cover the input/output-
view, we are now able to define more complex schemas. We will first briefly

12

describe the structure of an Artificial Neural Network, which given our pre-
vious examples, can simply be viewed as an iterative (multiple) regression
model, in order to cover more arbitrary ways of constructing regression mod-
els.

Example 2.2.1 (A first encounter with an Artificial Neural Network). Con-
sider a multivariate regression model with four outcomes, for instance the
Multinomial logistic regression model as in Example 2.1.3. Moreover, con-
sider also a standard multivariate linear regression model with one-dimensional
output (see Example 2.1.1). We can construct a new regression model by sim-
ply taking the output from the first multi-outcome model as input for the
multivariate linear regression model, as shown in Figure 2.4.

x1

x2

x3

x4

ŷ

Input layer

Output layer

Figure 2.4: Graphical view of the regression model that in the second layer
operates on the output of a multivariate regression model with a vector-
valued outcome.

The takeaway from Example 2.2.1 is to demonstrate the ability to define a
network of arbitrary regression models. While not defined rigorously yet,
these classes of models are usually referred to as Artificial Neural Networks
(ANNs). We will examine these models more thoroughly in Section 3.1.

2.3 Hyperparametric model choices
Having layed the framework of constructing network models, it would serve
a good purpose to introduce the term hyperparameters. A hyperparameter
in this context can be thought of something that defines the network, some-
thing we need before actually solving for the effect parameters in our model.
For instance, if modelling a one-dimensional classification problem by four
explanatory variables, we are in a way bounded by the dimensionality of our

13

input data and our outcome we want to find a mapping for. However, if we
choose to model a network, we are free to bind an arbitrarily large number of
componentwise regression models and their internal dimensionality. In Ex-
ample 2.2.1, the first regression model was not necessarily required to have
a four-dimensional output. This was instead a hyperparametric choice we
made for our network model. We could instead have chosen to make this
output (or input in regards to the second component) to be five-dimensional.
Tuning these network models in this fashion, to be as good as possible for a
given task, is known as a hyperparameter optimisation problem (Goodfellow
et al., 2016).

2.4 A Bayesian perspective
In Bayesian statistics, beliefs about some unknown parameter value θ, when
data has been collected and analysed, are represented as a probability density
function known as the posterior distribution; unlike in frequentist statistics,
where the true parameter is estimated by a single value. The probability
mass in the form of the posterior distribution can easily be interpreted as
how likely we think it is that θ is located within a specific range. Another im-
portant difference is that Bayesian methods update subjective beliefs about
θ in terms of a prior distribution, which also is a probability density function
that reflects our knowledge of the parameter, before data has been analysed.
Therefore, the exact form of the posterior distribution is directly influenced
by the prior beliefs.

In the context of network models for regression, the Bayesian viewpoint on
the effect parameters would change the effect parameters θ to be a vector
of random variables following some posterior distribution. This view implies
that the prediction of the expected outcome is also of the form of a proba-
bility density function, what we shall refer to as a predictive distribution. By
computing many predictions for the same input data, we can approximate
this true predictive distribution for the given model by Monte Carlo methods
through samples from θ.

While the standard non-Bayesian Neural Networks perform very well for
some tasks, they tend to suffer from overfitting and not being able to de-
pict predictive uncertainty (Lakshminarayanan et al., 2016) which in many
problem domains is a crucial aspect of a predictive model. By instead using
Bayesian Neural Networks, this predictive uncertainty is something that can
modelled more easily, with the Bayesian viewpoint.

14

Figure 2.5: The difference between a frequentist and Bayesian viewpoint
on a network model. To the left, a frequentist perspective of the model
parameters, as constant values, is illustrated. To the right, the Bayesian
view on the same parameters, with some posterior distribution, is depicted.
The picture is taken from Blundell et al. (2015).

15

Chapter 3

Theory

Before presenting the theory of Artificial Neural Networks (ANN for short),
it is worth pointing out that similar models were developed independently in
the field of statistics to solve the same type of problems (Hastie et al., 2001,
chap.11). These models strive to approximate some unknown function that
maps our explanatory data X to some function space Y , by taking linear
combinations of our variables and then adding a nonlinear function in order
to improve our approximation.

3.1 Artificial Neural Networks
There has been a lot of excitement regarding the class of models named Ar-
tificial Neural Network during recent years (Hastie et al., 2001, p.392). One
of the reasons potentially being the fact that they are modelled to emulate,
in a simplified way, how our brain is believed to work, from a neuroscientific
point of view (Hopfield, 1982). In addition, the ANNs are nowadays compu-
tationally feasible for quite large models. In this paper, we are not interested
nor strive to answer any claims regarding the proposed connection with the
human brain. Instead, we are interested in ANNs as function approximators
and the mathematical theory behind this.

3.1.1 Deep architecture

(This section is based on Nielsen (2018) if not stated otherwise)

What differ the ANNs from other nonlinear (or linear) statistical models in
particular is the fact that they (generally) use a deep architecture; often ter-
minologically referred to as multilayer perceptrons. The term perceptron is

16

a synonym to the previously used term layer. A layer or perceptron in this
context means a set of neurons that shares the same input. The reader might
find our elaborations in this subsection easier to follow when simultaneously
looking at Figure 3.1 that illustrates the deep architecture of an Artificial
Neural Network.

These classes of models can be used both for classification and regression
problems with different types of response variables. In a sense, even classi-
fication problems can be viewed as regression problems with bounded out-
comes in terms of probabilities to predict. However, for this work we will
restrain ourselves to study ANNs for regression problems only, with contin-
uous and unbounded outcomes.

To begin with, we note that any node (called neuron) in Figure 3.1 corre-
sponds to an operation performed on either the original data or the output
from a previous neuron. The first layer, called the input layer will have in-
put from the same number of neurons as there are variables available in the
dataset, for which we wish to make predictions.

Now comes the interesting part, the hidden layers. However, as Nielsen
(2018) mentions, these hidden layers might not be so mysterious as initially
believed. Hidden in this context should rather be interpreted as something
that is neither an input nor an output for the model, rather some intermedi-
ate step in order to find our true prediction output. The number of hidden
layers and their respective dimension are not explicitly determined by the
dataset, instead a model choice we do in order to strive for a better function
approximation. In Figure 3.1 a Neural Network with two hidden layers of
dimensions 4 and 3 respectively, are shown. Given this, the reader should be
able to visualise other arbitrary forms of ANNs.

17

x1

x2

x3

x4

x5

x6

ŷ

Hidden layers︷ ︸︸ ︷
Input layer

Output layer

Figure 3.1: The deep architecture of an Artificial Neural Network. Here, a
Neural Network with 6 input variables, 2 hidden layers (with dimensions 4
and 3 respectively) and one output variable is shown.

What we yet not have been elaborating on is the actual operations that our
neurons are performing and how the mapping between the different layers
work. In the simplest form, it all comes down to multiplying some weight
matrix with some vector of input data, i.e. a linear transformation. We will
from now on denote the weight matrix and the input vector at layer l asW (l)

and x(l−1) respectively. With this notation established, the original input
data corresponds to x(0) and the remaining x(l−1) with l > 1 are simply some
transformation of the original data. The iterative scheme is described in
Equation (3.1)

x(l) = W (l)x(l−1) =


w

(l)
11 w

(l)
12 . . . w

(l)
1k

w
(l)
21 w

(l)
22 . . . w

(l)
2k

...
...

w
(l)
n1 w

(l)
n2 . . . w

(l)
nk



x
(l−1)
1

x
(l−1)
2
...

x
(l−1)
n

 , (3.1)

where input data x(l−1) for each layer l is a n-dimensional vector and weight
matrix W (l) is of dimensions n× k.
Remark. Since the dimensions of each layer l can be arbitrary, n and k are
not necessarily constant throughout the different layers of the model. There-
fore an alternative notation nl and kl may be more appropriate, but we choose
not to write this explicitly in Equation (3.1) in order to keep the notation
simple.

18

The type of Neural Network in Equation (3.1) is a so called feedforward Neu-
ral Network, which means that we take the output from the previous layer
as input to the next, therefore always moving ”forward” within the network.
There exist other types of ANNs where this feedforward principle is extended.
For instance, Recurrent Neural Networks feed its own output into itself and
therefore constructs a sequence of its predictions (Goodfellow et al., 2016,
p.387).

Concluding this subsection, it is worth mentioning that our output layer
(alternatively our prediction) can be of arbitrary dimension, like the other
layers. However, as with most regression problems in general, our paper will
only be dealing with the response variable being one-dimensional.

3.1.2 Activation through bias

One can extend Equation (3.1) to contain a constant term b(l) being the bias
of the layer l. It takes inspiration from the concept of perceptrons having
different likelihoods of firing in order to be activated (Nielsen, 2018, chap.1).
Larger values mean that the perceptron is more likely to fire, whereas the op-
posite is true for negative values. Another more mathematical interpretation
would be that our bias is a constant or intercept in the matrix operation

x(l) = W (l)x(l−1) + b(l). (3.2)

Remark. We note from Equation (3.2) that computing x(l) will always be
(before adding a nonlinearity) an affine transformation, i.e. on the form
Ax(l−1) + b. Another interesting interpretation would be to view the transfor-
mations between the layers as GLMs (General Linear Models).

3.1.3 Adding nonlinearity

(This section is based on Nielsen (2018) if not stated otherwise)

Since we have previously been referring to the class of ANNs as nonlinear
statistical models, the reader might not be too surprised hearing that Neu-
ral Networks usually are designed to use nonlinear functions applied to its
output. The theoretical argument behind this is to make the Universal Ap-
proximation Theorem (covered in Section 3.1.5) applicable to our model.
However, with a deep architecture, these nonlinear functions will be applied
at all the outputs from different layers. In fact, we can even choose if we want
to add a nonlinearity at each layer and which activation function (nonlinear

19

function) to use. Therefore, these choices (or hyperparameters) do not have
to be consistent through all layers. This makes it possible for us to construct
our ANN models in many different ways. Even though we might be able to
find a rich variety of nonlinear functions applicable to our model, a smaller
set of activation functions are usually used in practice (Goodfellow et al.,
2016, p.196). In this paper, we will cover two of these common functions;
the Sigmoid function and the Rectified Linear Unit (Goodfellow et al., 2016,
p.174) (often referred to as ReLU). The reader might recognise the Sigmoid
function as a special case of the logistic function

s(x) =
1

1 + e−x
,

which maps the real numbers to the interval between 0 and 1. This might es-
pecially be useful in cases where the output needs to be interpreted in terms
of probabilities.

The other mentioned activation function, the Rectified Linear Unit, is ar-
guable easier to compute due to its simple definition as

r(x) = max(0, x) .

Noticeable here is that r(x) maps the reals to the positive reals, hence it
is not bounded, which will be discussed further in Section 3.1.5. To elabo-
rate further on the meaning of computational ease, we will see later that in
order to fit (or ”train”) our model, it is needed to compute the derivatives
of each activation function used for our model and multiply them together.
Therefore, since the derivative of the Rectified Linear Unit has the appealing
property of being either 0 or 1, it will both be easier to compute and makes
the network more sparse (because of the zeros), a feature that is believed to
be more plausible biologically (Glorot et al., 2011).

Having introduced the activation functions, we can generalise our notation
from Equation (3.2) slightly, to

x(l) = σ(l)
(
W (l)x(l−1) + b(l)

)
. (3.3)

Remark. With σ(l)(·) we mean applying the activation function elementwise
to the vector W (l)x(l−1) + b(l).

With Equation (3.3) in place, we are able to predict the outcome, given a
new sample x(0).

20

Lastly, although we are implying with the name of this subsection that activa-
tion functions must be nonlinear, that does not need to be the case. However,
the same effect of using a linear activation function could be achieved by only
using the affine transformation in Equation (3.2). With proper changes of
the weights and bias in a given layer, we would implicitly apply the linear
activation function of interest. On the other hand, to not use an activa-
tion function in a layer could be viewed as a (hyper)-parametric choice. In
fact, it could make sense to speak about an activation function that is the
identity function, where its output simply equals the input, i.e. a function
F : X → X.

3.1.4 Objectives and training the model

(This section is based on Nielsen (2018) if not stated otherwise)

An obvious question arising is how we find our model’s parameters. In order
to find our weights and biases, we first need a function to optimise; something
to quantify how well the current model performs in terms of predicting the
correct results. This leads us to introducing the concept of an objective func-
tion, also called a loss function or an error function (Goodfellow et al., 2016,
p.82). An example of such a function is the Mean Squared Error (MSE),
whose definition is found in Definition A.1, Appendix A.

Once the objective function has been selected, our task is clear: find a model
that minimises the Mean Squared Error, or any other chosen objective func-
tion, for our observed data. Our optimisation task can be decomposed into
two parts: the first one regarding the choice of hyperparameters (such as
the number of hidden layers, their dimensions, choice of activation functions
etc.) and the second regarding optimising the parameters given a fixed set
of hyperparameters. More specifically, we are referring to the weight matri-
ces and the bias vectors as these parameters to optimise. Updating these
parameters by means of our dataset is often referred to as the ”learning” or
”intelligence” part, which gives some intuition behind the names of the fields
Machine Learning, Deep Learning and Artificial Intelligence. The idea is
the same as with statistical inference: to learn some underlying structure by
observing data.

3.1.4.1 Gradient descent

With a loss function of a given model defined, we are now able to formulate
an optimisation problem. Since our loss function L is a function of the

21

model’s weights and biases, we want to find weights w and biases b such
that L attains its global minimum. However, we know from multivariate
calculus that finding the global optimum in a high dimensional vector space
is often intractable to solve analytically. Therefore, our approach will be to
use something called gradient descent (Nielsen, 2018, chap 1). It is a first
order iterative scheme to update our variables by stepping along the negative
gradient vector, since we know it will point to the direction that decreases
our loss function the most. Phrased differently, in order to minimise our
loss function, we want to choose ∆L as negative as possible by changing
the parameter vector p = (w, b)T , which contains all our weights and biases.
From calculus of variations we know that

∆L ≈ ∇L ·∆p . (3.4)

If we let ∆p = −α∇L and substitute this relation into Equation (3.4) we get
that

∆L ≈ −α||∇L||2, (3.5)

where α > 0 is called the learning rate, which translates to how far we are
stepping along the negative gradient. Implicitly we make sure that ∆L ≤ 0
if Equation (3.5) is a good approximation since ||∇L||2 ≥ 0. Therefore, we
need to pick α small enough such that we achieve a good approximation,
but not too small so that the model’s convergence becomes too slow. To
pick an optimal learning rate is a part of the hyperparameter optimisation
problem, and it will be described in more detail later. To apply it to our own
optimisation problem we phrase it as

w
(l)
jk ← w

(l)
jk − α

∂L

∂w
(l)
jk

, (3.6)

b
(l)
j ← b

(l)
j − α

∂L

∂b
(l)
j

. (3.7)

Remark. With the notation above, we mean that we are updating our weights
w

(l)
jk and biases b(l)j with their previous values after subtracting some change.

To be more formal, one could denote the previous values with a new index
indicating the iteration of the algorithm to emphasise that these terms are
not in fact the same. However, to keep the notation simple, we choose to not
include these indices.

Since our models will be trained on multiple data points, typically huge
datasets, our gradients need to be averaged over all our samples. This leads

22

us to one important assumption Nielsen (2018) mentions, that the loss can
be expressed as an average. Therefore, we must assume that the objective
function is of the form such that we are able to write the loss L as an average
over multiple individual losses Li corresponding to the ith observation, that
is, we assume that

L =
1

n

n∑
i=1

Li .

When we previously used MSE as an example of an objective function, we
implicitly used the squared error as the individual loss whereby MSE is the
total loss after averaging.

Moreover, since ANNs may contain thousands, in extreme cases even bil-
lions, of parameters, this approach will be extremely costly computationally.
A more practical approach is to take subset samples of the dataset instead
in order to approximate the true averaged gradient. This approach is called
Stochastic Gradient Descent. The sample size to use for our stochastic ap-
proach will be a trade-off between computation complexity and accuracy of
the gradient values; thereby also a hyperparameter for the user to choose
beforehand. After choosing a batch-size m we are able to approximate the
gradient ∇L by computing

∇L ≈ 1

m

m∑
i=1

∇Li , (3.8)

for some m < n.

Remark. Moreover, the method of sampling the batch-size might differ be-
tween implementations of Stochastic Gradient Descent. One could at each
iteration either sample the m number of observations individually or before-
hand define a number of folds of size m and instead sample fold-wise. In other
words, if choosing the fold method, each observation will always be paired with
m − 1 other observations. Lastly, if the fold method of sampling is chosen,
the number of observations n should be evenly divisible with the batch-size m,
i.e. n ≡ 0 (mod m), in order to not leave out any observations.

3.1.4.2 Backpropagation

With the introduction of gradient descent, we have an idea of how to tackle
our optimisation problem. From Equations (3.6) and (3.7) we note that com-
puting ∂L/∂w(l)

jk and ∂L/∂b(l)j is central for training a Neural Network (i.e. to

23

find an optimal model within the class of feedforward ANNs). To compute
these values, a common approach is to use backpropagation (Nielsen, 2018,
chap 2). The idea is to make a prediction with a given model, compare it
against the true value and then update the weights and biases in the previous
layer to achieve a more desirable result for the given example. Thereafter, we
can recursively apply this algorithm backwards within our network to update
all our parameters, a procedure that gives rise to the name backpropagation.
In this section, we will look into the mathematics behind this popular algo-
rithm.

To understand what values in a previous layer l − 1 that affect the output
of a neuron x

(l)
j in the next layer, we note from Equation (3.3) that either

w
(l)
jk , x

(l−1)
k or b(l)j could be changed accordingly to achieve a more satisfying

result. Therefore, it will be in our interests to compute ∂L/∂w(l)
jk , ∂L/∂x

(l−1)
k

and ∂L/∂b(l)j , as mentioned in Equations (3.6) and (3.7). To follow the up-
coming reasoning and calculations, it will be easier introducing an interme-
diate variable z(l)j as

z
(l)
j :=

(
W (l)x(l−1) + b(l)

)
j
.

It now follows that the loss L is a function of x(l) that is a function of
z(l) which is a function of w(l)

jk , x
(l−1)
k and b

(l)
j . So in order to compute

∂L/∂w
(l)
jk , ∂L/∂x

(l−1)
k and ∂L/∂b

(l)
j , we need to apply the chain rule which

will give us that

∂L

∂w
(l)
jk

=
∂z

(l)
j

∂w
(l)
jk

·
∂x

(l)
j

∂z
(l)
j

· ∂L
∂x

(l)
j

, (3.9)

∂L

∂x
(l−1)
k

=

nl−1∑
j=0

∂z
(l)
j

∂x
(l−1)
k

·
∂x

(l)
j

∂z
(l)
j

· ∂L
∂x

(l)
j

, (3.10)

∂L

∂b
(l)
j

=
∂z

(l)
j

∂b
(l)
j

·
∂x

(l)
j

∂z
(l)
j

· ∂L
∂x

(l)
j

. (3.11)

Remark. We get a sum in Equation (3.10), since multiple neurons in the
previous layer can be connected to one neuron in the current layer. (See
Figure 3.1).

24

Since x(l)j = σ
(
z
(l)
j

)
we get

∂x
(l)
j

∂z
(l)
j

= σ′
(
z
(l)
j

)
. (3.12)

Remark. For ease of notation, we have dropped the layer index for our
activation functions σ. But as elaborated on in Section 3.1.3, we are free to
choose these functions differently for each layer.

Moreover, by the way we defined z(l)j earlier, we get that

∂z
(l)
j

∂w
(l)
jk

= x
(l−1)
k , (3.13)

∂z
(l)
j

∂b
(l)
j

= 1 , (3.14)

∂z
(l)
j

∂x
(l−1)
k

= w
(l)
jk . (3.15)

The factor ∂L/∂x(l)j occurring in all three equations (3.9) - (3.11) is however
dependent on the choice of activation function and can not be solved for in
the general case.

Substituting Equations (3.12) - (3.15) into (3.9) - (3.11) yields

∂L

∂w
(l)
jk

= x
(l−1)
k · σ′

(
z
(l)
j

)
· ∂L
∂x

(l)
j

, (3.16)

∂L

∂x
(l−1)
k

=

nl−1∑
j=0

w
(l)
jk · σ

′
(
z
(l)
j

)
· ∂L
∂x

(l)
j

, (3.17)

∂L

∂b
(l)
j

= σ′
(
z
(l)
j

)
· ∂L
∂x

(l)
j

. (3.18)

Given Equations (3.16) - (3.18), we have a framework for recursively updat-
ing our parameters backwards, as described in Equations (3.6) - (3.7).

Although we will only use Stochastic Gradient Descent as our optimising
algorithm, it is worth mentioning that there exist a rich variety of similar

25

methods, often based on the same backpropagation principle. A few examples
are Adam, RMSprop and Adagrad (Goodfellow et al., 2016, pp.307-309).

3.1.4.3 Initiating and stopping the training

So far, we have looked into the framework of updating the model parameters
given a prediction by the model and the true label. However, in order for the
model to make the very first prediction, it will need a way of initiating the
parameters. A common strategy is to randomly assign the parameter values
by some uniform or normal distribution centred around 0 (Goodfellow et al.,
2016, pp.302-303).

Furthermore, since optimisation methods based upon the gradient descent
principle are iterative, we need to define a stopping criterion that dictates
when the training is finished. The simplest and most straight forward solu-
tion is to define a number of epochs that can be viewed as the number of
iterations to perform our training algorithm. In other words, we perform
Stochastic Gradient Descent, or any other gradient descent based optimising
algorithm, for a fixed number of epochs. The number of epochs can also be
viewed as part of the hyperparameter optimisation.

Finishing this section, we have the theoretical framework for explicitly writ-
ing the pseudo code for Stochastic Gradient Descent. We refer to it as Algo-
rithm 1, and it is defined as follows:

26

Algorithm 1: Stochastic Gradient Descent
Data: Batch-size m, learning rate α and a pre-chosen way of

initialising the parameters of the model.
Result: Optimised parameters for an ANN.
parameter initialisation;
while not converged do

initiate zero valued gradient variable;
sample m observations from training set;
for i from 1 to m by 1 do

increment gradient variable by computing the gradient for the
ith observation according to Equations (3.16) - (3.18);

end
update parameters according to Equations (3.6) - (3.7), where the
derivatives is replaced by the proper element from the estimated
gradient of Equation (3.8);

end

3.1.5 Universal approximation theorem

In essence, all forms of nonlinear statistical models aim to approximate some
unknown function f(X) with an approximation f̃(X) such that |f̃(X) −
f(X)| < ε for a reasonably small ε.

A major theoretical argument of choosing the class of ANNs as function ap-
proximators is their universal attributes in terms of function approximation,
as stated by the Universal Approximation Theorem (Hornik, 1991). This
result holds, under some conditions, that a Neural Network with as little as
one single hidden layer can approximate any arbitrary continuous function
arbitrarily well. In principle, this is a very powerful statement. In prac-
tice, however, a ”good enough”-approximation is usually satisfactory since
exact inference may require an unimaginable amount of model parameters
and sample sizes.

While we will not include the precise formulation of this theorem here, and
its accompanying proof, we note that some important condition for the the-
orem is that our nonlinear functions are bounded, i.e. they have a bounded
range (image) and are continuously monotonously increasing. Although the
Linear Rectifier function mentioned in Section 3.1.3 is not bounded, it has
been proven that the Universal Approximation Theorem is still applicable

27

for models with the Rectified Linear Unit as activation function (Sonoda
and Murata, 2015).

The identity function however (and other linear functions, as briefed upon
in Section 3.1.3) is not a valid choice of activation function, in terms of this
universality (Hornik, 1991).

3.1.6 Normalising the data

For a given regression problem of mapping data X to outcome Y , it is of
central importance for our dataset to include variation in each variable xi of
the model, in order to infer the effect that a change in xi has on Y . There-
fore, we can transform a given variable xi to x′i as long as xi ∝ x′i to preserve
its relative amount of variation.

In LeCun et al. (1998), it is argued that a Z-normalisation of each variable
improves the convergence speed of backpropagation based optimisation algo-
rithms for Neural Networks. In other words, we can transform each variable
xi, i ∈ {1, . . . , n} by

x′i :=
xi − µxi
σxi

,

where µxi and σxi are the sample mean and sample standard deviation of
xi respectively, and consequently, x′i is approximately N (0, 1)-distributed.
Since x′i ∝ xi, our regression problem will remain invariant under the linear
transformation of normalising the variables.

3.1.7 Model validation

Unquestionably, an important part of Machine Learning modelling is to val-
idate the performance of a given model. While a model might perform well
during training, it might also have been subject to overfitting, i.e. only learn-
ing local structure for the data it has been trained on, and not being able to
generalise well for new unseen data. In order to investigate potential over-
fitting, the field of Machine learning differentiates the concept of minimising
training error and generalisation error, sometimes called test error (Good-
fellow et al., 2016, p.110). Therefore, we want to minimise both the training
error and the generalisation error. This weighted objective is something that
differentiates Machine learning from regular optimisation problems (Good-
fellow et al., 2016, p.110).

28

3.1.7.1 Splitting the dataset

One common approach in order to estimate the generalised error is to split a
given dataset X into two (or more, see below) disjoint sets (Goodfellow et al.,
2016, p.121). The suggestion here is that our model should only be trained
on the training dataset to minimise its training error first and then compute
an estimate of the generalisation error, based on the unseen observations
from the validation set. This split plays a crucial part in order to compare
two models against each other, which will provide a necessary framework for
hyperparameter optimisation, as will be elaborated further in Section 3.2.

While a typical 80/20-split (80% of the data for training, 20% for validation)
is suggested as a rule of thumb (Goodfellow et al., 2016, p.121), a proper
split for each problem is however very dependent of the dataset and type of
problem to solve. Furthermore, our split will be a trade-off between statis-
tical uncertainty in the estimate of the generalisation error and the model’s
performance as a function approximator for the training set. In examples of
datasets with extensive amount of observations, this might not be a real con-
cern. However, when sampling is expensive, for instance with problems that
have many more variables than observations, it can be difficult to somewhat
accurately compare different models (Goodfellow et al., 2016, p.122).

Lastly, in order for the model evaluation on the validation set to be an
unbiased estimate of the generalisation error, we need to assume that the two
different sampling distributions are homogeneous (Goodfellow et al., 2016,
p.121).

3.1.7.2 K-fold Cross-Validation

Another approach that increases the accuracy of the generalisation error es-
timate while still providing a rich amount of observations for the model to
train on is Cross-Validation. While there are different methods for doing
this, K-fold Cross-Validation is the most common (Goodfellow et al., 2016,
p.122). The method is based on the idea of splitting our original dataset into
K disjoint subsets and let these subsets take turns on being the test set while
the complement set is used for training. Therefore, we are training the model
K times and averaging the observed test errors to better estimate the true
generalisation error. A pseudo code for this method is shown in Algorithm 2
of Appendix A.

However, one problem with K-fold Cross-Validation, besides being computa-

29

tional very expensive, is that there is no unbiased estimate of the variance of
Cross-Validation estimates for the generalisation error (Bengio and Grand-
valet, 2004).

3.1.7.3 Final validation

Besides validating a model on one or several sets that are part of the orig-
inal data, as described in Sections 3.1.7.1 - 3.1.7.2, one would ideally make
sure that a returned model from the model selection actually has satisfying
performance. In order to test this it is suggested in (Goodfellow et al., 2016,
p.121) that a final validation set is introduced, referred to as the test dataset.
It is important for the test data that these observations have not been sub-
ject to the hyperparameter optimisation in order to truly test the model’s
generalisation capability.

3.2 Hyperparameter optimisation
Since our ANN model’s performance will be a function of the set of cho-
sen hyperparameters, we would ideally like to have one or more algorithmic
approaches towards finding somewhat optimal parameter values. In this sec-
tion, we will introduce a few methods for hyperparameter optimisation.

To begin with, hyperparameter tuning can quickly become a time consum-
ing task if the models themselves are expected to take a while to train. In
order to evaluate different sets of hyperparameters and compare them with
each other, we also need to train multiple ANNs and compare their output
in terms of the loss value. This can be seen of finding x∗ ∈ X such that
we minimise the loss function F : X → R, where each function evaluation
F (x) is expensive. Therefore, it would also be desirable to reach a quick
convergence in terms of different hyperparameters to test for.

Although the scope of our work is not to cover the different hyperparameter
optimisation algorithms in detail, we will try to outline how a few popular
approaches work and capture some intuition behind them.

The perhaps most natural approach would be to use human intuition and
heuristics to manually navigate through the hyperparameter space. However,
this approach is not particularly scalable since we, as humans, do not tend
to handle high dimensional data well in terms of spotting trends. Moreover,
by using this manual search method, results are not very reproducible and

30

may even lead to faulty conclusions based on comparisons.

3.2.1 Grid search

Another straightforward approach towards finding optimal hyperparameters
would be to use something called grid search (Goodfellow et al., 2016, pp.432-
434). Basically, it is an approach based on testing every combination of
hyperparameters to see which one results in the best model performance. In
the case of continuous hyperparameters, a subset can be chosen beforehand,
by specifying a stepping length, when changing a given parameter from its
minimal value to its maximum value. However, as one might suspect, this
method does typically not scale well as the number of hyperparameters and
their discretised range increase.

3.2.2 Random search

Instead of testing every possible configuration of the set of, possibly high
dimensional, hyperparameters one may evaluate a randomly chosen subset.
It is shown that this random approach is just as good or even better than
the grid search method, but still it has a much lower computational cost
(Bergstra and Bengio, 2012). The main argument is that all hyperparameters
are usually not equally important for model performance.

3.2.3 Sequential Model-based Global Optimisation

While both grid and random search can be seen as brute force approaches
towards finding an optimal set of hyperparameters, methods like Sequen-
tial Model-based Global Optimisation (SMBO) (Bergstra et al., 2011) let us
infer, under some model M, the optimal next trial to perform. The idea
with SMBO-approaches is to approximate the evaluation-expensive objec-
tive function F with some surrogate function S in order to propose a vector
of hyperparameters x∗ that maximise S as the next trial to evaluate for F .

In general, many functions could be used as the surrogate function. How-
ever, we will, as in Bergstra et al. (2011), focus on the so called Expected
Improvement (EI) as our surrogate function S. The Expected Improvement
criterion, denoted EIy∗(x), is defined as

EIy∗(x) :=

∫ ∞
−∞

max(y∗ − y, 0)pM(y |x)dy ,

31

where y∗ is some threshold outcome value and x a vector of hyperparameters.

As the name suggests, we can consider the Expected Improvement crite-
rion to evaluate, under some model, the expectation regarding how much
y = F (x) will decrease below some threshold y∗ in an absolute sense. In the
context of hyperparameter optimisation, y∗ could intuitively be defined as
minx F (x), i.e. the best trial in terms of loss value. However, as we will see
later, this does not have to be the case, even when regarding hyperparameter
optimisation.

In Sections 3.2.3.1 and 3.2.3.2 we will cover the two approaches for picking
the modelM that Bergstra et al. (2011) propose.

3.2.3.1 Gaussian Processes

The first approach as the model in the surrogate is to use a method called
Gaussian Processes. A Gaussian Process is essentially a generalisation of the
multivariate normal distribution, where instead of being parametrised by its
mean and covariance matrix, it is parametrised by a function of the mean
and a covariance matrix given by some pre-defined Kernel function (Mur-
phy, 2012, chap 14). Therefore, we are putting some prior beliefs upon the
distribution by choosing our kernel function and the mean function, to later
iteratively update the covariance matrix and the mean function. This allows
us to sample points in the hyperparameter space, that upon our prior beliefs
for a given iteration maximise the expected generalised error, while simul-
taneously model the uncertainty with this probabilistic approach. A more
detailed elaboration on Gaussian Processes and Kernel functions can be found
in Chapters 14-15 of Murphy (2012). Moreover, further explanations regard-
ing using Gaussian Processes together with the Expected Improvement as
the surrogate function, is found in (Bergstra et al., 2011).

A drawback of using the Gaussian Processes-approach in SMBO-models is an
inability to handle categorical parameters, due to the continuity of the mul-
tivariate normal distribution. Another problem with the Gaussian Processes
approach is that the kernel and the mean function also involve hyperparam-
eters. Subsequently, we are in a sense simply replacing one optimisation
problem with another.

32

3.2.3.2 Tree-structured Parzen Estimator

The second approach we will cover for the SMBO-algorithm, is the so called
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011). For this
method, we obtain a model for p(y |x) by first choosing models for p(x | y)
and p(y). The first term, p(x | y), is defined as

p(x | y) =

{
`(x) if y < y∗

g(x) if y ≥ y∗ ,
(3.19)

where `(x) is the interpolated probability density function by using the set of
observations (hyperparameter configurations) whose objective function eval-
uations F (x) fall below the threshold value y∗. Similarly, g(x) is the proba-
bility density function interpolated from the rest of the observations.

Conceptually, we can by Equation (3.19) conclude, under the TPE model,
that an optimal trial x∗ to be evaluated by F should maximise `(x) and
minimise g(x), or equivalently minimise the quotient g(x)/`(x). However,
to somewhat accurately interpolate `(x), the threshold value y∗ needs to be
picked rather conservatively. By simply picking the lowest function evalua-
tion of F as y∗, which we argued would be the most intuitive choice in Sec-
tion 3.2.3, would make the TPE algorithm unable to interpolate `(x). There-
fore, it is required with this approach to pick y∗ larger than the best observed
F (x). To make sure that y∗ > minx F (x), subsequently avoiding the inter-
polation problem, the TPE-algorithm chooses y∗ such that p(y < y∗) = γ,
where γ is some predetermined quantile. Moreover, we do not need to im-
pose a specific model on p(y) (Bergstra et al., 2011), but use the empirical
distribution instead.

Applied as the model for the Expected Improvement surrogate, it is shown
in Bergstra et al. (2011) that

EIy∗(x) ∝
(
γ +

g(x)

`(x)
(1− γ)

)−1
,

which coincides with our previous reasoning that minimising g(x)/`(x) is
equivalent towards maximising the Expected Improvement under the TPE
model.

Moreover, the TPE-algorithm is able to handle categorical parameters, unlike
the Gaussian Processes approach. However, as covering this aspect of the

33

Tree-structured Parzen Estimator approach is outside the scope of this thesis,
we refer to Bergstra et al. (2011) for further details.

3.3 Bayesian Artificial Neural Networks
Previously, in Section 3.1 we provided the framework of the frequentist view-
point on Artificial Neural Network, though not mentioned explicitly. We
viewed our model parameters w, being the weights and biases, as point esti-
mates of their true parameter values. These estimates were implicitly derived
as the maximum likelihood estimate (MLE). We will therefore denote it as

wMLE = arg max
w

logP (D |w) = arg max
w

∑
i

logP (yi |xi, w) , (3.20)

and further assume that logP (y |x,w) is differentiable in w in order to solve
for wMLE with gradient descent based methods (Blundell et al., 2015).

In the context of regression problems with a continuous and normally dis-
tributed outcome, maximising the log likelihood for w is equivalent to min-
imising the squared loss, or the MSE for multiple observations, as shown in
(Goodfellow et al., 2016, pp.131-134). This is due to the homogeneous and
normality assumption about our residuals. However, if we would change our
loss function to correspond to the MLE for another sampling distribution,
we would impose different parametric assumptions.

Remark. From now on we will denote the parameter vector as w to include
both the weights and biases instead of p as in Section 3.1. We do this in
order to not confuse parameters with probabilities. Furthermore, we denote a
data pair as Di = (xi, yi), whereby our notation D refers to a whole dataset
of data pairs.

With the Bayesian point of view however, we regard our different param-
eters w to follow some distribution we want to infer. From this posterior
distribution P (w | D) (see Apendix A, Definition A.3), we can get our pre-
dictive distribution of y by computing the expectation value of P (y |x,w)
with respect to this distribution, as

P (y |x) = EP (w | D) [P (y |x,w)] . (3.21)

In the context of working with ANNs, we quickly realise that evaluating the
expectation in Equation (3.21) is often intractable since we would need to
use an ensemble of infinitely many ANNs (Blundell et al., 2015) in order to
calculate the evidence term P (D) by Bayes’ theorem.

34

3.3.1 Estimating the posterior distribution

Instead of calculating the posterior distribution analytically, our approach is
to estimate it with a so called variational posterior distribution; an approach
referred to as variational inference (Blei et al., 2016). In order to estimate a
distribution, we need a metric to quantify the distance between an estimate
q(w) = q(w | D) and the true posterior distribution p(w | D). A commonly
used metric is the so called Kullback Leibler divergence (see Definition A.4
in Appendix A).

Remark. The Kullback Leibler divergence is an example of a more general
class of metrics called f -divergences or Csiszár functions that quantify the
difference between two distributions (Csiszár and P.C. Shields, 2004, sec.4).

By using the Kullback Leibler divergence (denoted DKL) we can write our
optimisation task as

θ̂ = arg min
θ
DKL [q(w | D) ||P (w | D)]

= arg min
θ

(
DKL [q(w | D ||P (w))]− Eq(w | D) [logP (D |w)]

)
,

(3.22)

where we have put the longer calculations in Calculation A.5 of Appendix A.

Following Equation (3.22), we define our objective function in the following
way

F(D, θ) = DKL [q(w | D ||P (w))]− Eq(w | D) [logP (D |w)] . (3.23)

Remark. As Blundell et al. (2015) point out, our objective function is also
known as the (negative) Evidence Lower Bound (ELBO) (Blei et al., 2016).

The vector θ contains the parameters of a given family of distributions,
whereby our method for approximating of the true posterior will be para-
metric. Implicitly, we are using the uniqueness theorem (Gut, 2009, p.59) in
probability theory which states that under certain conditions, a probability
distribution is uniquely defined by its parameters. Even though Blundell
et al. show by their method Bayes by backprop(agation), that the approx-
imating class can be (under some conditions) any family of continuous dis-
tributions, due to ease of computation, we will only work with a diagonal
multivariate normal distribution. By the definition of the covariance ma-
trix, our variational posterior is therefore modelled to let each weight being
independent of the others.

35

3.3.1.1 Learning the variational posterior

Since we have chosen our variational posterior to be within the family of
diagonal multivariate normals, we know from the uniqueness theorem that
our distribution of interest is uniquely defined by its parameters. Therefore,
we wish to infer the vector of means and the vector of variances (since the
covariances are assumed to be 0) such that the variational posterior distri-
bution they define minimises our objective function.

Analogous with Section 3.1.4, learning the parameters of the variational pos-
terior, i.e. solving for θ̂ in Equation (3.22), can be shown to be solved by the
gradient based method Bayes by backprop (Blundell et al., 2015); a small
alteration of the regular backpropagation algorithm. As shown explicitly in
Calculation A.6 of Appendix A, our objective function in Equation (3.23)
can be rewritten as

F(D, θ) = Eq(w | D) [log q(w | D)− logP (w)− logP (D |w)] .

However, in order to use gradient descent, we need to be able to compute

∂

∂θ
Eq(w | D) [log q(w | D)− logP (w)− logP (D |w)] .

Proposition 3.3.1 (Gaussian reparameterisation trick). Let ε be a standard
normally distributed random variable, q(ε) its probability density function
and let w = t(θ, ε) where t(θ, ε) is a deterministic function. Suppose fur-
ther that the variational posterior q(w | θ) is a diagonal multivariate normal
distribution, then

∂

∂θ
Eq(w | θ) [f(w, θ)] = Eq(ε)

[
∂f(w, θ)

∂w
· ∂w
∂θ

+
∂f(w, θ)

∂θ

]
Proof. Proposition A.7 of Appendix A.

Remark. Proposition 3.3.1 is a corollary of the proposition presented in
Blundell et al. (2015) and it is known as the Gaussian reparameterisation
trick (Opper and Archambeau, 2009).

We apply Proposition 3.3.1 to our optimisation problem and let

f(w, θ) = log q(w | θ)− logP (w)− logP (D |w) .

Moreover, to make sure that the standard deviations σ are always positive,
we need to find a transformation that maps the real numbers to the positive

36

reals in order to parametrise the standard deviation as a function of a train-
able parameter defined for all reals. The transformation f(x) = log(1 + ex)
is an example of such an transformation, which is also used in Blundell et al.
(2015). Therefore, we parametrise the standard deviation as σ = log(1 + eρ)
and hence we are able to train ρ for any range.

Lastly, since w ∼ N (µ, σ2I), θ = (µ, ρ)T and σ = log(1 + eρ) we get by the
chain rule that

∂w

∂µ
= 1 ,

∂w

∂ρ
=

ε

1 + exp(−ρ)
,

where ε occurs in the second formula due to the fact that w = t(θ, ε) =
µ+ log(1 + eρ) ◦ ε according to Proposition 3.3.1.

Remark. With the notation ◦ we mean the pointwise multiplication. In other
words, since ε ∼ N (0, I) it is implied by the notation

w = µ+ log(1 + eρ) ◦ ε ,
that w ∼ N (µ, I · log(1 + eρ)2) due to the properties of a (multivariate) nor-
mal distribution.

Concluding this section, we can write the algorithm for updating the Gaus-
sian variational posterior parameters in the following very concise way (as in
Blundell et al. (2015)):

1. Sample ε ∼ N (0, I) .

2. Let

w = µ+ log(1 + exp(ρ)) ◦ ε ,

θ = (µ, ρ)T ,

f(w, θ) = log q(w | θ)− logP (w)− logP (D |w) .

3. Calculate the gradients

∆µ =
∂f(w, θ)

∂w
+
∂f(w, θ)

∂µ
,

∆ρ =
∂f(w, θ)

∂w
· ε

1 + exp (−ρ)
+
∂f(w, θ)

∂ρ
.

37

4. Update the parameters with respect to the learning rate α

µ← µ− α∆µ ,

ρ← ρ− α∆ρ ,

where this scheme is iterated subject to the number of epochs or any other
stopping criterion, as briefed upon in Section 3.1.4.3.

Interestingly, the term ∂f(w, θ)/∂w can be solved by the standard form
of backpropagation (see Section 3.1.4.2) (Blundell et al., 2015), whereby a
smaller alteration1 of the backpropagation algorithm allows for modelling the
parameters w as random variables.

3.4 Dimensionality reduction
In its essence, the phrase curse of dimensionality was originally coined by
Richard Bellman and it generally refers to that many common algorithmic
approaches in optimisation, function approximation, numerical integration
among others becomes exponentially more difficult as the number of dimen-
sions increases (Donoho, 2000). This trend of dealing with high dimensional
data has increased rapidly in recent years (Jolliffe and Cadima, 2016), prob-
ably due to easier access. This emphasises the need to excessively reduce the
number of variables in order to draw meaningful inference, i.e. picking the
most valuable insight. Manual dimensionality reduction for very high dimen-
sional data quickly scales up and almost becomes an impossible mission. For
this reason, the need of algorithmic approaches arises naturally.

Central to all theory covering dimensionality reduction is the so called Mani-
fold Hypothesis (Fefferman et al., 2013; Goodfellow et al., 2016, pp.162-165)
which is an assumption that the important structure of a high dimensional
dataset resides in a lower dimensional topological space (manifold).

3.4.1 Principal Component Analysis

One of the most common approach in modern data analysis is to use a method
called Principal Component Analysis (PCA) (Jolliffe and Cadima, 2016). At
its core, the idea is to remove multicollinearity in a given dataset X by
proper dimensionality reduction. To do this, the PCA algorithm’s objective

1However, this alteration might be noticeably more complex for other families of dis-
tributions than diagonal multivariate normals.

38

is to find linear combinations aX of X such that the new data aX maximises
the variance Var(aX). Implicitly, we rely on the assumption that a variable
with a large variance contains important structure for our dataset (Shlens,
2014). This assumption may however not always be applicable for noisy data.

Proposition 3.4.1 (Eigendecomposition for PCA). The eigenvectors a with
the highest eigenvalue, under the assumption that these vectors also are unit-
norm vectors2 (aTa = 1), are the linear combinations aX of our original data
matrix X that maximise the variance.

Proof. See Proposition A.2 of Appendix A.

Using Proposition 3.4.1, we can compute the number d of so called principal
components by performing the matrix multiplication

T = XA , (3.24)

with A being the eigendecomposition of XTX, a matrix whose column vec-
tors (the eigenvectors) are sorted by the magnitude of their corresponding
eigenvalues (vectors with highest eigenvalues are placed to the left in A).
Therefore, if X is of dimension n × m, by truncating A to contain d < m
column vectors, our transformed data matrix T has dimensions n × d and
hence we have reduced the dimensionality of our data. Obviously, the more
principal components we choose to include in T , by picking a bigger d, the
more variance will be explained endogenously (by the model).

Remark. In this paper, when the term principal component is used, we refer
to it only as the column vectors in T from Equation (3.24) and not the
column vectors in A, as some literature also uses the same term for (Jolliffe
and Cadima, 2016).

Since the covariance matrix XTX has the well-known property of being sym-
metric, it can be proven that its eigenvectors will be orthogonal to each other
(Goodfellow et al., 2016, p.149). This provides a convenient geometrical in-
terpretation of PCA where each principal component corresponds to a direc-
tion and where its eigenvalue answers how much variance lies in that specific
direction. Under the assumption that larger variance implies a clearer struc-
tural difference, our first principal components will pick the most influential
directions.

2Demanding that aTa = 1 is common in order to solve the problem analytically (Jolliffe
and Cadima, 2016).

39

Moreover, PCA has a close relationship with Singular Value Decomposition
that provides a more generalised view on PCA. We will stick to the definition
through the eigendecomposition, but the interested reader can find further
generalisations in (Goodfellow et al., 2016, sec.5.8.1), Jolliffe and Cadima
(2016) and Shlens (2014).

40

Chapter 4

Experiments

4.1 Outline
In this section, the methodology for our empirical results presented in Sec-
tion 4.2, is outlined. The technical aspects in terms of software versions and
references to code snippets can be found in Appendix B. As an overview, our
approach of applying the theory of Bayesian Artificial Neural Networks to
our research problem of interest is listed below. A more detailed explanation
of each step can be found in Section 4.1.1 - 4.1.4.

1. Pre-process the input data

2. Define a prior distribution over the model parameters and define para-
metric assumptions.

3. Specify hyperparameters and their range. Thereafter, perform hyper-
parameter optimisation and compare models by their loss score on the
validation set.

4. Criticise the best performing model by computing the posterior predic-
tive distribution with Monte Carlo methods and compare it with true
response values from the validation dataset.

4.1.1 Data pre-processing

The very first part of the experiments was to process the data in order to
prepare it for further analysis. We began by performing simple manual di-
mensionality reduction; removing 59 variables that did not have any variance
at all and therefore did not add any structural information about the map-
ping. Furthermore, we noted a strong pairwise correlation in between our

41

variables. Out of 6849 variables, 3147 variables were manually removed on
the basis that its correlation coefficient with another variable in the dataset
was exactly 1, in other words they conveyed exactly the same information.
Thereafter, we reduced for multicollinearity by choosing the number d of
principal components with the highest variance (see Section 3.4.1), where
the integer d was subject to hyperparameter optimisation, elaborated fur-
ther on in Section 4.1.3.

To prevent overfitting, we split our dataset of 606 observations roughly ac-
cording to the 80/20-rule referred to in Section 3.1.7.1, by assigning 484
observations for model training and the remaining 122 observations for val-
idation (described in Section 4.1.4). Ideally, we would also analyse a final
test dataset in order to check that the model found from our hyperparameter
optimisation simply was not subject to randomness. However, as we do not
possess too many data observations nor intend to use the final model for
production, we will not include this step of the validation.

Lastly, in order to increase convergence speed, our data was normalised as
described in Section 3.1.6 with the standard score

xi − µi
σi

.

Assuming homogeneity between the training and validation datasets (see
Section 3.1.7.1); the latter was transformed by the sample mean and standard
deviation from the training dataset.

4.1.2 Prior beliefs and model assumptions

We modelled our prior beliefs over our effect parameters (i.e. the weights
and biases, denoted by w) with a multivariate diagonal normal distribution,
where each expected value was set to 0. To use a zero expectation vector
is to be interpreted as we did not want to state beforehand whether each
weight would have a positive or negative effect on its output.

Moreover, since we lack the domain knowledge, we impose no string prior
beliefs in terms of the variances. Instead, we used a relatively wide variance
of 1 as suggested in Blundell et al. (2015), in order to obtain more conservative
subjective beliefs. Subsequently, the prior of our weights (and biases) was

w ∼ N (0, I) .

42

Lastly, as we used a squared loss, we implicitly assumed homoscedasticity
and normality for the residuals, i.e. εi ∼ N (0, σ2) for all i = 1, . . . , n where
n is the number of samples in the validation set.

4.1.3 Hyperparameters and trials

Our approach to find a proper model was composed by letting the set of
parameters, as specified in Table 4.1, be subject to hyperparameter opti-
misation, with corresponding ranges and sampling distributions. Specifying
ranges and sampling distributions for our hyperparamaters can, from the
Bayesian point of view, be interpreted as our prior beliefs about the topol-
ogy of the objective function.

To minimise the dimensionality of our hyperparameter optimisation prob-
lem, we held the batch size fixed to 44 (such that the training set of 484
observations is evenly divisible by the batch size) and the number of epochs
to 10 000. Moreover, we made an assumption about symmetry in between
the hidden layers. In other words, we assumed that the number of neurons
and activation functions were the same through the hidden layers in order to
drastically decrease the dimensionality of our hyperparametric space.

Hyperparameter Range Sampling distribution
Learning rate [10−3, 0.1] Uniform
Hidden layers {1, . . . , 7} Uniform
Activation function {Sigmoid, ReLU} Uniform
Neurons/layer {3, . . . , 200} Uniform
Principal components {20, . . . , 1 000} Uniform
Batch size 44 Constant
Epochs 10 000 Constant

Table 4.1: Initial hyperparameters, their ranges and sampling distributions,
and with symmetry between the hidden layers assumed. Continuous ranges
are denoted with [·, ·] and discrete ranges with {·, . . . , ·}, the latter having
increments of 1 (if not categorical elements).

For the hyperparameter trials, we chose the Tree-Structured Parzen Estima-
tor1 (see Section 3.2.3.2) as our hyperparameter optimisation algorithm and
we performed 1 000 trials. Each trial was performed by training a model

1With γ = 0.25 to determine y∗.

43

with a given set of hyperparameters from Table 4.1 and evaluating the loss
value for each configuration on the validation set to be used as the criterion
of model selection.

4.1.4 Model criticism

While a numeric loss value enables us to compare different models under the
assumption that lower losses yield better performance in terms of predictive
accuracy, these numeric values themselves are not interpretable in an abso-
lute sense. Instead, we are interested in criticising the predictive distribution
that can be interpolated for a given model.

However, evaluating a predictive distribution for a given model is not as
straightforward as for the frequentist approach of fixed point estimates for
the true value of the expected outcome. In the frequentist setting, one can
easily evaluate the model accuracy with the MSE metric, for instance, by
comparing the predicted value with the true value for the whole validation
dataset. With the Bayesian viewpoint however, evaluating the accuracy will
arguably not be as straightforward since our view of the prediction is in terms
of a probability density function.

One approach would be to compute the mode of the distribution to represent
a single point estimate similar to frequentist methods and compare the accu-
racy accordingly. This is commonly referred to as the maximum-a-posteriori
(MAP) estimate (Goodfellow et al., 2016, pp.138-139). However, using the
MAP estimate is arguably not reflecting the aims of the Bayesian viewpoint.
While it can provide some insights about the model accuracy, we are trun-
cating a lot of information inherent in the predictive distribution if only the
MAP estimate is used.

Furthermore, if the model outputs a predictive distribution with a wide vari-
ance, we can interpret the output as a high degree of uncertainty about the
predicted outcome, which in the context of drug predictions is very valuable
information and not something we would discard as an undesirable output.
Instead, another appealing property of our model would be to correctly as-
sign a credibility interval, within which we could feel confident about the true
value being located. To evaluate such a credible interval, one could approx-
imate the predictive distribution by Monte Carlo methods and interpolate
the density function to obtain percentiles that define a satisfactory credi-
bility interval. In order to evaluate the model’s ability of accurately depict
predictive uncertainty, we could compute the number of times the true label

44

is within the constructed credibility interval. The corresponding frequency
would ideally be approximately the same as the nominal coverage probability
we assign to the interval.

In order to evaluate the final model’s performance, we chose to use the fre-
quency of how often the true target values in the validation dataset was within
a 95% credible interval constructed by the empirical distribution based on
10 000 Monte Carlo simulations. Furthermore, we used the MAP estimate,
also based on 10 000 Monte Carlo simulations, in order to compute the MSE
as for frequentist methods.

4.2 Results
After performing our hyperparametric trials as described in Section 4.1, we
found the model presented in Table 4.2 which we will refer to as the final
model.

Hyperparameter Final model
Learning rate 0.09
Hidden layers 7
Activation function Sigmoid
Neurons/layer 3
Principal components 369
Loss value 0.476
MSE 0.353
Frequency for y ∈ CI95% 0.426

Table 4.2: The characteristics for the final model in terms of its hyperpa-
rameters we optimised for. Note that the accuracy metrics are subject to
randomness and may alter slightly between different runs. The notation
y ∈ CI95% means the percentage of times the true value y, in the validation
dataset, was inside the empirical 95% credibility interval.

45

Chapter 5

Discussion

5.1 Interpreting the results
As the reader might have realised by this point, modelling our problem of
interest can be done in countless different ways in terms of the hyperparamet-
ric configuration and subjective assumptions such as the prior distribution.
Therefore, we want to emphasise that our approach in terms of the empirical
experiments in Chapter 4 is merely to be seen as one of many ways of con-
structing these type of models. While the abstractions of the class of Neural
Networks allow for generalisations of the more well-known single layer regres-
sion models, it comes with a great cost of the complexity for model fitting
due to a largely increased hyperparameter space. Furthermore, since the
assumption about symmetry in between the hidden layers, we naively disre-
gard the effect of each layer’s hyperparametric configuration. For instance,
the number of optimal neurons and activation functions might alter notice-
ably throughout the hidden layers of the network. This is one immediate
suggestion for potential model improvement.

However, if we consider the final model returned by our hyperparameter op-
timisation in Chapter 4, our evaluation metrics suggest that the accuracy
of our model is arguably very poor. This is indicated both in terms of the
one point predictors based on the MAP estimates (see Section 4.1.4) and
accurately approximating the probability that the credibility interval covers
the true value.

Moreover, it is noticeable that two of our hyperparameters for the final model
fell within the endpoints of our specified range for the hyperparameter space;
our prior beliefs about the hyperparameters. The number of neurons per layer

46

was chosen as 3 and the number of hidden layers as 7; the lower and upper
bounds from our ranges depicted in Table 4.1, respectively. This suggests
that we perhaps should revise our prior beliefs to increase the range of our
search space, but the inferred hyperparameters could also be a consequence
of the symmetry assumption. Another noteworthy aspect of the result is
the somewhat drastic dimensionality reduction from the input layer of 369
principal components towards 3 latent variables in the first (and upcoming)
hidden layers. While it is hard to directly reason about the feasibility of such
a transform, we see this aspect as something to track for further work when
liberating the model from the symmetry assumption.

Another aspect to mention is the parametric assumption about homoscedas-
tic and normality for our residuals. Since we did not find our proof-of-concept
model from Chapter 4 to perform satisfactory in terms of its predictive abil-
ity, we did not see the purpose of evaluating the model further. In a real
setting however, testing for normality and homogeneity of variance would be
a crucial step before accepting the model as satisfactory for production use.

For production usage, we would also like to extend our validation phase of
the model to cross validate the our chosen metric with the K-Fold Cross-
Validation method for instance (see Section 3.1.7.2 and Algorithm 2 of Ap-
pendix A) in order to feel more confident about our model evaluation. As
mentioned earlier, this is clearly a trade-off between time complexity for the
computations and evaluation accuracy.

Recall the assumption that all ADME values can be inferred with good accu-
racy from the distribution parameter value (the letter D in the abbreviation
ADME). It is worth mentioning that we do still not know how this assump-
tion relates in practice in terms of fitting the full four-dimensional1 problem
of interest. Furthermore, one should also be careful about extrapolating any
empirical results based on (parts of) the ADME prediction problem to qual-
itative questions regarding drug predictions. We want to emphasise that we
do not have the domain knowledge to reason about the more precise impact
of ADME predictions in terms of qualitative inference for drug predictions
or drug discovery.

Lastly, an important trade-off to mention when interpreting the results of
models within the class of Artificial Neural Networks is the ability of inter-

1Recall from Section 1.3 that each element in the (A,D,M,E)T -vector could be multi-
dimensional in the general setting.

47

preting the effect parameters. For more complex models as for ANNs, it is
much harder, arguably even intractable, to directly interpret the most impor-
tant explanatory variables for the response variable compared to single layer
models. In the multiple regression setting for instance, the model definition
allows for much clearer interpretation of the effect parameters as how much
each explanatory variable impacts the response. However, when propagating
the output from the first layer in an ANN model into a similar affine opera-
tion in the upcoming layer, we lose much of the ability for easy interpretation
of the effects. Especially since other rather complex operations such as PCA,
Z-normalisation and non-linear activation functions are added. Therefore, if
the introduction of hidden layers, i.e. what usually characterises the ANN
models, would perform noticeably better than single layer models; it comes
with the trade-off of not being able to relatively easy interpret the model
parameters. Although explanatory models as single layer regression models
would never account for causal inference, ANN models would still be a more
questionable choice in problem domains where interpretation is important.

5.2 Improving our model
As the scope of our work was heavily weighted towards providing the theo-
retical framework for using the class of Bayesian Artificial Neural Networks
for predictive modelling, we see a lot of interesting aspects for model im-
provement purposes as suggestions for further work. In the previous section,
we talked about the symmetrical hyperparametric assumption and briefed
upon testing its validity. One approach would be to hold the optimal num-
ber of hidden layers fixed throughout a second hyperparameter optimisation
phase where we allow the number of neurons and activation functions differ
between layers. However, this would presuppose that the optimal number of
hidden layers would be the same for the two different optimisation phases. In
the light of computationally expensive trials, there exists a strong incentive
to reduce the dimensionality of our hyperparameter vector by imposing some
assumptions based on practical experience.

Moreover, the results from our hyperparameter optimisation algorithm are
by no means any guarantee that the returned model is near optimal in the
specified hyperparametric space. For further studies, it would be interesting
to compare the performance of different hyperparameter optimisation algo-
rithms, to potentially identify better models. It is perhaps also obvious that
further trials with any algorithm would yield better chances of finding better
models.

48

Other immediate points of interest we target as potential improvement areas
are the choice of training algorithm (Goodfellow et al., 2016, pp.306-317),
other types of activation functions (Goodfellow et al., 2016, pp.195-197) and
Batch Normalisation (Ioffe and Szegedy, 2015). Especially, we find Batch
Normalisation interesting since Ioffe and Szegedy (2015) argue that it im-
proves the capability of fitting deeper models, in other words models with
a higher number of hidden layers. Due to the deep structure (many hidden
layers) for our final model, we find the idea of layerwise normalisation inter-
esting as a subject for further studies. However, we feel modest towards the
rich variety of other extensions of our model that could potentially be proven
to increase performance.

Furthermore, as briefed upon in Section 3.3.1, the variational posterior q(w | D)
does not necessarily have to be picked within the family of diagonal multi-
variate normals, as have been used for our work. However, other types of
distributions may drastically change the complexity of the learning scheme
that was covered in Section 3.3.1.

5.2.1 Prior beliefs

As mentioned before, Bayesian inference is dependent on the specified prior
distribution that is supposed to reflect our subjective beliefs. In terms of
putting prior beliefs upon the weights, this can be a tricky quest even for a
person with extensive domain knowledge. Our approach of defining a stan-
dard normal distribution for each weight, therefore also specifying a-priori
independence between our weights (and biases), is questionable regarding its
accuracy. As described in Section 4.1.2, we chose a somewhat simple prior dis-
tribution with a relatively large variance to reflect our lack of domain knowl-
edge. However, we believe this is an important area for discussion whether
our prior can be assumed to be accurate and if modelling a prior distribution
over the weights is valid. Regarding the validity, it is worth mentioning that
a somewhat analogous problem also regards the frequenstist viewpoint due
to the problem of initialising the parameters (see Section 3.1.4.3), although
arguably not a typical issue in maximum likelihood estimation. This prob-
lem is due to the fact that even frequentist ANNs are sensitive towards their
initial parameter values, specifically when using Stochastic Gradient Descent
as the learning algorithm (Ioffe and Szegedy, 2015).

Furthermore, Blundell et al. (2015) suggest a so called Scale Mixture Prior

49

defined as

P (w) =
n∏
i=1

[
πN (wi | 0, σ2

1) + (1− π)N (wi | 0, σ2
2)
]
, (5.1)

where N (x |µ, σ2) denotes a normal density function evaluated at x. There-
fore, we can interpret this Scale Mixture Prior as two separate normal distri-
butions mixed together in accordance with the mixing probability parameter
π ∈ [0, 1]. Moreover, the authors also advise that σ1 > σ2 and σ2 � 1 in
order to put much of the density around the mean value of 0, but still account
for prior uncertainty by adding a second component with a larger variance.
By still assuming independence between the different model parameters in
w, we can define the multivariate Scale Mixture Prior as the product of the
marginal density functions as in Equation (5.1).

One way of solving for the parameters π, σ1 and σ2 that define the Scale
Mixture Prior distribution would be through hyperparameter optimisation.
However, approaches where the distribution parameters in the prior distribu-
tion is determined empirically is known as empirical Bayes which validity is
sometimes questionable (Gelman, 2008). Furthermore, it was found empir-
ically that tuning prior parameters under training yielded worse results for
the Bayes by backprop algorithm (Blundell et al., 2015). Despite the prob-
lem of choosing the prior parameters, as the algorithm is free to pick a prior
distribution in any family of distributions, the Scale Mixture Prior would
account for another interesting approach of modelling our prior beliefs.

5.2.2 Weighted objective

As we saw in Equation (3.23) from Section 3.3.1, our objective function that
we would like to minimise contains two terms; the likelihood cost and the
Kullback Leibler divergence between a given variational posterior to optimise
and the prior distribution. The likelihood cost is, besides viewing our model
parameters as random variables, the one used for standard forms of non-
Bayesian ANNs. The Kullback Leibler divergence term has moreover a very
interesting interpretation of punishing models that differ too much from our
prior beliefs. Given that our subjective beliefs are somewhat accurate, this
term could be viewed as an implementation to account for model complexity
in the optimisation phase, whereby we implicitly apply the principle of Oc-
cam’s razor. However, since our objective is a sum of two terms, we propose
for further work to look into parameterisations of these two terms in order
to weight their importance against each other. In Blundell et al. (2015), the

50

authors suggest using a parameterisation that is dependent on which phase
of the learning we are within. They suggest multiplying the Kullback Leibler
term of Equation (3.23) with a parameter

πi =
2M−i

2M − 1
,

where i ∈ {1, . . . ,M} is the current batch (see Section 3.1.4.1). This scheme
allows the model to be heavily influenced by the Kullback Leibler term (or the
complexity cost) initially for the first batches, but then later on be influenced
by the likelihood cost, i.e. the data dependent term.

5.2.3 Heteroscedasticity

As briefed upon both in Section 3.3 and Section 5.1, we made an assump-
tion about homoscedasticity for our sampled sequence of random variables,
in other words the sampling distribution of the outcome. While the ho-
moscedastic assumption allows for an easier objective function in terms of
calculating the likelihood cost, it is a pretty strong assumption which we
would need to test the validity of upon further modelling. One less strong
assumption we particularly find interesting is the heteroscedastic one where
the residual variance is allowed to alter between different areas of the data
domain. We believe this area would be particularly interesting to investi-
gate further, not only due to arguably more reasonable model assumptions
in many cases, but due to the nature of how Bayesian methods really shine
in terms of production value. If we consider the regression setting with an
unbounded outcome variable, a heteroscedastic model viewpoint would allow
for less confident extrapolations in areas where observed data is sparse, but
converge towards tighter predictive beliefs in data rich parts of the domain.
In order to implement the heteroscedastic gaussian model, we would need to
change or (negative) loglikelihood towards

− logP (D |w) = log σ(x) +
(y − µ(x))2

2σ2(x)
+ C ,

where C is some constant. This is according to the paper by Lakshmi-
narayanan et al. (2016). A similar approach can also be found in (Gal, 2016,
sec.4.6).

Concluding the discussion regarding heteroscedasticity, we believe similarly
to Gal, that heteroscedastic models can be very useful for problems where
the residual error variance change throughout the explanatory domain. This

51

could arguably be useful in the context of drug discovery when it is of par-
ticular interest not to be too confident about extrapolating empirical results
over less explored parts of the domain.

5.3 Working with dimensionality
While Donoho provides greater theoretical arguments on the topic regard-
ing the blessing of dimensionality in Chapter 8 of Donoho (2000), we will
brief upon this topic a bit more heuristically. Although the curse of dimen-
sionality (see Section 3.4) certainly applies to a lot of real-world situations
and hence makes data analysis exponentially harder, arguably more often in
times with increased access to data, it also provides a greater potential for effi-
cient variable selection. Previously, a more common scenario for statisticians
was to work with datasets characterised by a smaller number of variables,
but still potentially many observations (Donoho, 2000, chap.3). However, in
the 21st century, a more common scenario is to encounter datasets with a
high-dimensional variable space. Subsequently, problems regarding dimen-
sionality reduction and the Manifold Hypothesis (see Section 3.4) is arguably
more important than ever. Nonetheless, with the topological perspective of
the Manifold Hypothesis, an increased dimensionality could possibly allow
statisticians and analysts to more efficiently target manifolds with greater
explanatory capacity for a given task. Therefore, it illustrates the potential
of the development of modern data analysis.

5.3.1 Instabilities of PCA and more robust alternatives

By using a standard form of PCA, covered in Section 3.4.1, we are implic-
itly assuming that the lower dimensional manifold according to the Manifold
Hypothesis is linear, since PCA only computes linear combinations of our
original data. While this approach might work for many applications and
simplifies the theory, it can still be a questionable assumption topologically.

Another approach for investigating other types of non-linear manifolds is to
use Kernel PCA, which applies a Kernel (Murphy, 2012, chap.14) (briefly
described in Section 3.2.3.1) that can be viewed as a parametrisation of the
operation of matrix multiplications. However, as we have previously encoun-
tered, any generalisation comes with the trade-off of having more alternatives
to cover. In the context of Kernel PCA, we would also need to optimise for
the best Kernel-method and its parameters; increasing our hyperparametric
space further.

52

5.4 Generative models

5.4.1 The reversed regression problem

For this paper, we have solely been dealing with the regression problem of
finding a function F : X → Y , where X would denote a given drug and Y its
ADME attributes, or a subset of them. However, as mentioned in Section 5.1,
interpreting the results of this high dimensional regression problem with a
fairly complicated model can be challenging even for the most experienced
analyst. In the context of drug discovery, one would beyond accurately be
predicting the effects of a given drug in terms of pharmacokinetics, want to
infer the properties of a new drug for a given disease or set of symptoms.
Assuming that the ADME attributes explain the qualitative pharmacological
(focused solely on pharmacokinetics) effects of a drug, then the process of
finding new better drugs for a given area of treatment corresponds to the
regression problem of finding F ′ : Y → X, i.e. mapping the ADME values to
a potential drug.

5.4.2 Variational Autoencoders

One method to solve for this reversed problem is called Variational Autoen-
coders and is an unsupervised approach (i.e. not having true labels or outputs
to compare its results with). This method tries to find a latent space Z, that
as compactly and well as possible describes the properties of its input X.
Then this input is reconstructed again into X ′ where the task is to minimise
a norm ||X −X ′||. Formally, we can view the task as first finding a function
F : X → Z and then another function G : Z → X ′, where X ′ ideally reflects
the key attributes of X. These functions F and G are approximated with
ANNs, which by Section 3.1.5 are universal function approximators, if tuned
correctly. Moreover, since in our application (and other common applica-
tions), we want to sample many candidates, Variational Autoencoders model
the latent space to be a distribution instead of fixed values. Interestingly, the
idea of estimating this true distribution over our latent space is also based on
variational inference, as we described in Section 3.3.1. The interested reader
will find more elaborate explanations in (Goodfellow et al., 2016, pp.696-699).

53

x1

x2

x3

x4

x5

µ1

µ2

µ3

σ2
1

σ2
2

σ2
3

x
′
1

x
′
2

x
′
3

x
′
4

x
′
5

Input layer Output layer

Figure 5.1: The architecture of a Variational Autoencoder with normally
distributed latent variables. Note that the dimensionality of each layer could
be arbitrary in the general case.

Assuming we could successfully construct a Variational Autoencoder for our
problem of interest, we would then have solved the first partial problem of
the reversed regression problem. At this stage, we would like to find a map-
ping between our latent space Z and the true ADME values, denoted as Y .
This amounts to finding a function H : Y → Z, which is then composed
with G. If successful, we would have solved the inverted regression problem
F ′ : Y → X by means of G ◦H : Y → X ′.

Naturally, a central problem would be to test for biological feasibility of the
generated features for the output drug. However, if we assume this task could
be tackled with some, not too computationally expensive, form of brute force
approach, many samples could be drawn from the distribution over the latent
variables to later be tested for feasibility.

Similar approaches with using variants of the Variational Autoencoder, ex-
tended with a latent space mapping from the labelled outcome, have been
made by Gómez-Bombarelli et al. (2016), Kadurin et al. (2017) and Ram-
pasek et al. (2017).

Moreover, if choosing to model the reversed regression problem with this sug-
gested approach, it is important to realise that an implicit model assumption
would be that minimising the norm of ||X −X ′|| implies that similar molec-
ular properties are shared by X and X ′. As we do not have the domain

54

knowledge nor empirical results to rely on, this approach should rather be
interpreted as merely a suggestion for further analysis, given that the re-
versed regression problem is of interest.

Lastly, besides being used for solving for the reversed regression problem,
generative models like the Variational Autoencoder could also be used for
increasing the already limited training set in order to improve our model’s
performance of generalising its function approximation to unseen data. It
would be important here, however, not to include these augmented or boot-
strapped observations in our validation or test dataset in order to avoid biased
inference.

5.5 Other methods for measuring uncertainty
Concluding the discussion chapter, we want to point out that although the
variational inference approach of depicting a Neural Network’s predictive
uncertainty is interesting, it is by no means the only one; there exist other
methods, based on both frequentist and Bayesian statistics, that could po-
tentially also be used for our problem of depicting predictive uncertainty.

Another approach would be Markov Chain Monte Carlo (MCMC) methods
such as the Metropolis Hastings Algorithm (Held and Bov, 2013, sec.8.4)
to approximate the true posterior distribution by sampling. One problem
however with MCMC methods however is that determining convergence and
checking for model assumptions will in many cases be problematic (Gelman,
2008).

As a final note, in Khosravi et al. (2011), the authors describe and compare
empirically other alternatives based on the Delta method, Bayesian bootstrap
and Mean-Variance Estimation. Similar approaches of comparing variational
inference based BANNs with other methods for modelling predictive uncer-
tainty, could be an interesting approach for future research.

55

Chapter 6

Conclusion

The purpose of this work was to provide the theoretical framework of using
Bayesian Artificial Neural Networks (BANNs) for predictive modelling in
domains like drug discovery where it is crucial to accurately account for
predictive uncertainty. We did this by assuming that the specific problem of
predicting drug effects was representative to this larger class of problems and
briefed upon its usability on empirical grounds under some simplifications.
Although the scope of the thesis was never to find a state-of-the-art model,
our results did not directly prove the applicability of this class of models to
drug predictions. Nonetheless, we feel very humble towards the complexity
of fitting near-optimal BANN models where our experimental work is simply
to be seen as one out of many ways to constructing these type of models.
Furthermore, it is with great excitement we look forward to see future work
in the field of probabilistic modelling within this type of domain.

56

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems, 2015.
URL https://www.tensorflow.org/. Software available from tensor-
flow.org.

Y. Bengio and Y. Grandvalet. No Unbiased Estimator of the Variance
of K-Fold Cross-Validation. Journal of Machine Learning Research,
5:1089–1105, 2004. URL http://dblp.uni-trier.de/db/journals/
jmlr/jmlr5.html#BengioG04.

J. Bergstra and Y. Bengio. Random Search for Hyper-parameter Opti-
mization. J. Mach. Learn. Res., 13:281–305, Feb. 2012. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=2188385.2188395.

J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox. Hy-
peropt: a Python library for model selection and hyperparameter opti-
mization. Computational Science Discovery, 8(1):014008, 2015. URL
http://stacks.iop.org/1749-4699/8/i=1/a=014008.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for Hyper-Parameter Optimization. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 2546–2554. Cur-
ran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization.pdf.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference:
A Review for Statisticians. ArXiv e-prints, Jan. 2016.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight
Uncertainty in Neural Networks. ArXiv e-prints, May 2015.

Csiszár and P.C. Shields. Information Theory and Statistics: A Tutorial.
Foundations and Trends in Communications and Information Theory, 1
(4):417–528, 2004.

57

https://www.tensorflow.org/
http://dblp.uni-trier.de/db/journals/jmlr/jmlr5.html#BengioG04
http://dblp.uni-trier.de/db/journals/jmlr/jmlr5.html#BengioG04
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

A. Czarnik and H.-Y. Mei. 2.12 - How and Why to Apply the Lat-
est Technology*. In J. B. Taylor and D. J. Triggle, editors, Com-
prehensive Medicinal Chemistry {II}, pages 289 – 557. Elsevier, Ox-
ford, 2007. ISBN 978-0-08-045044-5. doi: https://doi.org/10.1016/
B0-08-045044-X/00048-1. URL https://www.sciencedirect.com/
science/article/pii/B008045044X000481.

D. L. Donoho. High-dimensional data analysis: The curses and blessings
of dimensionality. In AMS CONFERENCE ON MATH CHALLENGES
OF THE 21ST CENTURY, 2000.

C. Fefferman, S. Mitter, and H. Narayanan. Testing the Manifold Hy-
pothesis. ArXiv e-prints, Oct. 2013.

Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cam-
bridge, 2016.

A. Gelman. Objections to Bayesian statistics. Bayesian Anal., 3(3):
445–449, 09 2008. doi: 10.1214/08-BA318. URL https://doi.org/10.
1214/08-BA318.

F. Giordano, W. Fox, and S. Horton. A First Course in Mathematical
Modeling. Cengage Learning, 2013. ISBN 9781285531762.

X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural
Networks. In G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learning Research, pages
315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL
http://proceedings.mlr.press/v15/glorot11a.html.

R. Gómez-Bombarelli, D. K. Duvenaud, J. M. Hernández-Lobato,
J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-
Guzik. Automatic chemical design using a data-driven continuous rep-
resentation of molecules. CoRR, abs/1610.02415, 2016. URL http:
//arxiv.org/abs/1610.02415.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

A. Gut. An Intermediate Course in Probability. Springer Publish-
ing Company, Incorporated, 2nd edition, 2009. ISBN 1441901612,
9781441901613.

58

https://www.sciencedirect.com/science/article/pii/B008045044X000481
https://www.sciencedirect.com/science/article/pii/B008045044X000481
https://doi.org/10.1214/08-BA318
https://doi.org/10.1214/08-BA318
http://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1610.02415
http://www.deeplearningbook.org

I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr.
Competitive Baseline Methods Set New Standards for the NIPS 2003
Feature Selection Benchmark. Pattern Recogn. Lett., 28(12):1438–1444,
Sept. 2007. ISSN 0167-8655. doi: 10.1016/j.patrec.2007.02.014. URL
http://dx.doi.org/10.1016/j.patrec.2007.02.014.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New
York, NY, USA, 2001.

L. Held and D. S. Bov. Applied Statistical Inference: Likelihood and
Bayes. Springer Publishing Company, Incorporated, 2013. ISBN
3642378862, 9783642378867.

R. Hill. Drug Discovery and Development - E-Book: Technology in
Transition. Elsevier Health Sciences, 2012. ISBN 9780702053160. URL
https://books.google.se/books?id=jarRAQAAQBAJ.

J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79(8):2554–2558, 1982. ISSN 0027-8424. URL http://www.
pnas.org/content/79/8/2554.

K. Hornik. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural Netw., 4(2):251–257, Mar. 1991. ISSN 0893-6080. doi:
10.1016/0893-6080(91)90009-T. URL http://dx.doi.org/10.1016/
0893-6080(91)90009-T.

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. ArXiv e-prints,
Feb. 2015.

I. T. Jolliffe and J. Cadima. Principal component analysis: a review and
recent developments. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 374(2065),
2016. ISSN 1364-503X. doi: 10.1098/rsta.2015.0202. URL http://
rsta.royalsocietypublishing.org/content/374/2065/20150202.

A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper, and A. Zhavoronkov.
druGAN: An Advanced Generative Adversarial Autoencoder Model for
de Novo Generation of New Molecules with Desired Molecular Properties
in Silico. Molecular Pharmaceutics, 14(9):3098–3104, 2017. doi: 10.
1021/acs.molpharmaceut.7b00346. URL https://doi.org/10.1021/
acs.molpharmaceut.7b00346. PMID: 28703000.

59

http://dx.doi.org/10.1016/j.patrec.2007.02.014
https://books.google.se/books?id=jarRAQAAQBAJ
http://www.pnas.org/content/79/8/2554
http://www.pnas.org/content/79/8/2554
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://rsta.royalsocietypublishing.org/content/374/2065/20150202
http://rsta.royalsocietypublishing.org/content/374/2065/20150202
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://doi.org/10.1021/acs.molpharmaceut.7b00346

A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya. Compre-
hensive Review of Neural Network-Based Prediction Intervals and New
Advances. Trans. Neur. Netw., 22(9):1341–1356, Sept. 2011. ISSN 1045-
9227. doi: 10.1109/TNN.2011.2162110. URL http://dx.doi.org/10.
1109/TNN.2011.2162110.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scal-
able Predictive Uncertainty Estimation using Deep Ensembles. ArXiv
e-prints, Dec. 2016.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp.
In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of
a 1996 NIPS Workshop, pages 9–50, London, UK, UK, 1998. Springer-
Verlag. ISBN 3-540-65311-2. URL http://dl.acm.org/citation.cfm?
id=645754.668382.

R. McFadden. Introducing Pharmacology for Nursing and Healthcare.
Pearson, 2nd edition, 2013. ISBN 9781447927754, 9781447927785.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012. ISBN 0262018020, 9780262018029.

M. A. Nielsen. Neural networks and deep learning, 2018. URL http:
//neuralnetworksanddeeplearning.com/.

M. Opper and C. Archambeau. The Variational Gaussian Approx-
imation Revisited. Neural Computation, 21(3):786–792, 2009. doi:
10.1162/neco.2008.08-07-592. URL https://doi.org/10.1162/neco.
2008.08-07-592. PMID: 18785854.

L. Rampasek, D. Hidru, P. Smirnov, B. Haibe-Kains, and A. Golden-
berg. Dr.VAE: Drug Response Variational Autoencoder. ArXiv e-prints,
June 2017.

C. Samuelsson. Bayesian Neural Networks with TensorFlow. https:
//github.com/csamuelsson/bayesianNN, 2018.

J. Shlens. A Tutorial on Principal Component Analysis. CoRR,
abs/1404.1100, 2014. URL http://arxiv.org/abs/1404.1100.

S. Sonoda and N. Murata. Neural Network with Unbounded Activations
is Universal Approximator. CoRR, abs/1505.03654, 2015. URL http:
//arxiv.org/abs/1505.03654.

60

http://dx.doi.org/10.1109/TNN.2011.2162110
http://dx.doi.org/10.1109/TNN.2011.2162110
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1162/neco.2008.08-07-592
https://doi.org/10.1162/neco.2008.08-07-592
https://github.com/csamuelsson/bayesianNN
https://github.com/csamuelsson/bayesianNN
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1505.03654
http://arxiv.org/abs/1505.03654

Chapter

Appendices

Appendix A
This section tables, pseudo code, contains definitions, theorems, theoretical
arguments and calculations referred to in the main chapters of this paper.

Key characteristics of data
Number of variables 6909
Number of observations 606
Minimum value for all explanatory variables 0
Maximal value for all explanatory variables 12
Minimum value for the response variable -1.15
Maximal value for the response variable 2.15
Average value for the response variable 0.004
Percentage of zero elements 99.2 %
Condition number 2.078 · 1016

Table A.1: Key characteristics of the molecular dataset used for our empirical
experiments.

Definition A.1 (Mean Squared Error). LetN be the number of observations
in a given dataset, yi the ith true value and ŷi the ith predicted value. Then
the Mean Squared Error (MSE) is defined as

MSE :=
1

N

N∑
i=1

(yi − ŷi)2 .

61

Algorithm 2: K-fold Cross-Validation.
Data: Pre-chosen number of folds K, dataset X where xi is the ith

element, a learning algorithm A (outputs a model, i.e. a
learned function) with fixed hyperparameters, and a loss
function L that returns an error given a function evaluation
and a single observation.

Result: Estimates the generalisation error by averaging test errors for
K iterations according to the K-fold Cross-Validation
scheme.

initiate empty error array;
initiate empty function array;
for i from 1 to K by 1 do

functioni := A(X \ Xi);
for xj in Xi do

errorj := L(functioni, xj);
end

end
return sum(error)/K

Proposition A.2 (Eigendecomposition for PCA). The eigenvectors a of
XTX with largest eigenvalue, under the assumption that these vectors also
are unit vectors, are the linear combinations aX of our original data matrix
X that maximise the variance.

Proof. Firstly, we note that Var(aX) = aTXTXa by using basic variance
properties. Therefore, we can equivalently rewrite our optimisation problem
to find vectors a such that we maximise the quadratic form aTXTXa. Using
the Lagrange multiplier method (Giordano et al., 2013, p.588) we get, after
differentiating the objective function of the Lagrange method, that

XTXa− λa = 0⇔ XTX = λa ,

from which we recognise the eigendecomposition of XTX, where a is the
eigenvector (that from our restriction also is a unit vector) and λ its eigen-
value. Since Var(aX) = aTXTXa = λaTa = λ by our restriction; maximising
the variance for our linear combination implies that the eigenvector a with
the largest eigenvalue will have the largest variance. Here we are using the
fact that XTX is a semidefinite matrix (since the variance and covariance is
non-negative), hence all its eigenvalues are non-negative.

62

Definition A.3 (Posterior distribution). Let p(θ) be the prior probability
density function, p(x | θ) the density for the likelihood of the sampled data
x. Then the density for the posterior distribution is given by

p(θ |x) :=
p(x | θ)p(θ)∫∞

−∞ p(x | θ′)p(θ′)dθ′
,

where θ′ is a dummy (placeholder) variable. The discrete case is analogous,
simply requiring us to replace the integral by a sum.

Definition A.4 (Kullback Leibler distance). The Kullback Leibler distance
or divergence between two distributions P1(X) and P2(X)
(denoted DKL(P1(X) ||P2(X))) is defined as

DKL(P1(X) ||P2(X)) :=

∫ ∞
−∞

p1(x) log
p1(x)

p2(x)
dx ,

where pi(x) is the probability density function of Pi(X). The discrete case is
analogous; replacing the integral by a sum.

Calculation A.5 (Deriving the optimisation task). We start of using the
definition for the Kullback Leibler distance (see Definition A.4)

θ̂ = arg min
θ
DKL [q(w | θ) ||P (w | D)] = arg min

θ

∫ ∞
−∞

q(w | θ) log
q(w | θ)
P (w | D)

dw ,

thereafter we use the proportional argument following from Bayes’ theorem to
substitute P (w | D) with P (D |w)P (w) (this follows since we are minimising
in respect to θ and the denominator P (D) does not depend on θ). Given this
substitution, we then use the logarithmic laws to conclude that

θ̂ = arg min
θ

∫ ∞
−∞

(
q(w | θ) log

q(w | θ)
P (w)

− q(w | θ) logP (D |w)

)
dw .

From here, the trick is to recognise the first term in our integrand as the
Kullback Leibler divergence DKL(q(w | θ) ||P (w)) and the second term as
the expected value of log(P (D |w)) with respect to q(w | D). Therefore, we
can write

θ̂ = arg min
θ

(
DKL [q(w | D ||P (w))]− Eq(w | D) [logP (D |w)]

)
,

whereby we have shown the equivalence.

63

Calculation A.6 (Rewriting the objective function as an expectation). By
the definition of the optimisation task (Equation (3.22)) and the Kullback
Leibler distance (Definition A.4) to get that

θ̂ = arg min
θ

[DKL (q(w | D) ||P (w | D))] = arg min
θ

(∫ ∞
−∞

q(w | D) log
q(w | D)

P (w | D)

)
.

Thereafter, by the definition of an expected value it holds that

θ̂ = arg min
θ
Eq(w | D) [log q(w | D)− logP (w)− logP (D |w)] ,

where we used that P (w | D) ∝ P (w)P (D |w) by Bayes’ theorem and substi-
tuted accordingly in our minimisation task. Subsequently, it follows that

F(D, θ) = Eq(w | D) [log q(w | D)− logP (w)− logP (D |w)] ,

since θ̂ = arg minθ F(D, θ).
Proposition A.7 (Gaussian reparameterisation trick). Let ε be a standard
normally distributed random variable, q(ε) its probability density function
and let w = t(θ, ε) where t(θ, ε) is a deterministic function. Suppose fur-
ther that the variational posterior q(w | θ) is a diagonal multivariate normal
distribution, then

∂

∂θ
Eq(w | θ) [f(w, θ)] = Eq(ε)

[
∂f(w, θ)

∂w
· ∂w
∂θ

+
∂f(w, θ)

∂θ

]
Proof. Starting with the definition of an expected value we obtain

∂

∂θ
Eq(w | θ) [f(w, θ)] =

∂

∂θ

∫ ∞
−∞

q(w | θ)f(w, θ)dw

=

∫ ∞
−∞

∂

∂θ
[q(w | θ)f(w, θ)] dw .

(A.1)

Since q(w | D) is assumed to be diagonally Gaussian, each weight will be
marginally Gaussian under the assumption of the variational distribution.
Subsequently, we can substitute q(w | θ) dθ with q(ε) dε in Equation (A.1),
whereby we get that∫ ∞

−∞
q(ε)

∂f(w, θ)

∂θ
dε = Eq(ε)

[
∂f(w(θ, ε), θ)

∂θ

]
= Eq(ε)

[
∂f(w, θ)

∂w
· ∂w
∂θ

+
∂f(w, θ)

∂θ

]
,

64

and in the very last step we used the chain rule.

Appendix B
This section is devoted to the technical implementation of our work. The
software configurations we used are displayed in Table B.2. Lastly, all the
used programs for our work can be found in Samuelsson (2018), where the
dataset is not open for the public due to confidentiality reasons.

Software Version Nightly version
Python 3.5.2
TensorFlow (Abadi et al., 2015) 1.9.0 20180424
TensorFlow Probability 0.0.1 20180426
HyperOpt (Bergstra et al., 2015) 0.1
Numpy 1.14.2
Scikit-learn 0.19.1
Abseil Common Libraries 0.2.0

Table B.2: Software configurations used for this paper. Notice that the Ten-
sorFlow Probability module (extending TensorFlow), central for the techni-
cal implementation, is still under development and released only as a nightly
version at the time of writing.

65

