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Abstract

Rheumatoid arthritis is a chronic and autoimmune joint disease.
Despite that it is the most common inflammatory joint disease that
affects around 0.5-1% of the population it is unknown why the disease
occurs. The disease develops when the immune system fails to dis-
tinguish between self and non-self antigens and mistakenly attacks its
own tissue. The main unit responsible for this function in the human
body is the human leucocyte antigen system consisting of amino acids
which determine their characteristics. There are theories about that
the chemical properties of the amino acids can have an impact on the
development of the disease and this is what is going to be investigated
in this report. Accordingly, the question is: do the chemical properties
of amino acids have an impact on the risk of rheumatoid arthritis?

The main approach was logistic regression with data from a case-
control study. For each amino acid three properties (hydrophilicity,
bulk and electronic properties) were used as explanatory variables,
one at a time, in simple logistic regression models, and also multiple
logistic regression models, with all three of them included. Because two
different approaches were used initially to reduce the original data in
consequence of missing values, two subsets have been treated parallel,
with slightly different results.

The result in this study concluded that the properties of some
amino acids in a couple of already known positions associated with
risk of rheumatoid arthritis do have an impact on the presence of the
disease. Because most of the results in this study correspond to findings
of previous studies, it indicates that an extension of this work would
seemingly be an appropriate future work to continue investigating the
connection between amino acids in the human leucocyte antigen region
and risk of rheumatoid arthritis.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: h.rossland@live.se. Supervisor: Disa Hansson, Ola Hössjer.
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1 Introduction

Rheumatoid arthritis (RA) is an inflammatory, chronic and autoimmune disease with main symp-
toms such as swelling, pain and stiffness in the joints. It is the most common inflammatory joint
disease occurring when the immune system fails to distinguish between self and non-self antigens
and mistakenly attacks its own tissue. The main unit responsible for this commission in the human
body is the Human Leucocyte Antigen System, a system with a wide-ranging genetic variation and
therefore a diversity in the response of different peoples’ immune system. The antigens consist
of amino acids which determines their characteristics. Even though there are only 20 possible
amino acids, the variation among the sequences is huge. There are some similar properties for
some amino acids, but they are not entirely interchangeable and a replacement can work out or be
critical depending on the circumstances. [1]

Why rheumatoid arthritis occurs is unknown but there are theories about that the chemical prop-
erties of amino acids can have an impact on the development of the disease. Between different
ethnic groups the prevalence of human leucocyte antigens varies, and this may also be related to
their role in the prevalence of the disease in different parts of the world. [4]

Currently the aim is to give an early diagnose in order to as soon as possible start an individualized
treatment aimed at remission or at least enable a low disease activity. With this more customized
approach the progression of joint damage is prevented, and the objective is that life in general, with
physical functioning, social participation and work will not be affected. Rheumatoid arthritis can
still not be cured, but as mentioned, remission is an achievable goal. The improved understanding
of the disease and the development of it during the past two decades have enlarged both the
diagnosing process and the development of new drugs and accordingly the lives of patients with
rheumatoid arthritis. [3, 4, 5]

With the objective to increase the clarity about the theories that the chemical properties of amino
acids can have an impact on the development of the disease, this will be investigated and the ques-
tion is thus: Do the chemical properties of amino acids have an impact on the risk of rheumatoid
arthritis?

1.1 Aim and Limitations

To address the problem there are several different scales of measurements for the variables of the
amino acids that exist and can be used. One constraint is that the so called Hellberg z-scales are
chosen for this purpose.

1.2 Outline

In section 2 the biological background about the disease, the human leucocyte antigen system
and amino acids will briefly be described. Starting with the human leucocyte antigen system
in subsection 2.1 we then introduce amino acids in subsection 2.2 and rheumatoid arthritis in
subsection 2.3. In subsection 2.4 we explain what a genome-wide association study is and in
subsection 2.5 we end with a description of the data.

Section 3 covers the mathematical theory behind the methods used. First in subsection 3.1 we
explain principal component analysis, what that is and how to derive the principal components.
Subsection 3.2 deals with logistic regression, how to interpret the results and how to perform it
with nominal variables. Section 3 ends with subsection 3.3 that describes how to perform a test of
independency between two variables.

The methods used in this study will be explained in section 4. First how the data was reduced in
subsection 4.1 and then the principal component analysis and logistic regression in subsections 4.2
and 4.3 respectively.

Section 5 contains the analysis starting with subsection 5.1, where it will be demonstrated more
precisely how the data was reduced and in subsection 5.2 the results are presented.
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The final section 6 includes a discussion, where at first the results will be analyzed in a bigger
context in subsection 6.1. Some comments about the methods are found in subsection 6.2, with
different ways of handling missing values and the risk of losing information in subsection 6.2.1 and
6.2.2 respectively. Subsection 6.2.3 deals with how the variables were treated and could have been
treated before the principal component analysis, and as an expansion of different ways to treat
the variables, subsection 6.2.4 covers different approaches for categorization before the logistic
regression. The whole section ends with some suggestions for future work in subsection 6.3.

2 Background

2.1 Human Leukocyte Antigen System

MHC (Major Histocompatibility Complex) is the genetic region consisting of more than 200 genes
located close together on chromosome six. All genes in this complex can be divided into three
classes, I, II and III. The human major MHC is called the Human Leucocyte Antigen System
(HLA) and is known for being the most polymorphic genetic system in the human body, meaning
this is the system with the most genetic variation. The main function for the human leucocyte
antigen system is the control of self-recognition, to distinguish between the body’s own proteins
and intruders, as a defense mechanism against microorganisms. [3]

Because of the polymorphism of the human leucocyte antigen system, different peoples’ immune
response will react in different ways. Some of the human leucocyte antigens have hundreds of
identified versions, so called alleles. All alleles get a name, for example HLA-B27 and if they are
closely located they are categorized together. For HLA-B27 there are 43 subgroups, and these are
designated HLA-B2701 up to HLA-B*2743. [4]

The human leucocyte antigens of both class I and class II consist among other things of amino
acids which determines their characteristics. Some diseases and especially autoimmune diseases
are associated with some alleles. How strong the association is varies between different diseases.
It is usually unclear what role the human leucocyte antigen genes play in the risk of developing
these diseases. Usually other genetic and environmental factors may also be of importance, and
the function of some human leucocyte antigens is still unknown. [3]

The distribution and prevalence of human leucocyte antigens vary considerably between different
ethnic groups, and this may also be related to the role of the human leucocyte antigen molecules
in the prevalence of various diseases in different parts of the world. [4]

2.2 Amino acids

Many biological processes can partly be explained by the amino acids positions on the human
leucocyte antigen and their properties. Even if there are only 20 different amino acids that can be
incorporated into a protein; in an amino acid sequence, called a peptide, the variation can still be
enormous. Nowadays when millions of these sequences are known it means we have knowledge of
a lot of mutations that may occur. Some mutations can be crucial and cause diseases while some
are more subtle. Whether or not the mutation has a drastic effect on the protein function is often
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unknown. Some amino acids have similar properties, but they are not completely commutable and
can not always replace each other, a substitution in one context can be critical in another. [1]

Amino acid z1 z2 z3

Alanine 0.07 -1.73 0.09
Valine -2.69 -2.53 -1.29
Leucine -4.19 -1.03 -0.98
Isoleucine -4.44 -1.68 -1.03
Proline -1.22 0.88 2.23
Phenylalanine -4.92 1.30 0.45
Tryptophan -4.75 3.65 0.85
Methionine -2.49 -0.27 -0.41
Lysine 2.84 1.41 -3.14
Arginine 2.88 2.52 -3.44
Histidine 2.41 1.74 1.11
Glycine 2.23 -5.36 0.30
Serine 1.96 -1.63 0.57
Threonine 0.92 -2.09 -1.4
Cysteine 0.71 -0.97 4.13
Tyrosine -1.39 2.32 0.01
Asparginie 3.22 1.45 0.84
Glutamine 2.18 0.53 -1.14
Aspartic acid 3.64 1.13 2.36
Glutamic acid 3.08 0.39 -0.07
Min value -4.92 -5.36 -3.44
Max value 3.64 3.65 4.13

Table 1: The Hellberg z-scales.

The amino acids can be described with some
simple descriptors such as molecular weight,
volumes and polar/non-polar surfaces and
these can be used in chemobioinformatics in-
vestigations. A problem that arises is that only
a few of these would not be sufficient to de-
scribe all important physiochemical properties
and by instead using a large set of descrip-
tors, a hopeless amount of descriptors would
have to be used. Fortunately, many of the
properties are to a certain extent correlated
and by using a principal component analysis
(as will be explained in section 3) the corre-
lated descriptors can be reduced to a lower
number of uncorrelated descriptors. Several
so called principal amino acid property scales
have been developed and the so called Hellberg
z-scales will be used here, where 29 physio-
chemical variables for the 20 amino acids have
been reduced to only three components. The
three main components z1, z2 and z3 describe
most of the variation in the sets of peptides
and can tentatively be interpreted as the prop-
erties hydrophilicity, bulk and electronic prop-
erties. With these three scales about 70 % of
the variation in the properties of the amino
acids are captured. [2, 9]

2.3 Rheumatoid arthritis

Rheumatoid arthritis (RA) is an inflammatory, chronic and autoimmune disease that mainly affects
the joints. The main symptoms are swelling in the joints, pain and stiffness, together with decreased
appetite and fatigue. [4] For the majority of cases the disease development begins years before
clinical disease is evident. When insufficiently treated rheumatoid arthritis occurs, it leads to
irreversible joint damage and disability. [4, 5] Most studies in rheumatoid arthritis have been done
in Western countries where it shows a prevalence of 0.5-1%. There is a lack of epidemiological
studies in some regions, but the prevalence seems to be rather homogeneous around the world.
However, some ethnicities stand out, in the native American population a high prevalence of 5-6%
has been reported and in rural Africa a notably low prevalence. [4, 5] The disease may occur at
any age but it is most common in the age span 40-70, with mean of 66 years, thus the occurrence
increases with age. [4] Some of the risk factors of the disease are genetics, sex (where females
possess an enlarged risk with a ratio of 2-3 compared to men) and some environmental factors such
as smoking, silica exposure, vitamin D deficiency and obesity. For some of these factors the studies
are not that rigorous and it is incompletely understood how they contribute to the disease. [5]

No diagnostic criteria for rheumatoid arthritis exist, only classification criteria as for most of the
rheumatological conditions and hence the diagnosing of rheumatoid arthritis is a highly individ-
ualized process. The reason for the non-occurrence of diagnostic criteria is partly a potential
consequence of misdiagnosis and partly the diversity of symptoms of the disease between indi-
viduals. The classification criteria include clinical manifestations and serological measurements.
Currently the ones that are in use are those by American College of Rheumatology (ACR) and the
European League Against Rheumatism (EULAR). [4, 5]

Some specific class II human leukocyte antigen regions containing a certain amino acid sequence
show a very strong association with rheumatoid arthritis. Some amino acid positions that are
significantly associated with the risk of developing rheumatoid arthritis are 11, 13, 71 and 74 in
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HLA-DRB1 and position 9 in both of HLA-B and HLA-DPB1. Other risk regions have also been
identified. They have weaker associations but are still related with immune and inflammatory
pathways. When several of these risk alleles are present, even though they might only have a weak
association, modest cumulative effects have been observed. [5]

There is also a specific antibody called Anti-Citrullinated Protein Antibody (ACPA), that has
arisen as a suspect in the development and/or progression of rheumatoid arthritis. Up to 10 years
before the disease arrives the presence of circulating ACPAs can be detected and therefore it cannot
only be used as a diagnostic marker, but even as a predictive marker as well. [8]

2.4 Genome-wide association studies

An organism’s complete set of DNA including all of its genes is called a genome and each genome
contains all of the information needed to build and maintain that organism. To find genetic
variations associated with a particular disease one approach is a genome-wide association study
where markers across the genomes are scanned. When new genetic associations are identified they
can be used to detect inheritable diseases in an early stage and contribute to the development
of treating and preventing the occurrence of such diseases. Genome-wide association studies are
a useful tool in finding genetic variations that contribute to some common and complex diseases
such as autoimmune diseases, cancer and mental illnesses. [10]

In genome-wide association studies 5 · 10−8 has become an established and standard threshold for
the p-value, a lot smaller than the more standard value of 0.05. The reason is the large number of
tests performed. By having a small type I, positive error rate for each single test, the overall type
I error for all tests combined, can still be kept at a reasonably low level. [12]

2.5 Description of the data

The data used in the study is from a case-control study with 2762 cases, patients with rheumatoid
arthritis, and 1940 controls. Originally the data was collected during the period May 1996 -
June 2000 with the objective to identify risk factors for rheumatoid arthritis. The population
investigated was from a defined area in Sweden with ages in the range of 18-70 years. [11]

The variables consist of 399 different alleles in the HLA region and because of two copies of
chromosome 6 in the DNA of all humans, they are all found in pairs. This leaves us with 798
unique measurement points. For each point the three properties hydrophilicity (z1), bulk (z2)
and electronic properties (z3) are measured, as mentioned above. In total this becomes 2394
explanatory variables related to the amino acids and these are supplemented by the sex of the
patients, thus the total number of explanatory variables is 2395.

For all of the explanatory variables the minimum value, maximum value, the median, the number
of positive observations and the number of negative observations, with respect to all individuals,
were observed in order to get an idea of the distribution and behavior of the variables. In Table 1
there is a summary of this information, with the median of all of the above mentioned quantities
over all individuals, for the three properties z1, z2 and z3, complemented with the overall minimum-
and maximum values.

Min Max Median Number positive Number negative MIN MAX

z1 -1.22 2.23 0.92 4329 87 -4.92 3.64
z2 -1.68 1.13 -0.97 1650.5 2965 -5.36 3.65
z3 -1.29 0.3 -0.07 1170 2512 -3.44 4.13

Table 2: A summary of the ranges and distributions for the three properties of amino acids.
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3 Theory

3.1 Principal Component Analysis

The purpose with a Principal Component Analysis is to examine the relationship between a set of
p correlated variables in order to perform a variable reduction. This is done by a transformation
of the original set of variables into a new set of variables, the so called principal components, that
are uncorrelated with each other. The transformation is an (orthogonal) rotation in the p-space
and creates linear combinations of the original variables. The new set of variables are ordered in
decreasing order of importance, which means that the first principal component explain as much
as possible of the variation in the original data. Because of this, it is easy to find a certain number
of principal components that accounts for a desired level of explanation of the variation from the
original data. If the original variables are highly correlated it might be that just a few principal
components are needed, and the dimensionality of the problem can be reduced from p. This also
implies that if the original variables are nearly uncorrelated there is no point in carrying out a
principal component analysis because then the analysis will only find almost the same components,
based on the variances arranged in decreasing order. This is a so called variable-directed technique
which is appropriate when there is no dependent variable. [6]

What can be seen as a problem or disadvantage is that it might be hard to find an innate inter-
pretation of the new variables and label them.

3.1.1 Derivation of the components

Suppose we have a p-dimensional random variable XT = (X1, . . . , Xp) with mean value µ and
covariance matrix Σ. The objective is to find linear combinations

Yj = a1jX1 + a2jX2 + . . .+ apjXp = aTj X, (3.1)

where aTj = (a1j , . . . , apj) is a vector of constants. Because equation (3.1) contains an arbitrary
scale factor we introduce the constraint aTj aj =

∑p
k=1 a

2
kj = 1. This constraint is required so that

a unique answer may be obtained and will ensure the overall transformation to be orthonormal.

The first principal component is found by choosing a1 so Y1 has the largest possible variance,
that is maximizing the variance of aT1 X subject to the constraint aTj aj = 1. The second principal
component is then found by choosing a2 so that Y2 is uncorrelated with Y1 and has the largest
possible variance of all combinations of the form (3.1). This process continues for Y3, . . . , Yp such
that these random variables are all uncorrelated and have non-increasing variance.

The task is to choose a1 to maximize Var(Y1) = aT1
∑

a1. The method of Lagrange multipliers is
the standard procedure for maximizing a function, f(x1, . . . xp), of several variables subject to one
or more constraints. Now with only one constraint, g(x1, . . . , xp), this method uses the fact that
for the stationary points of the function f there exists a number λ called the Lagrange multiplier
such that

∂f

∂xi
− λ ∂g

∂xi
= 0, i = 1, . . . , p, (3.2)

at the stationary points. Together with the constraint these p equations can determine the coor-
dinates of the stationary points and the corresponding values of λ as well. The next step is to
examine the character of the stationary points, which can be maximum, minimum or saddle points.
To simplify this, a function L(x) = f(x) − λ(g(x) − c) is formed and for this particular case we
have L(a1) = aT1 Σa1 − λ(aT1 a1 − 1).

Now the equations from (3.2) can be written as ∂L/∂x = 0 in the general case and ∂L/∂a1 =
2Σa1 − 2λa1 for this case. And by setting this equation equal to zero we have

(Σ− λI)a1 = 0, (3.3)
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where I is the p× p identity matrix. Assuming that (3.3) has a solution except for the null vector
then (Σ− λI) must be a singular matrix and λ must be chosen so that |Σ− λI| = 0, which means
λ is an eigenvalue of Σ. In general Σ will have p nonnegative eigenvalues, since Σ is positive
semidefinite, and if they are denoted λ1, . . . , λp they can be ordered as λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.
Because the aim is to maximize the variance and Var(Y1) = aT1 Σa1 = aT1 λIa1 = λ, we choose the
largest eigenvalue λ1 as λ and the corresponding eigenvector is a1.

For the second principal component there are now two constraints. First aT2 a2 = 1 and the second
is that Y2 should be uncorrelated with Y1. That means Cov(Y2, Y1) = aT2 Σa1 = 0. This can be
rewritten as aT2 λ1a1 = 0 so an equivalent condition is aT2 a1 = 0.

Subject to the two constraints we need to Lagrange multipliers in order to maximize the variance
of Y2 that is aT2 Σa2. Calling the Lagrange multipliers λ and δ the function to be considered is

L(a2) = aT2 Σa2 − λ(aT2 a2 − 1)− δaT2 a1.

At the stationary point(s) we have

∂L

∂a2
= 2(Σ− λI)a2 − δa1 = 0. (3.4)

Multiplying this equation by aT1 gives together with the two constraints −δ = 0 and therefore δ
has to be zero at the stationary point(s). Equation (3.4) then becomes (Σ − λI)a2 = 0 and now
we chose the second largest eigenvalue of Σ with a2 as the corresponding eigenvector.

Denoting the (p× p) matrix of eigenvectors by A then Y = ATX and the covariance matrix of Y
denoted by Λ is given by

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

 .
If some of the eigenvalues of Σ are equal there is no unique way of choosing the corresponding
eigenvectors, but that is not a problem as long as the eigenvectors associated with multiple roots
are chosen to be orthogonal. [6]

3.1.2 Component loadings

When tabulating the principal components it is common to present the scaled vectors a∗j =
√
λjaj ,

for j = 1, 2, . . . , p rather than just the eigenvectors {aj}. The sum of squares of these scaled vectors
equals the corresponding eigenvalue λj because a∗Tj a∗j = λja

T
j aj = λj . Setting C = [a∗1,a

∗
2, . . . ,a

∗
p]

then C = AΛ1/2. In C the elements are such that the coefficients of the more important compo-
nents are scaled to be generally larger than those of the less important components.

To get an interpretation of the scaled vectors {aj} we scale the components by Y∗ = Λ−1/2Y so that
they all have unit variance. Now the inverse transformation becomes X = AY = AΛ1/2Y∗ = CY∗.
The elements of C work as weights to scale more important components to generally be larger
than those of the less important components as already mentioned and they are usually called the
component loadings.

3.2 Logistic regression

The logistic regression model is a type of generalized linear model. It is the most important model
for categorical response data and has for a long time been used in biomedical studies. The model
is used to estimate the probability of a binary outcome Y, for example pass/fail or healthy/sick.
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In case of more potential outcome categories there is also a multinomial logistic regression model,
but it will not be discussed here. The predictors however can be either continuous or categorical.

If P (Y = 1|X = x) = p(x) where X is a vector of n independent variables and x = (x1, . . . , xn)
the observed values of X, the model can be expressed either as the logodds

log

(
p(x)

1− p(x)

)
= α+

n∑
i

βixi, (3.5)

or it can be written as the probability

p(x) =
eα+

∑
i βixi

1 + eα+
∑

i βixi
.

The sign of each effect parameter βi determines whether p(x) is increasing or decreasing as xi is
increasing and if βi = 0, Y is independent of Xi. Another interpretation is by exponentiating
both sides of (3.5), then the odds increases multiplicatively by the odds ratio eβi for every 1-unit
increase in xi. [7]

3.2.1 Hypothesis testing for the effect parameters

To test if Xi has any effect on Y a hypothesis test can be performed with the hypothesis

H0 : βi = 0,

Ha : βi 6= 0.

A Wald test statistic is z2 = β̂i
2
/V̂ar(β̂i) ∼ χ2

1 under H0, and the p-value is P(χ2
1 ≥ z2) = p, where

a low p-value indicates that H0 can be rejected and hence that Xi has an effect on Y .

3.2.2 Logistic regression with dummy variables

Just like ordinary regression, logistic regression extends to include qualitative explanatory variables
and one way of handling them is to use dummy variables. For one single explanatory variable with
I categories the model is

log

(
p(x)

1− p(x)

)
= α+ β1x1 + . . .+ βI−1xI−1

where xi = 1 for observations in row i (xi = 0, i = 1, . . . , I − 1) and otherwise.

By not creating a dummy variable for category I this avoids a parameter redundancy and the
choice of category to exclude from having a dummy variable is arbitrary. The values for the βi
for a single category is then irrelevant, it is only meaningful to compare them to each other and
accordingly comparing the effect of the categories.

For more than one explanatory variable, say n variables, we now write the model formula as

log

(
P (Y = 1)

1− P (Y = 1)

)
= α+ βX1

j1
+ βX2

j2
+ . . .+ βXn

jn
.

The model have parameters {βXi
jk
} which represent the effects of Xi. Important to stress is that

the Xi superscripts do not represent powers, they are only labels. The covariates Xi can have any
number of categories that possibly varies between them; j1 = 1, 2, . . . , n1 up to jn = 1, 2, . . . , nn.
A parameter βXi

jk
quantifies the effect on the log odds of the probability in category jk of Xi. One

parameter for each factor is redundant and therefore needs to be fixed at 0, the category without
a dummy variable.
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3.2.3 Logistic regression for retrospective studies

In retrospective sampling design such as case-control studies it is the explanatory variable X rather
than the response variable Y that is random and even for these cases logistic regression can be
extended. The sample sizes of each group in retrospective studies are fixed before the analysis
and cases are typically oversampled compared to the whole population. The advantage is that the
odds ratios still can be estimated and the effect parameters will be the same as for a prospective
study, but it is important to know and remember that the intercept needs to be adjusted for the
oversampling of cases.

3.3 Test of independency

In order to test for independency between the variables for a multinomial sampling in a I x J
contingency table, suppose the I rows are independent with each of the J columns. Let µij be
the expected number of observations in cell (i, j), nij is the observed number of observations in
each each cell, µ̂ij = ni+n+j/n is the estimated expected number of observations in each cell and
πij = P (X = i, Y = j) is the probability for an observation to be in cell (i, j).

To test ifX (row affiliation) has any effect on Y (column affiliation) the probability that a randomly
chosen subject has outcome Y = j is π+j =

∑i=1
I πi+πj|i. The null and alternative hypotheses can

be expressed as:

H0 : πj|i = π+j for all i, j and

Ha : πj|i 6= π+j , for at least some i, j.

They can also be written with words as:

H0 : There is no association between rows and columns; they are independent.

Ha :The row and column variables are not independent.

The chisquare test statistic is

X2 =
∑
i,j

(nij − µ̂ij)2

µ̂ij
∼ χ2

df

under the null hypothesis, where df = (I − 1)(J − 1) and the p-value is P (χ2
df ≥ X2) = p. A

small p-value indicates strong evidence of an association between the variables and then H0 can be
rejected. If H0 is not rejected the variables are independent and that corresponds to homogeneity
of each outcome probability among the rows. [7]

4 Method

4.1 Reducing data

Initially the data is reduced in two different ways. The first reduction is straightforward, removing
all observations with missing values followed by removing the variables without any variation at
all. From now on this will be called subset 1.

The second reduction starts with removing all the variables where more than 5% of the observations
have missing values and then do the same as for subset 1, eliminate the observations with missing
values to complete cases together with removing the variables without variation. This one is called
subset 2.
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4.2 Performing the principal component analysis

The first approach applied is the principal component analysis. Because this is a variable-directed
technique, without a dependent variable, the status of the patients is ignored but all the explanatory
variables are used. The analysis is performed twice, both on subsets 1 and 2.

4.3 Performing the logistic regression

4.3.1 Coding dummy variables

Because of the composition of the data with three properties in pairs of two for each amino acid,
some variables are now further removed in order to get complete sets, with both variables in a pair
for all three properties for all amino acids.

A limit between positive and negative values is determined, and for all three properties the two
variables are divided into three classes: both values over the limit, both values under the limit or
one value of both. We refer to these categories as “both positive”, “one of each” and “both negative”.
Setting the category “both negative” as baseline the other two categories then generates dummy
variables that are to be used in the logistic regression model.

4.3.2 The models

The next approach is the logistic regression analysis, and it is going to be done separately for all
amino acids. The explanatory variables are z1, z2 and z3 dummy-coded as explained above, and
the sex of the patient. The dependent variable is the status of the patient, concretely rheumatoid
arthritis or not.

For each amino acid four different models are to be examined, three univariable models and one
multivariable model. With y = 1 when the patient has rheumatoid arthritis and y = 0 otherwise,
P (Y = 1) is the probability of having the disease. The models are then written as

P (Y = 1) =
eβ

z1
j +sex

1 + eβ
z1
j +sex

,

P (Y = 1) =
eβ

z2
j +sex

1 + eβ
z2
j +sex

,

P (Y = 1) =
eβ

z3
j +sex

1 + eβ
z3
j +sex

,

P (Y = 1) =
eβ

z1
j1

+β
z2
j2

+β
z3
j3

+sex

1 + eβ
z1
j1

+β
z2
j2

+β
z3
j3

+sex

where j, j1, j2, j3 ∈ {(++), (+−)} are the categories for the dummy variables when (−−) is used
as baseline.
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5 Analysis

5.1 Handling the data

As described in section 4 some reduction of data is needed because of missing values and lack of
variation in the data. The exact steps are explained in Table 3 along with the dimensions of the
subsets with the variable sex excluded.

Dimensions

Subset 1 Subset 2

Original data set 4702 x 2394 4702 x 2394

Step a0). Removing all variables with more than Not done for 4702 x 2256
5% missing values in the observations. this subset

Step a). Removing all observations with 1877 x 2395 4633 x 2256
missing values.

Step b). Removing all variables without 1877 x 1974 4633 x 1989
any variation.

Step c). Removing all variables whose 1877 x 1824 4633 x 1896
"twin" already been removed.

Step d). Combining and categorizing the pairs 1877 x 912 4633 x 948
of each property for all variables.

Step e). Removing all variables with no 1877 x 72 4633 x 75
variation after the categorization
in at least one of the properties z1 − z3.

Table 3: All steps of data reduction. The full data set consists of 4702 individuals, and 2394 genetic
explanatory variables related to amino acids.

In the flow chart below, the different steps of the analysis are illustrated. Here P stands for the
principal component analysis and L symbolizes the logistic regression.

1a 1b P 1c 1d 1e L
Start

2a0 2a 2b P 2c 2d 2e L
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5.2 Biplots of the principal components

All principal components were plotted against each other, and for future references a representative
sample is shown in Figure 1 below.

Figure 1: A sample of the biplots for the principal components. The green dots correspond to
cases and the red dots correspond to controls.

5.3 Results

Seven variables where standing out with highly significant results for at least one of the properties.
These were amino acid positions 11, 13, 37 and 74 in HLA-DRB1 and amino acid positions 5, 55
and 57 in HLA-DQB1. In the tables below the properties z1 − z3 with a genome-wide significance
in the univariable models are presented and if they still had a genome-wide significance in the
multivariable models that p-value is shown as well. Many of the amino acids occur twice because
both dummy variables were significant. What is not presented is what category the variables
represent, since, as mentioned above, no biological interpretations are made in this report.
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Table 4: Significant variables for z1.

Position P-value P-value
Univariable Multivariable

HLA-DRB1-37 5.531e-19 2.434e-15
HLA-DQB1-55 7.858e-18 7.799e-18
HLA-DRB1-11 1.913e-09
HLA-DRB1-37 1.869e-08 2.608e-09

(a) Subset 1.

Position P-value P-value
Univariable Multivariable

HLA-DRB1-11 1.505e-34
HLA-DRB1-11 2.031e-18
HLA-DRB1-37 1.336e-17 5.510e-22
HLA-DQB1-55 4.458e-9 1.251e-17
HLA-DRB1-37 1.066e-08 7.834e-13

(b) Subset 2.

Table 5: Significant variables for z2.

Position P-value P-value
Univariable Multivariable

HLA-DQB1-5 3.949e-18 2.044e-19
HLA-DRB1-11 3.024e-10
HLA-DQB1-57 5.154e-9 1.362e-9
HLA-DRB1-37 2.916e-8
HLA-DQB1-5 3.234e-8 5.700e-10

(a) Subset 1.

Position P-value P-value
Univariable Multivariable

HLA-DRB1-13 1.716e-18 5.843e-39
HLA-DRB1-74 3.043e-9 1.322e-9

(b) Subset 2.

Table 6: Significant variables for z3.

Position P-value P-value
Univariable Multivariable

HLA-DRB1-11 1.539e-25
HLA-DQB1-55 9.205e-18
HLA-DQB1-5 1.035e-17
HLA-DRB1-11 3.651e-12
HLA-DRB1-13 2.516e-9 1.630e-14
HLA-DQB1-55 3.855e-8

(a) Subset 1.

Position P-value P-value
Univariable Multivariable

HLA-DRB1-11 4.244e-53
HLA-DQB1-55 2.716e-24
HLA-DRB1-11 3.024e-20
HLA-DRB1-74 3.585e-11
HLA-DQB1-55 3.483e-9

(b) Subset 2.

5.3.1 Test of independence between the amino acid properties

A χ2 test was performed to test if there are any significant difference in occurrence, if there are
any indications that one property seems to be more important and have more impact than the
others. The p-values for subset 1 and subset 2 were 0.77 and 0.42 respectively. Therefore the null
hypothesis that there is no association between the properties for the amino acids and a significant
outcome in the logistic regression cannot be rejected, no property seems to have more impact than
the others.

6 Discussion

In this project, we started with an exploratory data analysis. For example, the ranges and dis-
tributions of the variables, their variance and missing values were found. This was a necessary
preparation of the subsequent steps. As a consequence of the lack of variation in some of the
variables or principally the occurrence of missing values, a lot of data reduction has been made
along the way throughout the analysis. As a first result of this, two different subsets have been
studied parallel to each other.
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The first actual analysis step was a principal component analysis. The principal components were
not used further, and this step was mainly included to see if it was possible to detect a mismatch
between cases and controls. However, when examining the graphs and result, some of the derived
principal components were remarkable and accordingly, some of the variables required a more
careful inspection. Yet, no results from this analysis were further used.

After this the pairs of amino acids and their properties were combined and categorized in order to
use dummy variables in a logistic regression. Some further reduction of the variables was performed
due to lack of variation in some of the variables after the categorization. We analyzed many of
the variables separately, and we also compared the results from the two subsets and likewise the
properties for the same amino acid.

6.1 Results

6.1.1 Interpretation of the PCA

When examining the biplots of the principal components from the principal components analysis,
from which a sample can be seen in Figure 1, two things are noticed. The first thing is that for
some of the graphs the observations have clustered into normally three groups and the second thing
is that cases and controls overlaps, there is no evident difference between the groups observable.

The overlapping of cases and controls is for the rest of the analysis a good aspect and can be seen
as a data check for testing if there are any hidden population structures. A hidden structure can be
revealed by a separation of the groups in a biplot of the principal components. Hidden population
structures involve confounders, other variables that may cause a difference in the results such as age
or ethnicity. For example, if all of the cases have one ethnicity and the control group have another,
then the variation along the genome may not be due to the disease but caused by ethnicity. The
aim is to match confounders as well as possible in order to avoid that they will have an impact on
the results. Fortunately, in this case no hidden population structures where found, and therefore
the logistic regression could be performed with more confidence in having reliable results.

Biplots actually contain a lot of information and can be helpful in interpreting relationships between
experimental groups and compounds or to identify outliers. Sometimes the observations from a
certain group are closer together in clusters than other groups and there can be patterns of the
observations in the biplots. The biplots are able to highlight groups of homogeneous observations.
Because most of the variables only admit a few values, between 2-5 categories, it is not surprising
that they more or less coincide and create the observed clusters. The principal component analysis
captured some differences between certain groups. These groups are not cases and controls, but
instead observations with different sets of amino acids.

6.1.2 Expectations from previous studies

Of the amino acid positions mentioned in subsection 2.3, not all of them had significant results. For
example, HLA-DRB1-74 remained in the analysis for subset 2 and had some significant variables
there, but it was removed for subset 1. The elimination occurred in step e, where all amino acids
without any variation in at least one of the three properties z1−z3 were removed. In this particular
case the reason was no variation in z1. Comments about the effects of this method of eliminating
variables will be done in subsection 6.2.1 . Even for HLA-DRB-71, a position that was known
as a risk factor from previous studies, elimination occurred for both subsets in the last step as a
result of no variation in z1. For HLA-B-9, which was also known from before but removed in these
analyzes, the reduction took place in the same step. For this position the lack of variation occurred
in both z2 and z3.

6.1.3 Odds ratio interpretation

In the result section the odds ratios (OR) are not presented. The reason is that at first when they
were inspected, for some of the amino acids one property could have an impact on rheumatoid

15



arthritis for positive values of the property, but for another amino acid the same property could
have an impact on the disease for negative values of the property. This may seem contradictory,
but it implies that for each amino acid the properties need to be interpreted separately. For some
amino acids a negative value is critical but for others a positive value is associated with risk of the
disease. However, after some consultation it was found that these observations would require too
advanced biology and chemistry in order to be interpreted, even for a biologist these finding would
be hard to explain and understand.

Therefore it was only established if the amino acid properties have a significant impact on rheuma-
toid arthritis and not how.

6.1.4 Difference between amino acid properties

Not all properties were significant for the same amino acid, for the majority of the amino acids only
one or two properties got significant result. And there were not even any clear recurrent patterns
or analogues between the properties, for example, when z1 had significant impact even z2 had it
or when z2 had significant results, z3 had not. As pointed out above, no biological interpretations
of these findings will be made.

6.2 Methods

6.2.1 Reducing the data set

Depending on where the missing values were found in the data set, the reduction was done in two
different ways. At the end, about twice as many observations were left when using the second
approach, about the same number of variables and almost the same variables as well. The first
method started with removing all observations with at least one missing value and the second
approach started with removing all variables with more than 5% missing values and then removing
the observations with at least one missing value. The 5% limit was used because it is a default
threshold in the field of genetics, but additionally it was a natural limit for this data set since in
practice all variables removed had more than 7% missing values and the variables kept had less
than 0.5% missing values.

In the principal component analysis some of the variables with the highest load on the ten first
principal components differed but in general the principal component analysis came out with the
same results with both subsets. It was primarily in the logistic regression the results came out
with a more noticeable difference and this will be discussed more extensively in subsection 6.2.2.

Except for the initial steps of data reduction the subsets were treated equally, as seen in subsection
5.1. As a consequence of how it was decided to categorize the properties of the amino acids prior
to the logistic regression, steps c and d were essential. The other steps where all variables without
variation are removed, namely step b and e, were not as essential. But a variable without any
variation do not contribute to the result and therefore these steps are not questionable. However,
if step b would not have been performed then step c would be unnecessary. Even if one of the
properties in a pair did not have any variation, the combined variable would still have variation
if the other property in that pair had variation and therefore, it could have been used in the
regression. Regarding step e it is definitely a questionable step to remove an amino acid with all
three properties even if only one of the properties lacked variation. Together with the differences
between the results from subset 1 and subset 2, this will be discussed in subsection 6.2.2.

6.2.2 Risk of losing information

When reducing the data some information loss is inescapable. For example, a variable that indeed
has an important role can be eliminated as a result of a lot of missing values, caused by previous
steps in the process. Another example is when observations are removed because of a lack of
variation. For all other variables the results would probably turn out with stronger associations
or at least with more solid results with more observations in the analysis. Because there are many
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more observations in subset 2 and about the same number of variables left in each step, the results
using that subset can in one way be considered more reliable. But the results from subset 1 can
still give a good indication as to which amino acids are associated with the disease.

One example is HLA-DQB1-5 that was eliminated already in the beginning of step a0 for subset 2,
because of around 8% missing values. However, in subset 1 it was still included and got significant
results for both of z2 and z3. Even if these results might need to be reconsidered a bit more
carefully because of all the missing values that possibly could change the result if they would not
have been missing, this information would have been lost if the data were reduced only with the
second approach. Even if HLA-DQB1-5, after more investigation, does not turns out to be a risk
amino acid position, it might still be good to investigate this more closely.

Another example that is a possible case of information loss, is HLA-DRB1-74. This position was
removed for subset 1 in step e because of no variation in z1. In subset 2 however it remained
and got significance for some variables. This shows the strength in having more observations, as
in subset 2. Then it is more likely that the variation in the variable is more similar to the true
proportions in the whole population, and the variable does not need to be eliminated, even though
it contains useful information.

For the previously known amino acid positions HLA-DRB1-71 and HLA-B-9, they were both also
removed prior to the logistic regression in step e on the grounds of lack in variation. As seen
in section 5.1 this was a huge reduction, where a lot of amino acids were removed. For HLA-
DRB1-71 it was in z1 the lacking variation was found, and when it comes to HLA-B-9, both z2
and z3 lacked variation in data. This reduction could have been left out and the regressions could
have been performed anyway. What would have happened then is that the variables without
variation would not have had any influence on the dependent variable at all. The coefficients of
these variables would not be estimable and as outcome instead we would get Not Available (NA),
that can be ignored. By still keeping all of the amino acids, some information that now may have
been lost, would still be kept in the analysis. Since not all properties are significant for the same
amino acid and sometimes only one of them had significant result, it would not automatically be a
disadvantage not to have them all, for some amino acids. In addition, even if there is no variation
in one of the variables the others could still have been investigated. For example, we could have
analyzed univariable models with z2 and z3 as explanatory variables, for HLA-DRB1-71. Indeed,
when looking at the results there are sometimes strong associations for some of the properties
even if there is almost no variation for some other property in the same position. This could have
provided more information, since it might have changed the proportion of significant variables for
each property, leading to a conclusion that one of them is more crucial than the others. But it
could also have given nothing except for a lot of more work with a substantially larger number of
variables. Now the aim was to do an initial analysis, but a future goal would be to conduct a more
extensive analysis for all amino acids, or at least those previously known.

6.2.3 Treating the variables before the principal component analysis

Before the principal component analysis, there are some possible actions, with the aim to make
the involved variables equally important. These are standardization and centering, and neither of
them were done. Below we will explain why.

6.2.3.1 Standardization of variables The objective of standardizing the variables is that
they should contribute equally to the analysis so that no variable with a wider range should
outweigh a variable with a more narrow range. Without the standardization the variable with
the wider range will have a larger effect in the analysis, and a transformation to equal scales can
prevent this problem. Especially in principal component analysis the consequences of standardizing
the variables or not can be essential, because the aim is to capture the total variance in the set of
variables and the analysis will give more load to those variables that have higher variances.

If the variables measure different aspects and therefore do not have the same units of measurement,
for example meters and kilograms, a standardization transforms these to comparable scales, hence
it can be a useful tool to make it possible to compare variables representing various properties.

17



There may be reasons for not scaling as well, for instance, if the specific scale of the variables
matters.

In this case the explanatory variables are themselves derived from a principal component analysis
and the properties they represent, z1 − z3, do not correspond directly to the bulk, the electronic
properties and the hydrophilicity, and therefore they do not have a specific unit and are already
unitless. They are consequently measured on the same scale, but they still have some diversity in
the variance.

No standardization was done with the justification that the variables already have similar variance.
At a first look, the variances do not seem to be that similar with ranges from 8.5 · 10−7 to 18.4
in subset 1 and from 3.5 · 10−7 to 19.5 in subset 2. But when looking more closely we have for
example the 50%-quantiles 0.14 respectively 0.18 and the 75%-quantiles 0.84 and 0.97. It is only
about 10% of the variables that have a considerably larger variance.

When examining the ten variables with the highest load on the first 10 principal components, it
is not surprising that almost all of them have high variance, most of them are found over the
95th percentile. Only one principal component stands out and attracts attention - the first one.
The first principal component has the maximal variance value of one of the variables way below
the minimum for any of the others. Despite the low variances in the involved variables, the first
principal component by itself explains in subset 1 80% and in subset 2 79% of the variance in the
whole data set.

Even when looking at more variables, the first 20 or the first 50 variables with the highest load
on the principal component we observe a similar pattern. The variances of the variables with the
highest load on the first principal component are still surprisingly low. In order to explain this,
the ranges of the variables with the highest load were examined and it was concluded that the
variables with the highest load on the first principal component have the same ranges, but on the
other hand many observations in one of the end points. Therefore, they could still explain the
variation in the data without having a large variance themselves.

6.2.3.2 Centering of variables Centering is done by subtracting the mean from the observed
value in order to centralize all observations around zero. By doing this it is easy to examine if
an observation is above or below the mean. Between different variables it erases the variations
between the samples and leaves us only with different ranges of variations within the samples.

No centering was done in this case since we reasoned that the original variation in data could be
of importance. Even if some scales are shifted, that variation was to be kept in the analysis.

6.2.4 Dummy coding of the variables in the logistic regression

Prior to the logistic regression a dummy coding of the variables was performed. In this case the
coding was done with three categories (giving two dummies) depending on whether the properties
of the amino acids had positive or negative values, or one of both. Because the majority of all
amino acids only admitted positive or negative values a lot of them fell into the same category and
after the dummy-coding there was no variation left for a considerable number of the explanatory
variables. As a result, they were removed from further analysis. In exact numbers, 304 amino
acids were available for the analysis before this step, but only 75 remained afterwards.

An alternative approach of coding the variables would be based on their values being below or
above the median. For all of the 304 amino acids, three different properties had at least two
different values, so all observations can obviously not be on one side of the median. Thus, by using
this method, no amino acids would have been removed. For this approach some different options
are available. The coding can still be based on both the amino acids jointly, like the previous
method, and the coding would correspond to both variables being below, both above or one of
each, creating three possible categories and two dummies. Alterntively, one can take the sum of
the variables and compare the sums with the median sum, thereby generating two categories and
just one dummy.

A third method could be to only choose for example the highest value among the two possible in
each pair, or their sum, and then deal with the variables as continuous. For all the three methods
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mentioned (categories defined as positive or negative values, categories defined as above or below
the average and a continuous variable) it would have been possible not to combine the pairs of
amino acids but to treat them separately. The latter approach would have doubled the number of
explanatory variables.

These are some possibilities that can be considered regarding the coding of the variables for the
logistic regression. However, the important thing is to focus on what is relevant for the analysis.
Is the intention to create a predictive model or is the aim to investigate some specific properties
of the explanatory variables? What aspects of the explanatory variables are of interest? Here the
aim was to investigate the properties of the amino acids and consequently we wanted to keep the
distinction between positive and negative values. Since the amino acids always occur in sets of two
it is of no use to separate them.

The problem has already been mentioned that the data set was reduced by three quarters of the
variables, because of the chosen coding approach. Some alternative coding schemes would possibly
reduce data less, depending on how the range of the variables is divided into categories.

6.3 Extensions and future work

A collection of suggestions of future work has already been mentioned. Starting with the catego-
rization, some ideas of how that could have been done were discussed in subsection 6.2.4. Because
of the extensive reduction of variables due to the lack of variation after the categorization, other
categorization methods could have been investigated as well. On the other hand, another catego-
rization method could possibly disguise some of the associations this method could identify. This
argument can also be used in reverse, therefore, a comparison between different categorization
approaches is one way to go.

As mentioned in subsection 6.2.2, step e in the reduction of variables could have been done dif-
ferently. In addition, some of the variables known from before could be worth a closer inspection,
even if they do not have variation in one of the three properties.

The most interesting associations are between those with the antibody ACPA and rheumatoid
arthritis. Because of this a reasonable task would be to separate the cases into two groups, ACPA
positives and ACPA negatives. When separated the whole analysis could be performed once again,
not only to compare cases and controls, but also to compare the two subgroups of cases and
controls.

When analyzing the results, all variables with a genome-wide significance in the univariable models
were considered, and then we investigated whether they were still significant in the multivariable
model. For a few of the amino acids all variables were significant in the multivariable model, but
not in the univariable models, and these amino acids could be of interest to analyze further.
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7 Appendix

In Tables 7 to 30 below, the estimates for the coefficients, 95% confidence intervals and p-values
for all models and amino acids using subset 1 are presented. Each table includes all four (three
univariable and the multivariable) models connected to an amino acid, only separated by an empty
row. In Tables 31 to 55 the models using subset 2 are shown.

For some amino acids all four columns show “NA” for one or two of the properties in the multivari-
able model. This is because they are linearly dependent of the other properties and can therefore
not be estimated.

Subset 1

Estimate 2.5% 97.5% p-value

HLA-A-9 z1+- 1.0802284462 0.8581797167 1.3597309204 0.5109844439
HLA-A-9 z1++ 0.9272055539 0.4771153279 1.8018916785 0.8235717359

HLA-A-9 z2+- 1.1650366434 0.5869221229 2.3125902527 0.6623489125
HLA-A-9 z2++ 1.0785095017 0.5549723170 2.0959293096 0.8235717359

HLA-A-9 z3+- 1.3307846275 0.2161532859 8.1932028792 0.7579587298
HLA-A-9 z3++ 1.3259965168 0.2202848693 7.9817863467 0.7580092419

HLA-A-9 z1+- 1.1121325276 0.8419696734 1.4689825515 0.4541517311
HLA-A-9 z1++ 0.9969287133 0.4705591268 2.1120977213 0.9935927473
HLA-A-9 z3+- 1.2071727284 0.1748277719 8.3354376738 0.8485389048
HLA-A-9 z3++ 1.3006053645 0.1869189840 9.0497726772 0.7905882070
HLA-A-9 z2+- NA NA NA NA
HLA-A-9 z2++ NA NA NA NA

Table 7: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-9, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-A-62 z1+- 9.5196758e-06 3.598465e-282 2.518413e+271 0.9715981971
HLA-A-62 z1++ 7.9204212e-06 2.995078e-282 2.094538e+271 0.9711465945

HLA-A-62 z2+- 0.7739362715 0.5858541693 1.0224000847 0.0712288196
HLA-A-62 z2++ 0.6247452853 0.4668936653 0.8359648042 0.0015470520

HLA-A-62 z3+- 1.2370876743 1.0025238541 1.5265331669 0.0473157280
HLA-A-62 z3++ 1.5713330881 1.1700164698 2.1103016389 0.0026688256

HLA-A-62 z1+- 1.1281482e-05 4.264199e-282 2.984660e+271 0.9720151364
HLA-A-62 z1++ 1.0631429e-05 4.020001e-282 2.811623e+271 0.9718693940
HLA-A-62 z2+- 0.7212912301 0.3441435028 1.5117560968 0.3868474823
HLA-A-62 z2++ 0.6313717367 0.4694883777 0.8490737765 0.0023471270
HLA-A-62 z3+- 1.0847339852 0.5175483695 2.2735030925 0.8294343701
HLA-A-62 z3++ NA NA NA NA

Table 8: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-62, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-A-76 z1+- 0.9162226783 0.7498452247 1.1195163595 0.3921285545
HLA-A-76 z1++ 1.4288651438 0.9113245039 2.2403168032 0.1198760207

HLA-A-76 z2+- 0.9572773956 0.7646853052 1.1983753394 0.7032280172
HLA-A-76 z2++ 1.6169356713 0.7232531698 3.6148904345 0.2417367940

HLA-A-76 z3+- 0.9520060813 0.7479211920 1.2117795143 0.6894952054
HLA-A-76 z3++ 2.5849202871 0.7478682915 8.9344781244 0.1333988354

HLA-A-76 z1+- 1.3656122944 0.6712175453 2.7783793071 0.3898645954
HLA-A-76 z1++ 2.5529817632 0.7372247275 8.8408807242 0.1391623473
HLA-A-76 z2+- 0.6752684840 0.3357605746 1.3580734606 0.2707173428
HLA-A-76 z2++ 0.6262898486 0.1439451986 2.7249187757 0.5327919809
HLA-A-76 z3+- 0.6656342487 0.3309375720 1.3388294063 0.2536367223
HLA-A-76 z3++ NA NA NA NA

Table 9: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-76, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-A-152 z1+- 0.8067048510 0.6535484327 0.9957528532 0.0455450308
HLA-A-152 z1++ 0.7218101891 0.5396427474 0.9654719750 0.0280384902

HLA-A-152 z2+- 0.7844086403 0.6417346816 0.9588026527 0.0177548350
HLA-A-152 z2++ 0.6603061365 0.4540191700 0.9603211112 0.0298691437

HLA-A-152 z3+- 1.0184460455 0.8092362740 1.2817422810 0.8761935177
HLA-A-152 z3++ 1.1372792939 0.4637109314 2.7892467156 0.7786820451

HLA-A-152 z1+- 0.8725713595 0.3670382632 2.0743907482 0.7576930954
HLA-A-152 z1++ 0.8499906035 0.1494672375 4.8337283675 0.8545850355
HLA-A-152 z2+- 0.8709723834 0.3663604141 2.0706191593 0.7545407688
HLA-A-152 z2++ 0.7562330419 0.1275061709 4.4851822437 0.7583695156
HLA-A-152 z3+- 1.0464913717 0.4401948685 2.4878622388 0.9180815127
HLA-A-152 z3++ 1.1408839547 0.1609230438 8.0884388412 0.8950689496

Table 10: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-152, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-A-156 z1+- 1.0520183892 0.8554221351 1.2937971159 0.6309079212
HLA-A-156 z1++ 1.0170896551 0.6127276166 1.6883054369 0.9477475890

HLA-A-156 z2+- 0.9150210152 0.7491307892 1.1176465717 0.3842133504
HLA-A-156 z2++ 0.9182751928 0.6401919540 1.3171507771 0.6431947499

HLA-A-156 z3+- 0.8152571125 0.6333130994 1.0494716755 0.1129192390
HLA-A-156 z3++ 0.5957355153 0.2145570838 1.6541090041 0.3201817222

HLA-A-156 z1+- 1.4556289377 0.8066225265 2.6268242390 0.2125875077
HLA-A-156 z1++ 1.6154700098 0.5222385303 4.9972248329 0.4051551076
HLA-A-156 z2+- 0.6807457832 0.3714764046 1.2474946338 0.2133532127
HLA-A-156 z2++ 0.5923885005 0.2126031870 1.6506061849 0.3166085585
HLA-A-156 z3+- 1.1346561591 0.6289438856 2.0469943803 0.6747534352
HLA-A-156 z3++ NA NA NA NA

Table 11: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-156, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-C-156 z1+- 1.2135357844 0.9899986088 1.4875466358 0.0624347360
HLA-C-156 z1++ 1.1536246090 0.8424056402 1.5798205462 0.3729913464

HLA-C-156 z2+- 1.0923856464 0.8732376119 1.3665311528 0.4392407564
HLA-C-156 z2++ 1.2482841574 0.9530063623 1.6350502990 0.1073038738

HLA-C-156 z3+- 0.9707039647 0.7796733004 1.2085397649 0.7902952180
HLA-C-156 z3++ 0.9191744313 0.5112739104 1.6525029304 0.7782420122

HLA-C-156 z1+- 0.7748109409 0.4546294372 1.3204864116 0.3482676584
HLA-C-156 z1++ 0.3912282521 0.1383947748 1.1059633238 0.0767262186
HLA-C-156 z2+- 1.5279512749 0.8616289097 2.7095598492 0.1469424352
HLA-C-156 z2++ 3.0678689024 1.0598892588 8.8800028153 0.0387128536
HLA-C-156 z3+- 0.6306886657 0.3804135842 1.0456203709 0.0739349938
HLA-C-156 z3++ 0.3617370168 0.1240772319 1.0546146732 0.0625239904

Table 12: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-C-156, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-C-116 z1+- 0.8944281979 0.7225563368 1.1071825967 0.3054726832
HLA-C-116 z1++ 0.6724580279 0.5066770129 0.8924813791 0.0060038219

HLA-C-116 z2+- 1.2328075992 0.9523341424 1.5958837440 0.1120298491
HLA-C-116 z2++ 1.4636927633 1.1081618872 1.9332883850 0.0072885310

HLA-C-116 z3+- 5.6717549e-06 2.144468e-282 1.500083e+271 0.9703266588
HLA-C-116 z3++ 6.3587249e-06 2.404537e-282 1.681544e+271 0.9706073633

HLA-C-116 z1+- 0.0031729782 1.950550e-141 5.161512e+135 0.9717356642
HLA-C-116 z1++ 4.7886809e-06 1.810743e-282 1.266411e+271 0.9699111204
HLA-C-116 z2+- 0.0019936603 1.225576e-141 3.243110e+135 0.9694537214
HLA-C-116 z2++ 7.3807570e-06 2.790938e-282 1.951872e+271 0.9709733260
HLA-C-116 z3+- 0.0023745901 1.459750e-141 3.862767e+135 0.9703123221
HLA-C-116 z3++ NA NA NA NA

Table 13: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-C-116, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-B-156 z1+- 0.8069337197 0.6538060300 0.9959253940 0.0457174609
HLA-B-156 z1++ 0.9450206346 0.7019842384 1.2721995038 0.7092943571

HLA-B-156 z2+- 0.9075851904 0.6948158963 1.1855095461 0.4768138739
HLA-B-156 z2++ 0.9942451252 0.7457295622 1.3255788948 0.9686278338

HLA-B-156 z3+- 1.3995564312 1.1394238460 1.7190777699 0.0013551992
HLA-B-156 z3++ 1.9331223308 1.4053375540 2.6591205331 5.0872112e-05

HLA-B-156 z1+- 1.0514287934 0.7839153953 1.4102319132 0.7377926451
HLA-B-156 z1++ 1.5248919888 0.9518941934 2.4428088684 0.0792755724
HLA-B-156 z2+- 0.5587596267 0.3678810192 0.8486774369 0.0063454333
HLA-B-156 z2++ 0.3342326535 0.1842503400 0.6063026352 0.0003100785
HLA-B-156 z3+- 1.9839637940 1.5016710677 2.6211548059 1.4276682e-06
HLA-B-156 z3++ 3.7339734030 2.3335802399 5.9747495013 3.9464366e-08

Table 14: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-156, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-B-116 z1+- 1.3929638924 1.0944271211 1.7729352352 0.0070777650
HLA-B-116 z1++ 1.7075983027 1.2929983109 2.2551398087 0.0001627188

HLA-B-116 z2+- 0.8264288825 0.6050022733 1.1288960852 0.2308969421
HLA-B-116 z2++ 0.7981095720 0.5839208336 1.0908651521 0.1572277045

HLA-B-116 z3+- 1.1269766e-05 4.261163e-282 2.980585e+271 0.9720125707
HLA-B-116 z3++ 7.7221002e-06 2.920034e-282 2.042127e+271 0.9710843323

HLA-B-116 z1+- 1.7087052774 1.2969154379 2.2512444833 0.0001401411
HLA-B-116 z1++ 2.4542998710 1.7043136933 3.5343187585 1.3969396e-06
HLA-B-116 z2+- 1.1434321329 0.8020754510 1.6300673970 0.4587727682
HLA-B-116 z2++ 1.5231820097 1.0127675567 2.2908350680 0.0432909655
HLA-B-116 z3+- 7.6569079e-06 2.894934e-282 2.025200e+271 0.9710635225
HLA-B-116 z3++ 3.5056614e-06 1.325409e-282 9.272349e+270 0.9691454176

Table 15: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-116, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-B-97 z1++ 1.5947734920 0.9413024533 2.7018972298 0.0827252404

HLA-B-97 z2+- 1.3789179695 0.9996437159 1.9020924520 0.0502543507
HLA-B-97 z2++ 1.8735633269 1.3480605191 2.6039183627 0.0001852862

HLA-B-97 z3+- 0.8385516890 0.6841844105 1.0277476721 0.0898304631
HLA-B-97 z3++ 0.5712169061 0.4134521821 0.7891813561 0.0006847615

HLA-B-97 z1++ 1.5074713902 0.8830348060 2.5734772593 0.1325527633
HLA-B-97 z2+- 1.2546197229 0.8868437829 1.7749131012 0.2000110855
HLA-B-97 z2++ 1.6593076606 1.1315129566 2.4332924306 0.0095280117
HLA-B-97 z3+- 0.9833754021 0.7788676979 1.2415808025 0.8879262456
HLA-B-97 z3++ 0.7687598920 0.5268784757 1.1216851681 0.1724896900

Table 16: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-97, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-B-80 z1+- 0.8039276029 0.2963232119 2.1810629903 0.6682241361
HLA-B-80 z1++ 0.9302002731 0.3510635786 2.4647175063 0.8842885869

HLA-B-80 z2+- 0.8339067047 0.6039033175 1.1515094751 0.2699607962
HLA-B-80 z2++ 0.6207780799 0.4514561482 0.8536054411 0.0033459288

HLA-B-80 z3+- 0.8339067047 0.6039033175 1.1515094751 0.2699607962
HLA-B-80 z3++ 0.6207780799 0.4514561482 0.8536054411 0.0033459288

HLA-B-80 z1+- 0.9752084145 0.3492797297 2.7228360844 0.9617800996
HLA-B-80 z1++ 1.5063570002 0.5413021117 4.1919500459 0.4327054647
HLA-B-80 z2+- 0.7579121402 0.5390517078 1.0656321166 0.1108617087
HLA-B-80 z2++ 0.5038943692 0.3521207772 0.7210864901 0.0001780873
HLA-B-80 z3+- NA NA NA NA
HLA-B-80 z3++ NA NA NA NA

Table 17: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-80, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-B-67 z1+- 1.2584814765 0.9580907432 1.6530538866 0.0984777600
HLA-B-67 z1++ 1.9474563984 1.4547703048 2.6070001642 7.5058532e-06

HLA-B-67 z2+- 0.6550392905 0.5285032474 0.8118710229 0.0001119945
HLA-B-67 z2++ 0.4935995045 0.3679449371 0.6621655750 2.4755734e-06

HLA-B-67 z3++ 0.6790499763 0.3017063221 1.5283367851 0.3497154049

HLA-B-67 z1+- 0.3473679682 0.0755607197 1.5969210690 0.1742869679
HLA-B-67 z1++ 0.4369801738 0.0711482774 2.6838551695 0.3713597455
HLA-B-67 z2+- 0.8095040452 0.3043391189 2.1531796553 0.6720014568
HLA-B-67 z2++ 0.2142946851 0.0346112817 1.3267989450 0.0977261244
HLA-B-67 z3++ NA NA NA NA

Table 18: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-67, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-57 z1+- 600847.81448 2.271731e-271 1.589176e+282 0.9673165122
HLA-DRB1-57 z1++ 662890.82992 2.506683e-271 1.753010e+282 0.9670752659

HLA-DRB1-57 z2+- 4.7452643598 0.9307714350 24.192334439 0.0609799479
HLA-DRB1-57 z2++ 5.7731768680 1.1601771931 28.728000642 0.0322389845

HLA-DRB1-57 z3+- 600847.81448 2.271731e-271 1.589176e+282 0.9673165122
HLA-DRB1-57 z3++ 662890.82992 2.506683e-271 1.753010e+282 0.9670752659

HLA-DRB1-57 z1+- 165812.91378 6.255531e-272 4.395137e+281 0.9704775064
HLA-DRB1-57 z1++ 140487.16581 5.301098e-272 3.723123e+281 0.9708844487
HLA-DRB1-57 z2+- 3.6551893738 0.6834856058 19.547462660 0.1297412379
HLA-DRB1-57 z2++ 4.7832672035 0.9213114680 24.833778731 0.0625413602
HLA-DRB1-57 z3+- NA NA NA NA
HLA-DRB1-57 z3++ NA NA NA NA

Table 19: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-57, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DRB1-37 z1+- 0.4581249294 0.3490043367 0.6013634471 1.8689456e-08
HLA-DRB1-37 z1++ 0.2692043764 0.2016459113 0.3593973010 5.5313798e-19

HLA-DRB1-37 z2+- 1.4508644803 1.1230105660 1.8744327115 0.0044041273
HLA-DRB1-37 z2++ 2.1845190650 1.6574324122 2.8792266340 2.9159919e-08

HLA-DRB1-37 z3++ 521260.11881 1.971115e-271 1.378468e+282 0.9676653313

HLA-DRB1-37 z1+- 0.3327063024 0.2308467025 0.4795107855 3.6083531e-09
HLA-DRB1-37 z1++ 0.1596993401 0.1014070802 0.2514999858 2.4341952e-15
HLA-DRB1-37 z2+- 0.8087546991 0.5680204000 1.1515152681 0.2390351273
HLA-DRB1-37 z2++ 0.5367544533 0.3438545871 0.8378697099 0.0061718416
HLA-DRB1-37 z3++ 708814.73984 2.680065e-271 1.874649e+282 0.9669108349

Table 20: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-37, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-30 z1+- 1.2543194974 1.0230917713 1.5378067203 0.0292905916
HLA-DRB1-30 z1++ 0.9403882669 0.6254881571 1.4138238788 0.7676663568

HLA-DRB1-30 z2+- 1.5811734620 1.0032806409 2.4919343752 0.0483731090
HLA-DRB1-30 z2++ 1.3280585884 0.8544248321 2.0642419883 0.2073744083

HLA-DRB1-30 z3+- 1.5445975e-05 5.839465e-282 4.085616e+271 0.9727866096
HLA-DRB1-30 z3++ 7.7814364e-06 2.942478e-282 2.057814e+271 0.9711031269

HLA-DRB1-30 z1+- 0.5311358916 0.0329615402 8.5586211518 0.6554915460
HLA-DRB1-30 z1++ 0.2699373106 0.0009055952 80.462159615 0.6523443923
HLA-DRB1-30 z2+- 0.7893829313 0.0363915464 17.122806631 0.8802514173
HLA-DRB1-30 z2++ 0.3469094743 0.0011471284 104.91081619 0.7163939535
HLA-DRB1-30 z3+- 7.5529494e-06 2.836113e-282 2.011451e+271 0.9710302696
HLA-DRB1-30 z3++ 1.9889368e-06 7.331857e-283 5.395454e+270 0.9677552308

Table 21: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-30, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DRB1-13 z1+- 1.3374560453 0.8785070245 2.0361688901 0.1751221355
HLA-DRB1-13 z1++ 1.0620608404 0.7064443544 1.5966908385 0.7722433154

HLA-DRB1-13 z2+- 1.7047183725 0.8437190886 3.4443510511 0.1371708667
HLA-DRB1-13 z2++ 3.5259163589 1.7864404169 6.9591384369 0.0002806288

HLA-DRB1-13 z3+- 2.1931085237 1.3980344708 3.4403479293 0.0006296211
HLA-DRB1-13 z3++ 3.8061431632 2.4524692333 5.9069959295 2.5162506e-09

HLA-DRB1-13 z1+- 2.0551136307 1.3332953653 3.1677092302 0.0011024287
HLA-DRB1-13 z1++ 2.4752108656 1.5930696893 3.8458259990 5.5511242e-05
HLA-DRB1-13 z2+- 2.2464405518 1.1035345082 4.5730288587 0.0256409031
HLA-DRB1-13 z2++ 6.3984184689 3.1691295757 12.918297571 2.2468520e-07
HLA-DRB1-13 z3+- 2.7344329057 1.7265405847 4.3306965283 1.8040559e-05
HLA-DRB1-13 z3++ 6.2909669139 3.9336764391 10.060884601 1.6302597e-14

Table 22: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-13, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-11 z1+- 0.5030981788 0.4020464291 0.6295486271 1.9128618e-09
HLA-DRB1-11 z1++ 0.3451021787 0.1868989603 0.6372187067 0.0006734229

HLA-DRB1-11 z2+- 0.5953705654 0.4858574226 0.7295681690 5.7276194e-07
HLA-DRB1-11 z2++ 0.2711398243 0.1806294388 0.4070034475 3.0235599e-10

HLA-DRB1-11 z3+- 0.4633160453 0.3729518479 0.5755749946 3.6507836e-12
HLA-DRB1-11 z3++ 0.1957094102 0.1441084930 0.2657870639 1.5391899e-25

HLA-DRB1-11 z1+- 1.2615390093 0.7792548602 2.0423108706 0.3445424769
HLA-DRB1-11 z1++ 2.4628632832 0.8005541273 7.5768712502 0.1159529642
HLA-DRB1-11 z2+- 1.6500124927 0.9866759704 2.7593063051 0.0562833332
HLA-DRB1-11 z2++ 2.2107621170 0.7864245471 6.2147972817 0.1324856187
HLA-DRB1-11 z3+- 0.3001791654 0.1719380527 0.5240697444 2.3104780e-05
HLA-DRB1-11 z3++ 0.0859885241 0.0302795394 0.2441921646 4.0788984e-06

Table 23: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-11, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DQB1-57 z1+- 1.2811935751 0.8169982725 2.0091315148 0.2803794142
HLA-DQB1-57 z1++ 1.0574014784 0.6834182733 1.6360374463 0.8020936306

HLA-DQB1-57 z2+- 0.7241882148 0.5728795124 0.9154605098 0.0069630641
HLA-DQB1-57 z2++ 0.4443460880 0.3384824959 0.5833195168 5.1536368e-09

HLA-DQB1-57 z3+- 1.2811935751 0.8169982725 2.0091315148 0.2803794142
HLA-DQB1-57 z3++ 1.0574014784 0.6834182733 1.6360374463 0.8020936306

HLA-DQB1-57 z1+- 1.7030831766 1.0543217112 2.7510505338 0.0295429475
HLA-DQB1-57 z1++ 1.9375109423 1.1837526559 3.1712272264 0.0085135881
HLA-DQB1-57 z2+- 0.6329794884 0.4888066238 0.8196759480 0.0005247420
HLA-DQB1-57 z2++ 0.3670309695 0.2654078026 0.5075650800 1.3620861e-09
HLA-DQB1-57 z3+- NA NA NA NA
HLA-DQB1-57 z3++ NA NA NA NA

Table 24: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-57, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DQB1-55 z1+- 0.5030844401 0.3790477903 0.6677098782 1.9716781e-06
HLA-DQB1-55 z1++ 0.2737559870 0.2037801057 0.3677608282 7.8579991e-18

HLA-DQB1-55 z2++ 7.9579470e-06 3.009199e-282 2.104510e+271 0.9711582012

HLA-DQB1-55 z3+- 1.8293963241 1.4749864582 2.2689638214 3.8547224e-08
HLA-DQB1-55 z3++ 3.6417034144 2.7110365694 4.8918571990 9.2051529e-18

HLA-DQB1-55 z1+- 0.5022758874 0.3784313505 0.6666494907 1.8687827e-06
HLA-DQB1-55 z1++ 0.2737244204 0.2037573060 0.3677171621 7.7989488e-18
HLA-DQB1-55 z2++ 8.3164943e-06 3.144719e-282 2.199371e+271 0.9712664095
HLA-DQB1-55 z3+- NA NA NA NA
HLA-DQB1-55 z3++ NA NA NA NA

Table 25: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-55, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DQB1-37 z1+- 1.2126510512 0.3776236493 3.8941485115 0.7460037706

HLA-DQB1-37 z2++ 7.9579470e-06 3.009199e-282 2.104510e+271 0.9711582012

HLA-DQB1-37 z3++ 7.9579470e-06 3.009199e-282 2.104510e+271 0.9711582012

HLA-DQB1-37 z1+- 1.2144908333 0.3782075686 3.8999430637 0.7440701737
HLA-DQB1-37 z2++ 7.9353296e-06 3.000646e-282 2.098529e+271 0.9711512129
HLA-DQB1-37 z3++ NA NA NA NA

Table 26: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-37, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DQB1-26 z1+- 1.2342125516 1.0077089298 1.5116275917 0.0419316080
HLA-DQB1-26 z1++ 0.6485999694 0.4407793633 0.9544047552 0.0280377997

HLA-DQB1-26 z2+- 1.8478259547 1.4480310668 2.3580024193 7.9715306e-07
HLA-DQB1-26 z2++ 4.5412824872 1.7753553625 11.616404841 0.0015896322

HLA-DQB1-26 z3+- 1.5757076229 1.2790282792 1.9412037662 1.9352428e-05
HLA-DQB1-26 z3++ 1.6360758833 1.2171950183 2.1991088163 0.0011043157

HLA-DQB1-26 z1+- 1.3773060969 1.0482728835 1.8096166698 0.0215364764
HLA-DQB1-26 z1++ 0.8221050723 0.5536564840 1.2207149548 0.3314573353
HLA-DQB1-26 z2+- 1.8813820188 1.4319112463 2.4719397308 5.6936457e-06
HLA-DQB1-26 z2++ 5.1903015888 2.0164576166 13.359681036 0.0006404439
HLA-DQB1-26 z3+- 1.0354298272 0.7880401341 1.3604826463 0.8026337369
HLA-DQB1-26 z3++ NA NA NA NA

Table 27: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-26, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DQB1-5 z1+- 1.2155768368 0.9926284474 1.4886003418 0.0589731790
HLA-DQB1-5 z1++ 0.6575932907 0.4461402631 0.9692667794 0.0342033571

HLA-DQB1-5 z2+- 1.8405689793 1.4825762964 2.2850049443 3.2343792e-08
HLA-DQB1-5 z2++ 3.6680079928 2.7351690228 4.9189949590 3.9492811e-18

HLA-DQB1-5 z3+- 2.2085925286 1.5591690149 3.1285132725 8.1953932e-06
HLA-DQB1-5 z3++ 4.5685088379 3.2276249975 6.4664491749 1.0351536e-17

HLA-DQB1-5 z1+- 2.1670409862 1.6986702235 2.7645546329 4.8319675e-10
HLA-DQB1-5 z1++ 1.8260524794 1.1269671035 2.9587976857 0.0144699623
HLA-DQB1-5 z2+- 2.1586170171 1.6924248916 2.7532255343 5.7002980e-10
HLA-DQB1-5 z2++ 6.2427538046 4.1915326996 9.2977862414 2.0444945e-19
HLA-DQB1-5 z3+- 1.0246340479 0.8031597133 1.3071807695 0.8447276228
HLA-DQB1-5 z3++ NA NA NA NA

Table 28: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-5, using subset 1.

Estimate 2.5% 97.5% p-value

HLA-DPA1-228 z1+- 0.2525429030 0.0290369612 2.1964391277 0.2124015208
HLA-DPA1-228 z1++ 0.3998572701 0.0465439192 3.4351605788 0.4035207662

HLA-DPA1-228 z2+- 0.6315826219 0.4807416856 0.8297524850 0.0009657155
HLA-DPA1-228 z2++ 2.5008923802 0.2911072065 21.485083701 0.4035207662

HLA-DPA1-228 z3+- 0.6315826219 0.4807416856 0.8297524850 0.0009657155
HLA-DPA1-228 z3++ 2.5008923802 0.2911072065 21.485083701 0.4035207662

HLA-DPA1-228 z1+- 0.2525429030 0.0290369612 2.1964391277 0.2124015208
HLA-DPA1-228 z1++ 0.3998572701 0.0465439192 3.4351605788 0.4035207662
HLA-DPA1-228 z2+- NA NA NA NA
HLA-DPA1-228 z2++ NA NA NA NA
HLA-DPA1-228 z3+- NA NA NA NA
HLA-DPA1-228 z3++ NA NA NA NA

Table 29: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DPA1-228, using subset 1.
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Estimate 2.5% 97.5% p-value

HLA-DPB1-84 z1++ 1.4998681386 0.5553204927 4.0510020112 0.4239119707

HLA-DPB1-84 z2+- 0.7438100792 0.5985684331 0.9242943719 0.0075803592
HLA-DPB1-84 z2++ 0.3708960324 0.1947740761 0.7062740056 0.0025429251

HLA-DPB1-84 z3++ 1.4998681386 0.5553204927 4.0510020112 0.4239119707

HLA-DPB1-84 z1++ 1.5687942507 0.5799482748 4.2436808728 0.3751268176
HLA-DPB1-84 z2+- 0.7425562020 0.5975142876 0.9228059054 0.0072638455
HLA-DPB1-84 z2++ 0.3691649484 0.1938468639 0.7030434044 0.0024295387
HLA-DPB1-84 z3++ NA NA NA NA

Table 30: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DPB1-84, using subset 1.

Subset 2

Estimate 2.5% 97.5% p-value

HLA-A-9 z1+- 0.9909488401 0.8630101864 1.1378540130 0.8974250722
HLA-A-9 z1++ 0.7475585782 0.5110233439 1.0935778854 0.1338590767

HLA-A-9 z2+- 1.3255801873 0.8947166359 1.9639322245 0.1599358268
HLA-A-9 z2++ 1.3376878135 0.9144296106 1.9568577676 0.1338590767

HLA-A-9 z3+- 0.4017567993 0.0842694386 1.9153862717 0.2524705419
HLA-A-9 z3++ 0.3539473968 0.0750297560 1.6697210061 0.1894386876

HLA-A-9 z1+- 0.9044879406 0.7698146366 1.0627213304 0.2223094881
HLA-A-9 z1++ 0.5766665890 0.3782927612 0.8790661333 0.0104917360
HLA-A-9 z3+- 0.2717934060 0.0547302689 1.3497404092 0.1111198130
HLA-A-9 z3++ 0.2089446992 0.0419801233 1.0399656766 0.0558626389
HLA-A-9 z2+- NA NA NA NA
HLA-A-9 z2++ NA NA NA NA

Table 31: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-9, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-A-62 z1+- 1.3685761e-05 2.999220e-173 6.244958e+162 0.9546584661
HLA-A-62 z1++ 1.4769857e-05 3.237280e-173 6.738639e+162 0.9549667588

HLA-A-62 z2+- 0.8752663642 0.7355964878 1.0414557723 0.1330931484
HLA-A-62 z2++ 0.7712186504 0.6439214846 0.9236812577 0.0047650187

HLA-A-62 z3+- 1.1317645340 0.9969717465 1.2847816049 0.0557366783
HLA-A-62 z3++ 1.3155722053 1.0942647941 1.5816374947 0.0035167639

HLA-A-62 z1+- 1.4678812e-05 3.216744e-173 6.698309e+162 0.9549417721
HLA-A-62 z1++ 1.7643797e-05 3.867050e-173 8.050156e+162 0.9556858565
HLA-A-62 z2+- 0.9518320562 0.6580699953 1.3767293290 0.7931989443
HLA-A-62 z2++ 0.7578121083 0.6295620937 0.9121883245 0.0033730293
HLA-A-62 z3+- 0.9064823352 0.6267015794 1.3111666717 0.6021121342
HLA-A-62 z3++ NA NA NA NA

Table 32: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-62, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-A-76 z1+- 0.8573369138 0.7574701289 0.9703703891 0.0148523021
HLA-A-76 z1++ 0.8282004879 0.6782749080 1.0112655504 0.0643110490

HLA-A-76 z2+- 0.9281054718 0.8087350596 1.0650951218 0.2881601320
HLA-A-76 z2++ 0.8362333724 0.5550491510 1.2598636568 0.3923997400

HLA-A-76 z3+- 0.8994905060 0.7906050434 1.0233721340 0.1076104866
HLA-A-76 z3++ 0.8079768249 0.5819124713 1.1218638226 0.2029189405

HLA-A-76 z1+- 0.7994839831 0.6285171525 1.0169565567 0.0683044273
HLA-A-76 z1++ 0.7702597783 0.5527969263 1.0732695820 0.1230254338
HLA-A-76 z2+- 1.0822384495 0.8645316436 1.3547682960 0.4904022002
HLA-A-76 z2++ 1.0176742062 0.6076248776 1.7044410591 0.9469133221
HLA-A-76 z3+- 1.0648606916 0.8506375354 1.3330334547 0.5834353297
HLA-A-76 z3++ NA NA NA NA

Table 33: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-76, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-A-152 z1+- 0.9232245273 0.8112092259 1.0507073891 0.2261061974
HLA-A-152 z1++ 0.8304666934 0.6968033839 0.9897697755 0.0380039158

HLA-A-152 z2+- 0.9380624960 0.8279611408 1.0628050075 0.3155029188
HLA-A-152 z2++ 0.9022802598 0.6846396390 1.1891068247 0.4653026692

HLA-A-152 z3+- 0.9589552953 0.8442155953 1.0892895885 0.5191961041
HLA-A-152 z3++ 0.7428640437 0.5401864955 1.0215860485 0.0674620619

HLA-A-152 z1+- 0.9677440480 0.6864333968 1.3643400025 0.8515787589
HLA-A-152 z1++ 0.9454041149 0.4907243883 1.8213664568 0.8667329239
HLA-A-152 z2+- 0.9428011232 0.6752531736 1.3163565795 0.7294370577
HLA-A-152 z2++ 0.9144915408 0.4548241589 1.8387211006 0.8019440331
HLA-A-152 z3+- 0.9670765875 0.6908327522 1.3537822623 0.8453446000
HLA-A-152 z3++ 0.7518996026 0.3769065324 1.4999819951 0.4183580272

Table 34: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-152, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-A-156 z1+- 0.9338421096 0.8257193914 1.0561228122 0.2756117451
HLA-A-156 z1++ 0.7184663686 0.5687032705 0.9076682861 0.0055674662

HLA-A-156 z2+- 0.8680785332 0.7654321035 0.9844901152 0.0275650976
HLA-A-156 z2++ 0.7630332455 0.6329300653 0.9198800398 0.0045749136

HLA-A-156 z3+- 0.9036705766 0.7743563084 1.0545797873 0.1986126661
HLA-A-156 z3++ 0.8908447500 0.4790135697 1.6567471542 0.7150132372

HLA-A-156 z1+- 1.0829272233 0.7636648918 1.5356622826 0.6548511930
HLA-A-156 z1++ 0.8320696754 0.4321983511 1.6019032535 0.5822663333
HLA-A-156 z2+- 0.8206068929 0.5718108045 1.1776546846 0.2833948419
HLA-A-156 z2++ 0.8209222047 0.4398906434 1.5320018196 0.5353270977
HLA-A-156 z3+- 0.9920159720 0.6995697866 1.4067155381 0.9641212389
HLA-A-156 z3++ NA NA NA NA

Table 35: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-A-156, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-C-156 z1+- 1.0983890793 0.9713230548 1.2420775597 0.1346268005
HLA-C-156 z1++ 0.9970000002 0.8018504108 1.2396439374 0.9784328066

HLA-C-156 z2+- 0.9130509342 0.7981980568 1.0444300151 0.1847788100
HLA-C-156 z2++ 0.9916776734 0.8371105704 1.1747846015 0.9229895926

HLA-C-156 z3+- 0.8293889949 0.7288862836 0.9437495537 0.0045338015
HLA-C-156 z3++ 1.0145624894 0.7166506186 1.4363164116 0.9350334628

HLA-C-156 z1+- 0.8851435365 0.6430804153 1.2183220970 0.4541671273
HLA-C-156 z1++ 0.5446542710 0.2915796702 1.0173832583 0.0566624729
HLA-C-156 z2+- 1.1570082470 0.8201916728 1.6321405447 0.4060937281
HLA-C-156 z2++ 1.7830288288 0.9376975877 3.3904233581 0.0777701291
HLA-C-156 z3+- 0.6716016593 0.4938202612 0.9133865582 0.0111671908
HLA-C-156 z3++ 0.5981623394 0.3145049057 1.1376553365 0.1171705532

Table 36: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-C-156, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-C-116 z1+- 0.9511118540 0.8267565498 1.0941718684 0.4832345982
HLA-C-116 z1++ 0.7858388509 0.6654277430 0.9280387031 0.0045109587

HLA-C-116 z2+- 1.1762208461 1.0191239021 1.3575341289 0.0264905177
HLA-C-116 z2++ 1.2920511261 1.0937497620 1.5263053493 0.0025775786

HLA-C-116 z3+- 1.2108869032 0.0745569866 19.666125990 0.8929730660
HLA-C-116 z3++ 1.3708655395 0.0856700372 21.936167983 0.8235510224

HLA-C-116 z1+- 1.3875555303 0.3360496972 5.7292429225 0.6507510602
HLA-C-116 z1++ 1.1595783972 0.0723170171 18.593439180 0.9167085735
HLA-C-116 z2+- 1.0105297394 0.2447269008 4.1726935242 0.9884492236
HLA-C-116 z2++ 1.5212606401 0.0948949428 24.387326300 0.7669485541
HLA-C-116 z3+- 1.0372314553 0.2512182422 4.2825277437 0.9597024418
HLA-C-116 z3++ NA NA NA NA

Table 37: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-C-116, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-B-156 z1+- 0.9475859710 0.8325220996 1.0785529572 0.4150210604
HLA-B-156 z1++ 0.9783724976 0.8212892697 1.1655001220 0.8065646807

HLA-B-156 z2+- 1.1271846531 0.9683563585 1.3120637160 0.1223445120
HLA-B-156 z2++ 1.2415619195 1.0497628113 1.4684040847 0.0114978758

HLA-B-156 z3+- 1.2975836083 1.1411241638 1.4754951949 7.0769895e-05
HLA-B-156 z3++ 1.4768441981 1.2332491030 1.7685549335 2.2394940e-05

HLA-B-156 z1+- 0.8151549910 0.6757926318 0.9832567388 0.0326408830
HLA-B-156 z1++ 0.7408117358 0.5555100187 0.9879246267 0.0410838743
HLA-B-156 z2+- 1.0569182775 0.8082759907 1.3820480356 0.6858233985
HLA-B-156 z2++ 1.1212263086 0.7675037880 1.6379703330 0.5540691020
HLA-B-156 z3+- 1.3410943134 1.1177395303 1.6090814621 0.0015913961
HLA-B-156 z3++ 1.5431966559 1.1631937489 2.0473424321 0.0026290890

Table 38: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-156, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-B-116 z1+- 1.1195850414 0.9776717412 1.2820976736 0.1023790907
HLA-B-116 z1++ 1.2969753645 1.0953163948 1.5357618164 0.0025623194

HLA-B-116 z2+- 0.8427798894 0.6821818634 1.0411856137 0.1127873294
HLA-B-116 z2++ 0.7720883428 0.6270362933 0.9506952236 0.0148430507

HLA-B-116 z3+- 2.1841881172 0.4825308461 9.8867829265 0.3105459415
HLA-B-116 z3++ 1.9013881849 0.4246223685 8.5140993455 0.4008466904

HLA-B-116 z1+- 1.1361480554 0.9729339573 1.3267420611 0.1067045600
HLA-B-116 z1++ 1.3173878681 1.0558191502 1.6437576405 0.0146485650
HLA-B-116 z2+- 0.9291499251 0.7345075010 1.1753720447 0.5400720278
HLA-B-116 z2++ 0.9418553882 0.7184215265 1.2347786634 0.6646005588
HLA-B-116 z3+- 2.1646686642 0.4727174455 9.9124550397 0.3198324927
HLA-B-116 z3++ 1.7792121516 0.3861578989 8.1976722200 0.4597804005

Table 39: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-116, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-B-97 z1+- 1.7633207335 0.3185116958 9.7619649449 0.5159385213
HLA-B-97 z1++ 2.8973010652 0.5297992427 15.844404417 0.2197669246

HLA-B-97 z2+- 1.1461067237 0.9674567342 1.3577461147 0.1147266857
HLA-B-97 z2++ 1.3066237534 1.0925903469 1.5625853164 0.0033882378

HLA-B-97 z3+- 0.9125951284 0.8038394630 1.0360649194 0.1577377122
HLA-B-97 z3++ 0.8494365682 0.7086499772 1.0181930523 0.0775707416

HLA-B-97 z1+- 1.6982024627 0.3063734003 9.4129960397 0.5444561889
HLA-B-97 z1++ 2.7425225180 0.5006454793 15.023464853 0.2449703345
HLA-B-97 z2+- 1.1241785459 0.9330988745 1.3543874476 0.2181470035
HLA-B-97 z2++ 1.2281408898 0.9899230420 1.5236841464 0.0617753242
HLA-B-97 z3+- 0.9536464499 0.8247830598 1.1026433443 0.5216627581
HLA-B-97 z3++ 0.9508544082 0.7655779882 1.1809693062 0.6485816505

Table 40: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-97, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-B-80 z1+- 0.7733767965 0.4190611568 1.4272658289 0.4110686334
HLA-B-80 z1++ 0.9950832959 0.5459735148 1.8136241758 0.9871596513

HLA-B-80 z2+- 0.9855937616 0.8090452405 1.2006684104 0.8854324985
HLA-B-80 z2++ 0.9955909537 0.8178654699 1.2119369060 0.9648696268

HLA-B-80 z3+- 0.9855937616 0.8090452405 1.2006684104 0.8854324985
HLA-B-80 z3++ 0.9955909537 0.8178654699 1.2119369060 0.9648696268

HLA-B-80 z1+- 0.8126928485 0.4323506005 1.5276251847 0.5195121778
HLA-B-80 z1++ 1.1097088743 0.5908245113 2.0842970494 0.7461787981
HLA-B-80 z2+- 0.9338593523 0.7585417074 1.1496972169 0.5189096133
HLA-B-80 z2++ 0.8612780659 0.6905624764 1.0741966615 0.1851864303
HLA-B-80 z3+- NA NA NA NA
HLA-B-80 z3++ NA NA NA NA

Table 41: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-80, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-B-67 z1+- 1.1392642088 0.9704657362 1.3374227333 0.1110358956
HLA-B-67 z1++ 1.3568453773 1.1410464548 1.6134569895 0.0005545041

HLA-B-67 z2+- 0.8874515266 0.7795384765 1.0103031932 0.0710737142
HLA-B-67 z2++ 0.7792196012 0.6527995542 0.9301219386 0.0057448154

HLA-B-67 z3+- 2.0930961524 0.1873030693 23.390174644 0.5486406041
HLA-B-67 z3++ 2.7695723170 0.2508770233 30.574863805 0.4057461652

HLA-B-67 z1+- 1.5829658065 0.4633759285 5.4076627428 0.4637029123
HLA-B-67 z1++ 3.1427718799 0.2842471228 34.747986149 0.3503151535
HLA-B-67 z2+- 1.6988065833 0.4973123177 5.8030812922 0.3978451962
HLA-B-67 z2++ 2.3411853204 0.2112817326 25.942369155 0.4881947046
HLA-B-67 z3+- 1.2873027540 0.3768077661 4.3978615341 0.6870237894
HLA-B-67 z3++ NA NA NA NA

Table 42: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-67, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-B-66 z1+- 0.7557470659 0.5850429967 0.9762592336 0.0320406712
HLA-B-66 z1++ 0.3610665783 0.0327066052 3.9860166818 0.4057461652

HLA-B-66 z2+- 0.7557470659 0.5850429967 0.9762592336 0.0320406712
HLA-B-66 z2++ 0.3610665783 0.0327066052 3.9860166818 0.4057461652

HLA-B-66 z3+- 0.7557470659 0.5850429967 0.9762592336 0.0320406712
HLA-B-66 z3++ 0.3610665783 0.0327066052 3.9860166818 0.4057461652

HLA-B-66 z1+- 0.7557470659 0.5850429967 0.9762592336 0.0320406712
HLA-B-66 z1++ 0.3610665783 0.0327066052 3.9860166818 0.4057461652
HLA-B-66 z2+- NA NA NA NA
HLA-B-66 z2++ NA NA NA NA
HLA-B-66 z3+- NA NA NA NA
HLA-B-66 z3++ NA NA NA NA

Table 43: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-B-66, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-74 z1+- 0.7912002399 0.2192053346 2.8557599690 0.7206210444
HLA-DRB1-74 z1++ 0.9725354848 0.2738570187 3.4537192928 0.9656458273

HLA-DRB1-74 z2+- 0.7466682399 0.6587839727 0.8462765999 4.8230527e-06
HLA-DRB1-74 z2++ 0.4558405218 0.3515860839 0.5910091179 3.0422070e-09

HLA-DRB1-74 z3+- 1.6009478759 1.2738823736 2.0119864708 5.4352581e-05
HLA-DRB1-74 z3++ 2.1229170825 1.6988034068 2.6529125861 3.5850227e-11

HLA-DRB1-74 z1+- 0.8302160214 0.2286481697 3.0144944654 0.7773193377
HLA-DRB1-74 z1++ 1.1311265076 0.3181805181 4.0211361264 0.8489949756
HLA-DRB1-74 z2+- 0.6938789916 0.5427247318 0.8871312228 0.0035530817
HLA-DRB1-74 z2++ 0.4460848731 0.3436504670 0.5790526513 1.3223512e-09
HLA-DRB1-74 z3+- 1.0781283623 0.8432731765 1.3783917216 0.5484335614
HLA-DRB1-74 z3++ NA NA NA NA

Table 44: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-74, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DRB1-57 z1+- 1.2655667297 0.7311318078 2.1906571844 0.4001748024
HLA-DRB1-57 z1++ 1.8524749236 1.0847647910 3.1635091504 0.0239489051

HLA-DRB1-57 z2+- 1.0134187273 0.7174287275 1.4315254985 0.9397091356
HLA-DRB1-57 z2++ 1.4542856767 1.0406844199 2.0322652948 0.0282690108

HLA-DRB1-57 z3+- 1.2655667297 0.7311318078 2.1906571844 0.4001748024
HLA-DRB1-57 z3++ 1.8524749236 1.0847647910 3.1635091504 0.0239489051

HLA-DRB1-57 z1+- 1.4800870133 0.7493166993 2.9235402988 0.2588980909
HLA-DRB1-57 z1++ 1.7554325024 0.8781428915 3.5091592730 0.1113247064
HLA-DRB1-57 z2+- 0.8444003814 0.5471446114 1.3031509208 0.4449005081
HLA-DRB1-57 z2++ 1.0929798035 0.6969484233 1.7140505825 0.6985510769
HLA-DRB1-57 z3+- NA NA NA NA
HLA-DRB1-57 z3++ NA NA NA NA

Table 45: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-57, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-37 z1+- 0.6484787397 0.5590358659 0.7522320149 1.0663259e-08
HLA-DRB1-37 z1++ 0.4824237274 0.4081116759 0.5702670776 1.3357583e-17

HLA-DRB1-37 z2+- 1.1738157001 0.9474119478 1.4543233290 0.1426898153
HLA-DRB1-37 z2++ 1.2317344025 0.9984333940 1.5195501749 0.0517352121

HLA-DRB1-37 z3+- 0.8798279929 0.1432421491 5.4041167483 0.8900507027
HLA-DRB1-37 z3++ 0.9881818176 0.1647277524 5.9279829323 0.9896230147

HLA-DRB1-37 z1+- 0.5469923134 0.4637639472 0.6451570735 7.8344663e-13
HLA-DRB1-37 z1++ 0.3562031765 0.2887584603 0.4394008155 5.5097667e-22
HLA-DRB1-37 z2+- 0.8706681444 0.6880179141 1.1018070927 0.2489544371
HLA-DRB1-37 z2++ 0.6358801612 0.4911226524 0.8233046824 0.0005921477
HLA-DRB1-37 z3+- 1.3549444123 0.2185040061 8.4020169382 0.7442155538
HLA-DRB1-37 z3++ 2.3620608961 0.3850764170 14.488894750 0.3530057013

Table 46: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-37, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DRB1-30 z1+- 1.2808512319 1.1246756755 1.4587137554 0.0001907371
HLA-DRB1-30 z1++ 1.2052673839 0.8717572467 1.6663692471 0.2586460988

HLA-DRB1-30 z2+- 1.1972088907 0.9032783733 1.5867856138 0.2104800649
HLA-DRB1-30 z2++ 1.2540074858 0.9543811937 1.6477009236 0.1042074063

HLA-DRB1-30 z3+- 1.7431219097 0.8709527518 3.4886783306 0.1164918339
HLA-DRB1-30 z3++ 2.2116175657 1.1209848566 4.3633526607 0.0220573498

HLA-DRB1-30 z1+- 1.7392816316 1.4264933451 2.1206552449 4.4567701e-08
HLA-DRB1-30 z1++ 2.0557594780 1.3322845027 3.1721055247 0.0011285781
HLA-DRB1-30 z2+- 1.3766424262 0.9709088358 1.9519282345 0.0727737524
HLA-DRB1-30 z2++ 2.0760562891 1.3651729832 3.1571161813 0.0006368998
HLA-DRB1-30 z3+- 1.3947966528 0.6699673984 2.9038095098 0.3737876471
HLA-DRB1-30 z3++ 1.3613689150 0.6447782481 2.8743608028 0.4184897139

Table 47: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-30, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DRB1-13 z1+- 1.1267454118 0.8653619904 1.4670799470 0.3755408802
HLA-DRB1-13 z1++ 1.0947653320 0.8478712376 1.4135532365 0.4874564077

HLA-DRB1-13 z2+- 1.3465536560 1.1243415735 1.6126831838 0.0012223653
HLA-DRB1-13 z2++ 2.2574031317 1.8820187390 2.7076610841 1.7155511e-18

HLA-DRB1-13 z3+- 1.8752599475 1.2127674422 2.8996489749 0.0046920526
HLA-DRB1-13 z3++ 2.3488903674 1.5366115286 3.5905535362 8.0126921e-05

HLA-DRB1-13 z1+- 1.9126740694 1.4491462465 2.5244671507 4.6526254e-06
HLA-DRB1-13 z1++ 3.0676485089 2.2885150833 4.1120407913 6.4848207e-14
HLA-DRB1-13 z2+- 1.8539803512 1.5264884814 2.2517321187 4.8103918e-10
HLA-DRB1-13 z2++ 4.4926749316 3.5855359712 5.6293196341 5.8426002e-39
HLA-DRB1-13 z3+- 3.0420024731 1.9514739641 4.7419433803 9.0253599e-07
HLA-DRB1-13 z3++ 6.1071081600 3.8976341990 9.5690791319 2.8544063e-15

Table 48: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-13, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DRB1-11 z1+- 0.5414097937 0.4719273129 0.6211222719 2.0305122e-18
HLA-DRB1-11 z1++ 0.3454630308 0.2914746949 0.4094513444 1.5051416e-34

HLA-DRB1-11 z2+- 0.8071024048 0.7057841128 0.9229653658 0.0017406369
HLA-DRB1-11 z2++ 0.4957547890 0.3399135560 0.7230450403 0.0002683062

HLA-DRB1-11 z3+- 0.4367045140 0.3661709105 0.5208246398 3.0244317e-20
HLA-DRB1-11 z3++ 0.2358849384 0.1961291671 0.2836992833 4.2439253e-53

HLA-DRB1-11 z1+- 1.2229309575 0.8491797187 1.7611821075 0.2794957067
HLA-DRB1-11 z1++ 1.6552204722 0.8346009641 3.2827122533 0.1491771964
HLA-DRB1-11 z2+- 1.4231690806 1.0152505897 1.9949855263 0.0405800935
HLA-DRB1-11 z2++ 1.5070054101 0.7318282358 3.1032764179 0.2657847931
HLA-DRB1-11 z3+- 0.3401437190 0.2284608463 0.5064226603 1.0932067e-07
HLA-DRB1-11 z3++ 0.1387240247 0.0680950115 0.2826103499 5.3093254e-08

Table 49: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DRB1-11, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DQB1-57 z1+- 1.1722959198 0.8459498210 1.6245381102 0.3395989364
HLA-DQB1-57 z1++ 1.0748612895 0.7829540139 1.4755998068 0.6552151222

HLA-DQB1-57 z2+- 0.8570269671 0.7487122101 0.9810114120 0.0252171556
HLA-DQB1-57 z2++ 0.6624394872 0.5601872404 0.7833560685 1.4768266e-06

HLA-DQB1-57 z3+- 1.1722959198 0.8459498210 1.6245381102 0.3395989364
HLA-DQB1-57 z3++ 1.0748612895 0.7829540139 1.4755998068 0.6552151222

HLA-DQB1-57 z1+- 1.3036288384 0.9320986908 1.8232491528 0.1213477176
HLA-DQB1-57 z1++ 1.3666769429 0.9762352505 1.9132743520 0.0687824603
HLA-DQB1-57 z2+- 0.8220543666 0.7126401136 0.9482673916 0.0071692507
HLA-DQB1-57 z2++ 0.6252764656 0.5188203822 0.7535761352 8.1763736e-07
HLA-DQB1-57 z3+- NA NA NA NA
HLA-DQB1-57 z3++ NA NA NA NA

Table 50: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-57, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DQB1-55 z1+- 0.7624258966 0.6662198032 0.8725247208 8.1002947e-05
HLA-DQB1-55 z1++ 0.6035458800 0.5098513541 0.7144584913 4.4579520e-09

HLA-DQB1-55 z2+- 1.8517191210 1.2630737179 2.7146980055 0.0015968665
HLA-DQB1-55 z2++ 2.4745696410 1.7051298433 3.5912191276 1.8573141e-06

HLA-DQB1-55 z3+- 1.4744887301 1.2962417117 1.6772466090 3.4830871e-09
HLA-DQB1-55 z3++ 2.5844291609 2.1522309222 3.1034188845 2.7161230e-24

HLA-DQB1-55 z1+- 0.6567985954 0.5676030102 0.7600107597 1.6512518e-08
HLA-DQB1-55 z1++ 0.4112008108 0.3353990108 0.5041341845 1.2512775e-17
HLA-DQB1-55 z2+- 2.4402302145 1.6459880244 3.6177198201 8.9734057e-06
HLA-DQB1-55 z2++ 4.1313361363 2.7763670680 6.1475798600 2.6435299e-12
HLA-DQB1-55 z3+- 0.8937660560 0.7723924564 1.0342122794 0.1314994301
HLA-DQB1-55 z3++ NA NA NA NA

Table 51: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-55, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DQB1-37 z1+- 2.4586085228 0.9901124672 6.1051204473 0.0525560149

HLA-DQB1-37 z2+- 1.8517191210 1.2630737179 2.7146980055 0.0015968665
HLA-DQB1-37 z2++ 2.4745696410 1.7051298433 3.5912191276 1.8573141e-06

HLA-DQB1-37 z3+- 1.8517191210 1.2630737179 2.7146980055 0.0015968665
HLA-DQB1-37 z3++ 2.4745696410 1.7051298433 3.5912191276 1.8573141e-06

HLA-DQB1-37 z1+- 2.3244618017 0.9349487600 5.7790575258 0.0694914999
HLA-DQB1-37 z2+- 1.8469964071 1.2598384964 2.7078040062 0.0016705153
HLA-DQB1-37 z2++ 2.4618592091 1.6963208951 3.5728798620 2.1279318e-06
HLA-DQB1-37 z3+- NA NA NA NA
HLA-DQB1-37 z3++ NA NA NA NA

Table 52: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-37, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DQB1-26 z1+- 1.1915707260 1.0505808036 1.3514817616 0.0063730902
HLA-DQB1-26 z1++ 0.9624312527 0.7198235343 1.2868069353 0.7961029306

HLA-DQB1-26 z2+- 1.2994433260 1.1371493529 1.4848998975 0.0001190205
HLA-DQB1-26 z2++ 1.5284749854 1.0571665821 2.2099031699 0.0241017572

HLA-DQB1-26 z3+- 1.3836955787 1.2191444393 1.5704566193 4.9713456e-07
HLA-DQB1-26 z3++ 1.4176175387 1.1780435409 1.7059127411 0.0002200946

HLA-DQB1-26 z1+- 1.1952836804 1.0265320884 1.3917763437 0.0216082543
HLA-DQB1-26 z1++ 1.1117697418 0.8269702179 1.4946511156 0.4828591393
HLA-DQB1-26 z2+- 1.2848301275 1.1034165939 1.4960699935 0.0012503618
HLA-DQB1-26 z2++ 1.7218142455 1.1847359138 2.5023672041 0.0043901482
HLA-DQB1-26 z3+- 1.1220447133 0.9636356410 1.3064941615 0.1380912531
HLA-DQB1-26 z3++ NA NA NA NA

Table 53: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DQB1-26, using subset 2.
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Estimate 2.5% 97.5% p-value

HLA-DPA1-228 z1+- 1.4318070817 0.8909893371 2.3008934380 0.1380586483
HLA-DPA1-228 z1++ 1.7563865025 1.1062807604 2.7885267976 0.0169301799

HLA-DPA1-228 z2+- 0.8152004582 0.7069809571 0.9399854131 0.0049290177
HLA-DPA1-228 z2++ 0.5693507656 0.3586122969 0.9039296675 0.0169301799

HLA-DPA1-228 z3+- 0.8152004582 0.7069809571 0.9399854131 0.0049290177
HLA-DPA1-228 z3++ 0.5693507656 0.3586122969 0.9039296675 0.0169301799

HLA-DPA1-228 z1+- 1.4318070817 0.8909893371 2.3008934380 0.1380586483
HLA-DPA1-228 z1++ 1.7563865025 1.1062807604 2.7885267976 0.0169301799
HLA-DPA1-228 z2+- NA NA NA NA
HLA-DPA1-228 z2++ NA NA NA NA
HLA-DPA1-228 z3+- NA NA NA NA
HLA-DPA1-228 z3++ NA NA NA NA

Table 54: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DPA1-228, using subset 2.

Estimate 2.5% 97.5% p-value

HLA-DPB1-84 z1++ 1.9674177441 1.1588021708 3.3402876498 0.0122212038

HLA-DPB1-84 z2+- 0.8339300062 0.7367937864 0.9438723128 0.0040509562
HLA-DPB1-84 z2++ 0.5177670063 0.4030085007 0.6652035188 2.6224728e-07

HLA-DPB1-84 z3++ 1.9674177441 1.1588021708 3.3402876498 0.0122212038

HLA-DPB1-84 z1++ 2.1063936675 1.2394877763 3.5796192324 0.0058960008
HLA-DPB1-84 z2+- 0.8281118791 0.7315082527 0.9374730657 0.0028806286
HLA-DPB1-84 z2++ 0.5111982762 0.3978192142 0.6568905378 1.5663449e-07
HLA-DPB1-84 z3++ NA NA NA NA

Table 55: Estimate, 95% confidence interval and p-value for all three univariable models and the
multivariable model for the amino acid on position HLA-DPB1-84, using subset 2.
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