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Abstract

This thesis aims to fit an appropriate general atuoreggressive het-
eroscedastic model to Google stock daily log returns from 2006-02-
01 to 2018-01-31. The purpose is to evaluate whether or not the
GARCH(1, 1) model can be used to predict the one step ahead volatil-
ity of the log returns. This is done by applying a back testing pro-
cedure and then compute interval forecasts respectively density fore-
casts. The results indicates that the GARCH(1, 1) model assuming a
normal distribution in combination with rolling window length of 750
days respectively 1250 days yields correct conditional coverage when
the actual coverage probability of the predicted interval is 0.95. It
further implies that the interval forecast from the student-t distribu-
tion is to cautious, regardless of the window length used, when the
actual coverage probability is 0.95. But the results from the density
forecasts implies that the GARCH(1, 1) model, assuming a student-t
distribution and using window length 250 days, yields good predic-
tions. However, the density forecasts also indicates that a skewed
student-t distribution might have a better fit. Hence, for further re-
search it is suggested to calculate interval forecast, letting the actual
coverage probability, p, vary between 0.8 and 0.95. It is also suggested
that in addition to the normal and student-t distribution also include
the skewed student-t distribution.
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1 Introduction

Investing money in the financial market means that you are exposed to
risk. The daily closing price of the asset will change day by day. Hence,
in the financial sector it is common to model and predict the volatility of
an financial asset. The volatility is defined as the conditional standard de-
viation of the asset return. Thus, the volatility is a measure of risk. Since
there is only one observation made on a trading day, the stock volatility is
not directly observable. However, volatility has some characteristics that
is frequently observed in the stock returns. For instance, volatility is often
high for certain periods and low for other periods, this pattern is known
as volatility clusters. When volatility clusters exists heteroscedastic models
can be used to predict the one step ahead volatility. Robert F. Engle created
the autoregressive conditional heteroscedastic (ARCH) model in 1982. This
model uses past values of the shock of the stock returns to predict the future
volatility. In 1986 Tim Bollerslev extended the ARCH model to the general
autoregressive conditional heteroscedastic (GARCH) model. In addition to
the ARCH model, Bollerslevs model also depends on previous values of the
conditional variance of the asset return.

This thesis aims to fit an appropriate general atuoreggressive heteroscedas-
tic model to Google stock daily log returns from 2006-02-01 to 2018-01-31
from 2006-02-01 to 2018-01-31. The purpose is to evaluate whether or not
the GARCH(1, 1) model can be used to predict the one step ahead volatility
of the Google stock daily log return. This is done by applying a back testing
procedure and then compute interval forecasts respectively density forecasts.

In section 2 the theory of asset returns and financial time series are pre-
sented. Section 3 describes the methodology and section 4 includes the data
anlysis as well as the procedure of fitting an appropriate model. The results
are presented in section 5. Section 6 includes discussion and conclusion of
the results as well as suggestions to further research.
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2 Theory

In this section, theories of linear time series analysis are introduced, as well
as modelling and tests.

2.1 Return

The theory in this subsection is from Tsay (2010, chapter 1)

When studying financial time series it is common to examine returns, in-
stead of prices, of an asset. However, the return is a function of asset prices
and can be defined in several ways.

The one-period simple gross return is defined as

1 +Rt =
Pt
Pt−1

(1)

where Pt is the closing price today and Pt−1 is yesterdays closing price. Rt
is the simple return and it is define as

Rt =
Pt − Pt−1

Pt−1
=

Pt
Pt−1

− 1. (2)

The return of holding the asset for k days, is called the multiperiod simple
return

1 +Rt[k] = (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1) (3)

It is often assumed that the simple returns are independently and identi-
cally (iid) normally distributed. There are mainly two problems with this
assumption. First, we have that Pt, Pt−k+1 > 0, hence, the lower bound of
Rt is −1. Whereas the normal distribution can take any value in the interval
[−∞,∞]. Second, the multiperiod simple returns are a product of normally
distributed, one-period simple returns and by definition is not normally dis-
tributed.

Hence, it is common to use the simple log returns. Taking the natural
logarithm of equation (1) yields the simple log return

rt = ln(1 +Rt) = ln

(
Pt
Pt−1

)
(4)

and the multiperiod log return is defined as

rt[k] = ln(1 +Rt[k])

= ln[(1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1)]

= ln(1 +Rt) + ln(1 +Rt−1) · · · ln(1 +Rt−k+1)

(5)
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The simple log returns can take any value in the interval [−∞,∞] and the
multiperiod log returns is a sum of normally distributed one-period returns,
hence, rt[k] is also normally distributed.

2.2 Financial time series

The theory in section 2.2 to 2.2.10 is based on Tsay (2010, chapter 1-3)

The log returns, rt is as a collection of random variables over time. Thus,
{rt}Tt=1, is a time series, were T is the total number of days observed.

Moreover, if rt is a linear time series, then it can be written on the form

rt = µt + at (6)

where µt is the mean of rt and {at} is a sequence of iid random variables,
with mean zero and variance σ2

a, thus, {at} is a white noise series. It is of-
ten referred to as shocks or innovations and it will be seen in the succeeding
sections that at denotes the new information at time t.

A time series rt is weakly stationary if the following two criteria are fulfilled

1. If {rt} has constant mean, E[rt] = µ

2. and Cov(rt, rt−`) = γ` is time invariant, i.e, the covariance only de-
pends on the lag length `.

If the sequence {rt} is weakly stationary it is said to be a white noise time
series. This implies that the first two moments of rt are finite. In addition
to this, if rt is also normally distributed with mean zero and variance σ2 it
is called a Gaussian white noise process.

2.2.1 Autocorrelation function (ACF)

A measurement of linear dependence (correlation) between rt and its past
value rt−` is called the autocorrelation function (ACF), it is often denoted
by ρ`. Under the assumption of weak stationarity, ρ`, is time invariant.
That is, the ACF depends only of the lag length `. It is defined as

ρ` =
Cov(rt, rt−`)√
V ar(rt)V ar(rt−`)

=
Cov(rt, rt−`)

V ar(rt)
=
γ`
γ0

(7)

where V ar(rt) = V ar(rt−`) under the assumption that {rt} is weakly sta-
tionary. By definition, ρ0 = 1, ρ` = ρ−` and −1 ≤ ρ` ≤ 1. Given a sample
{rt}Tt=1, the ACF is estimated with
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ρ̂` =

∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=`+1(rt − r̄)2
, 0 ≤ ` < T − 1 (8)

where r̄ =
∑T

t=`+1 rt/T is the sample mean. If all ρ̂` ≈ 0 the series {rt}
is said to be white noise. And if {rt} is iid, with E(r2

t ) < ∞, then ρ̂` is
asymptotically normally distributed with mean zero and variance 1/T . For
any positive integer `, the former result can be used to test

H0 : ρ` = 0 against Ha : ρ` 6= 0

with the test statistic

t ratio =
ρ̂`√

(1 + 2
∑`−1

i=1 ρ̂
2
i )/T

∼ tT−1 (9)

2.2.2 Ljung-Box test

In financial time series it is of great importance to test jointly that several
autocorrealtions of rt are zero. Ljung and Box (1978, citied in Tsay, p32)
has modified the Portmanteau statistic to increase the power when working
with finite samples

Q(m) = T (T + 2)

m∑
`=1

ρ̂2
`

T − `
∼ χ2

α(m) (10)

where m is the number of lags. Studies suggest that the choice of m ≈ ln(T ).
This test, tests H0 : ρ1 = · · · = ρm = 0 against Ha : ρ` 6= 0 for some
`. The null hypothesis, H0, is rejected if Q(m) > χ2

α, where χ2
α denotes

the 100(1− α)th percentile of a chi-squared distribution with m degrees of
freedom.

2.2.3 Skewness

Let X be a random variable. The third central moment of X is called Skew-
ness. As the the name indicates this moment measures the symmetry of X
with respect to its mean. The skewness of X is defined as

S(X) = E

[
(X − µx)3

σ3
x

]
and the sample skewness

Ŝ(x) =
1

(T − 1)σ̂3
x

T∑
t=1

(xt − µ̂x)3. (11)

It is often assumed that X has a symmetric distribution if Ŝ(x) ∈ [−0.5, 0.5].
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2.2.4 Kurtosis

The fourth central moment of X measures tail thickness, it is known as
kurtosis

K(X) = E

[
(X − µx)4

σ4
x

]
,

the sample kurtosis is defined as

K̂(x) =
1

(T − 1)σ̂4
x

T∑
t=1

(xt − µ̂x)4. (12)

A normal distributed variable X is known to have K(x) = 3 and a dis-
tribution with K(x) > 3 is said to be leptokurtic. If the excess kurtosis
K(x)−3 > 0 the distribution tends to contain more extreme values. Hence,
the density function is characterized by a high, thin peak around its mean
and has heavy tails.

2.2.5 Jarque and Bera (JB) test

Jarque and Bera (1987, citied in Tsay, p.10) created a test-statistic that
combines skewness and kurtosis to test for normality

JB =
Ŝ2(x)

6/T

[K̂(x)− 3]2

24/T
∼ χ2

α(2). (13)

Where 6/T and 24/T is the variance of Ŝ(x) respectively K̂(x). H0 that X
is normally distributed is rejected if the p-value of the JB statistic is less
than the significance level.

2.2.6 Autoregressive (AR)

If rt has a significant lag-p autocorrelation, then lags up to rt−p can be used
to predict rt with an autoregressive model of order p, AR(p)

rt = φ0 +

p∑
i=1

φirt−i + at (14)

where |
∑p

i=1 φi| < 1 and {at} is assumed to be a white noise series with
mean zero and variance equal to one.

9



2.2.7 Partial Autocorrelation Function (PACF)

In time series analysis a useful tool to determine the order p of an AR model
is the partial autocorrelation function. The PACF is a function of its ACF,
consider the AR models

rt = φ0,1 + φ1,1rt−1 + e1t

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2t

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3t

...

rt = φ0,j + φ1,jrt−1 + φ2,jrt−2 + φ3,jrt−3 + . . .+ φj,jrt−j + ejt

(15)

where φ0,j is the constant term, φi,j the coefficient of rt−i and {ejt} is the
error term of an AR(j) model. The models in equation (15) are recognized
as multiple linear regression models. Thus, the coefficients can be estimated
with the ordinary least-square (OLS) method. The estimate φ̂1,1 from the

first equation, is called the lag-1 sample PACF of rt. The estimate φ̂j,j from

the j:th equation, is called the lag-j sample PACF of rt. Where φ̂2,2 shows

the added contribution of rt−2 to rt over the AR(1) model. And φ̂3,3 shows
the added contribution of rt−3 to rt over the AR(2) model, etc. Hence, the
lag order is chosen such that the lag-p sample PACF is non zero for an AR(p)
model, while φ̂j,j is close to zero for all j > p. Thus, if the PACF cuts of
after lag-p, then the AR model should have order p.

2.2.8 Conditional Heteroskedastic Models

It is well known that stock volatility is not directly observable, since there
is only one observation made in a trading day. However, the volatility has
some characteristics that are important to capture, when trying to model
volatility

1. The volatility is high for certain periods and low for other periods,
known as volatility clusters.

2. Volatility jumps are rare, meaning that volatility evolves contionuously
over time.

3. Volatility often varies within some fixed ranges, which means that it
is often stationary.

4. Volatility should react differently to a big price increase compared to
a decrease.
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Moreover, a common assumption made when studying volatility is that the
serie {rt} is serially uncorrelated, but dependent. Hence, given the informa-
tion set available at time t− 1, denoted as Ft−1, the conditional mean and
variance of rt is

µt = E[rt|Ft−1], σ2
t = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1]. (16)

Combining equation (6) and (16) results in

σ2
t = V ar(rt|Ft−1) = V ar(at|Ft−1), (17)

which is and will be referred to as the volatility equation of rt.

2.2.9 ARCH

Robert F. Engle (1982, cited in Tsay, p.115) created the autoregressive con-
ditional heteroskedasticity (ARCH) model. The basic idea of the model is
simple, the first assumption is that the shock at is serially uncorrealted,
that is, there should not be any linear dependence betwen at and its previ-
ous values. Second, the shock at of an asset return should have a non-linear
dependency. This dependency is described by a quadratic function of the
lagged values of at. The ARCH(m) model is defined as

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i, (18)

where {εt} is a sequence of iid random variables with mean 0, variance 1
and α0 > 0, αi ≥ 0 for i > 0, due to the fact that σ2

t ≥ 0.

Equation (18) shows that large changes of {a2
t−i}mi=1 implies large change

of the conditional variance σ2
t for the shock at. This is a characteristic be-

haviour of volatility clustering.

Consider the model of σ2
t from equation (18). Assuming that a2

t linearly
depends on its lagged values and that a2

t is an unbiased estimate of σ2
t . One

can use the PACF (see section 2.2.7) of a2
t to determine the order m of an

ARCH(m) model.

Moreover, the standardized residuals from the ARCH model, ãt, is a se-
quence of iid random variables.

ãt =
at
σt

(19)

Thus, the Quantile Quantile (QQ) plot of ãt can be used to check the distri-
bution assumption of the model. And the Ljung-Box test (see section 2.2.2)
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of ã2
t can be used to test the validity of the volatility equation.

However, there are some weaknesses of the ARCH model. For instance,
since the model depends on the square values of the previous innovations,
it assumes that positive and negative shocks have the same effect on σ2

t . In
addition to this, the ARCH model tends to respond slowly to large isolated
shocks, thus, it is likely to overpredict the volatility.

2.2.10 GARCH

Bollerslev (1986, cited in Tsay(2010), p.131) created the generalized au-
toregressive conditional heteroscedastic (GARCH) model. In addition to
ARCH(m), this model also depends on previous values of the conditional
variance, σ2

t−j . Hence, a GARCH model often requires a lot fewer parame-
ters than an ARCH model. The GARCH(m, s) model is defined as

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
i=1

βjσ
2
t−j , (20)

where {εt} is a sequence of independently and identically distributed ran-
dom variables, with mean 0 and variance 1, α0 > 0, αi ≥ 0, βj ≥ 0

and
∑max(m,s)

i=1 (αi + βi) < 1. The simplest GARCH models occurs when
m = s = 1

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1. (21)

Using the above equation and assuming that the forecast origin is h. Then,
α2
h and σ2

h are known at time index h. Thus,

σ2
h+1 = α0 + α1a

2
h + β1σ

2
h, (22)

which yields that the 1-step-ahead forecast is

σ2
h(1) = α0 + α1a

2
h + β1σ

2
h. (23)

The calculation of the maximum likelihood estimates (α̂0, α̂1, . . . , α̂m, β̂1, . . . , β̂s)
is described in Appendix B.1.1

2.2.11 Back testing

The theory in section 2.2.11 to 2.2.12 is based on Christoffersen (1998) and
Christoffersen (2012, chapter 13).

Given a model, for example GARCH(1,1), rolling windows of a given length
can be used to predict the 1-step-ahead volatility. More precisely, if the win-
dow length is 250 days, then the first 250 observations will be used to predict
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the volatility of day 251. When that is done the first observation will be left
out and observation of day 2 to day 251 will be used to predict the volatility
of day 252 and so on. These predictions can then be used to calculate a se-

quence of out-of-sample interval forecasts
{
Lt|t−1(p), Ut|t−1(p)

}T
t=251

, where
Lt|t−1(p) and Ut|t−1(p) are the lower and upper limits of the interval forecast.
Where the interval forecast are given by

standard normal distribution : rt ± zα/2σt−1(1)

standardized student-t distribution : rt ± tα/2(df)σt−1(1)

where σt−1(1) is calculated according to equation (22) and (23). Given the
sequence of out-of-sample interval forecasts let

It =

{
1, if rt ∈

[
Lt|t−1(p), Ut|t−1(p)

]
0, if rt /∈

[
Lt|t−1(p), Ut|t−1(p)

]
It can then be used to test if the actual degree of coverage is equal to the
degree of coverage implied by the prediction interval. If the interval is a
95% prediction interval the hypothesis for unconditional coverage are

H0 : p = 0.95

Ha : p 6= 0.95

and under the null hypothesis It ∼ Be(T, p) and
∑T

t=251 It ∼ Bin(T, p).

However, if there are asymmetries in the tail probabilities, it is important
to state whether the realizations that fell outside the predicted interval were
in the upper or lower tail of the conditional distribution. Let τl and τu be
the lower and upper tail probabilities, such that 1− p = τl + τu. If the tail
probabilities are symmetric τl = τu = (1− p)/2. Define

St =


1, if rt ≤ Lt|t−1(p)

2, if Lt|t−1(p) < rt < Ut|t−1(p)

3, if rt ≥ Ut|t−1(p)

Under the null hypothesis that the actual degree of coverage is equal to the
degree of coverage implied by the prediction interval, the transition matrix
for St is

Π0 =

τl 1− τl − τu τu
τl 1− τl − τu τu
τl 1− τl − τu τu

 (24)

and the alternative hypothesis of independence, but incorrect coverage is
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Π2 =

πl 1− πl − πu πu
πl 1− πl − πu πu
πl 1− πl − πu πu

 (25)

The likelihood ratio (LR) test can then be used, where under the null hy-
pothesis of unconditional coverage the unconditional likelihood is given by

L(Π0;S1, S2, . . . , ST ) = τn1
l (1− τl − τu)n2τn3

u ,

where ni, i = 1, 2, 3, is the observed number of times rt is in state i.

Under the alternative hypothesis the unconditional likelihood is given by

L(Π̂2;S1, S2, . . . , ST ) = π̂n1
l (1− π̂l − π̂u)n2 π̂n3

u

∝ Mult(n1, n2, n3, πl, 1− πl − πu, πu),

where the maximum likelihood estimates are π̂l = n1
n1+n2+n3

respectively
π̂u = n3

n1+n2+n3
.

The distribution of the LR test of unconditional coverage is asymptotically
χ2 with s− 1 degrees of freedom, where s = 3 is the number of states

LRuc = −2 log[L(Π0;S1, S1, . . . , ST )/L(Π̂2;S1, S1, . . . , ST )]
asym∼ χ2(2).

2.2.12 Independence and conditional coverage

The unconditional coverage test in the section above does not take into ac-
count that the states 1,2 and 3 from St could come clustered together in a
time-dependent manner. Thus in the unconditional coverage test the order
of the states does not matter. However, it is a well known fact that volatility
cluster is common in financial time-series. Hence, to take this into account
the first step is to test the independence assumption and the second step
is to combine the test for unconditional coverage respectively independence
and test for conditional coverage.

The null hypothesis of independence is given by Π2, see equation (25). The
alternative hypothesis for first-order dependence and incorrect coverage is

Π1 =

 πll 1− πll − πlu πlu
πml 1− πml − πmu πmu
πul 1− πul − πuu πuu

 (26)

Under the alternative hypothesis the conditional likelihood is given by
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L(Π̂1;S1, S2, . . . , ST ) = π̂n11
ll (1−π̂lm−π̂lu)n12 π̂n13

lu . . . π̂n31
ul (1−π̂um−π̂uu)n32 π̂n33

uu ,

where πij is the probability of moving from state i to state j and n11 is the
observed number of times rt moves from state l to state l. Let 1 = l, 2 = m
and 3 = u, then the maximum likelihood estimates are given by

π̂ij =
nij

nil + nim + niu
, for i = l,m, u and j = l, u

The distribution of the LR test of independence is asymptotically χ2 with
(s− 1)2 degrees of freedom, where s = 3 is the number of states

LRind = −2 log[L(Π̂2;S1, S1, . . . , ST )/L(Π̂1;S1, S1, . . . , ST )]
a∼ χ2(4)

This test is only for independence and it does not depend on the true cov-
erage p. However, testing the null hypothesis, Π0, of the unconditional
coverage, see equation (24) against the the alternative hypothesis, Π1, of
the independence test, see equation (26), yields a complete test of condi-
tional coverage.

The likelihood ratio test of conditional coverage is asymptotically Chi-squared
distributed with s(s− 1) degrees of freedom, where s = 3

LRcc = −2 log[L(Π̂0;S1, S1, . . . , ST )/L(Π̂1;S1, S1, . . . , ST )]
a∼ χ2(6).

2.2.13 Density forecast

The theory in this section is based on Christoffersen (2012, chapter 13), Tay
& Wallis(2000) and Held & Sabanés Bovés(2014, p 309).

Density forecast can be used to backtest the entire distribution of a random
variable. It is an estimate of the probability distribution of the possible
future values of a random variable. Thus, if for instance the GARCH model
(see section 2.2.10) can be used to predict the one step ahead volatility of the
log returns. Then the one step ahead standardized residuals, at+1

σt+1
, should be

U(0, 1) distributed according to the probability integral transform. This can
be visually checked with a histogram that should have a rectangular form
or more formally checked with the one sample Kolmogorv Smirnov test, see
section 2.2.14

Let X be a continuous random variable with cumulative distribution func-
tion FX and define Y = FX(X). Then according to the probability integral
transform Y is uniformly distributed on (0, 1).
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FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1
X (y)) = FX(F−1

X (y)) = y,

thus, Y is uniformly distributed on the interval (0, 1).

2.2.14 Kolmogorov-Smirnov one sample test

The theory in this section is based on Bagdonavičius, V., Julius, K. and
Nikulin, M. S.(2011, chapter 3).

The Kolmogorv-Smirnov test is a nonparametric test that is often used to
test if a sample from an unknown distribution F is equal to a reference
distribution F0.

H0 : F = F0, Ha : F 6= F0

Let X1, . . . , Xn be a independently and identically distributed sample from
some unknown distribution. Let F (x) = P (X1 ≤ x) denote the true cumu-
lative distribution function (c.d.f) of the true underlying distribution of the
data. Define the empirical c.d.f.

Fn(x) = Pn(X ≤ x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I is an indicator variable, taking the value 1 if a sample point is less
than or equal to the level x and 0 otherwise. According to the law of large
numbers

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x)→ E[I(X1 ≤ x)] = P (X1 ≤ x) = F (x) as n→∞,

thus the largest distance between the the empirical c.d.f. and the sample
c.d.f. converges to 0 in probability as the sample size, n, goes to infinity.
The test statistics of the Kolmogorv-Smirnov test is given by

Dn =
√
n sup
x∈R
|Fn(x)− F0(x)|,

under the null hypothesis the test statistic Dn does not depend on the
reference distribution instead it only depends on the sample size n. The
null hypothesis is rejected if Dn exceeds a threshold c on the significance
level α. Otherwise if Dn is less than or equal to c, it is not rejected that F
= F0.
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3 Methodology

The financial time series data used in this paper is daily closing prices, from
2006-01-31 to 2018-01-31, of the Google stock. This data is transformed into
log returns, see section 5.1. To carry out the analysis on this data-set the
software RStudio is used, with the time series packages ”fGarch” and ”ru-
garch”. We have also implemented our own functions, for the back testing
procedure. Moreover, since the true distribution of the log returns is not
known, simulation from a student-t distributed GARCH(1, 1) process has
been made with the function garchSim from the ”fGarch” package. Thus,
the results of the log return series can then be compared with the ones ob-
served from the simulated data.

To model and predict volatility the ARCH and GARCH models are widely
used. However, the ARCH model often requires many parameters, see sec-
tion 5.3.1. Hence, this thesis will focus on the GARCH(1, 1) model assuming
a normal distribution respectively a student-t distribution. Time series anal-
ysis is not really different from regression analysis. Hence, to get a sense
of the underlying distribution of the log returns respectively the standard-
ized residuals, the same methods that are used when dealing with regression
analysis can be applied. This analysis is carried out in section 4.1 respectivel
section 4.3.2.

To predict the one step ahead volatility, the back testing method in sec-
tion 2.2.11 is applied using window length 250 days, 750 days respectively
1250 days. Since there is only one observation made on a trading day, the
stock volatility is not directly observable. Hence, to evaluate how well the
GARCH model predicts volatility, predictions intervals of the log returns
are calculated, assuming a normal distribution respectively student-t distri-
bution

standard normal distribution : rt ± zα/2σt−1(1)

standardized student-t distribution : rt ± tα/2(df)σt−1(1).

Where σt−1(1) is calculated according to equation (22) and (23). To test how
well the GARCH(1,1) model predicts over all possible percentiles, density
forecasts are also constructed to back test the entire distribution.
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4 Analysis

4.1 Data analysis

The financial time series data used in this paper is daily closing prices, from
2006-01-31 to 2018-01-31, of the Google stock. This data is downloaded
from finance.yahoo.com. From Figure 1 it can be seen that the daily closing
prices follows a positive trend. However, it is common to transform the data
to simple log returns, rt, see Equation (4).

Figure 1: Google daily closing prices, period 2006-01-31 - 2018-01-31.

Looking at Figure 2(a) it is clear that the log returns does not contain a
trend. Instead it can be seen that the fluctuation of rt varies over time and
that the most volatile period is coinciding with the financial crisis (2007-
2009). After the financial crisis comes a more tranquile period, this alter-
nating pattern becomes more clear in Figure 2(b) and it is known as volatility
clustering. This indicates that an conditional heteroscedastic model should
be used. Hence, the data that will be analyzed throughout this paper, is
the simple log returns.
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Figure 2: Google daily, (a) log returns and (b) absolute log returns period
2006-02-01 - 2018-01-31.

The next step is to try to understand which unconditional distribution the
series {rt} follows and a good start is to look at some descriptive statistic.
The mean and standard deviation of rt in Table 1 is equal to 0.000562
respectively 0.018162. Using a t-test it can be tested if the mean is zero or
not

t =
r̄t

s/
√
T

= 1.70 < t0.025(T − 1) ≈ 1.96,

since 1.70 < 1.96 we can’t reject that the mean is zero. However, the t-test
statistic assumes that the random variables are independently and identi-
cally distributed. In subsection 4.2 it will be seen that the log returns are
not independently distributed.

Mean Standard deviation Skewness Kurtosis

0.000562 0.018162 0.543235 14.38697

Table 1: Descriptive statistics for log returns, rt.
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Moreover, in subsection 2.2.3 it is explained that rt has a symmetric dis-
tribution if the skewnees lies in the interval [−0.5, 0.5]. And in subsection
2.2.4 it is stated that a distribution with a kurtosis greater than 3, tends
to contain more extreme values, thus, the density function is likely to have
heavy tails, as well as a high thin peak around its mean. In Table 1 it can be
seen that the log returns has a skewness of 0.543235 which implies that the
distribution might be skeewed, and rt has a quite high kurtosis, 14.38697,
indicating that the distribution is leptukortic. Another way to investigate
the distribution of the series {rt}, is by plotting a histogram and a QQ-plot.

Figure 3: (a) histogram with normal density curve, (b) normal QQ-plot,
of daily Google log returns

In Figure 3 (a) it can be seen that the histogram of rt deviates quite a
lot from the normal density curve. The tails of the QQ-plot in Figure 3
(b), deviates a lot from the straight line. This implies that the normal
distribution does not capture the extreme observations of the log returns.
Hence, it is a good idea to check if the student-t distribution has a better
fit, since this distribution is known to have heavier tails.
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Figure 4: (a) histogram with student-t density curve, (b) student-t QQ-
plot, of daily Google log returns with four degrees of freedom

From Table 1 we know that the log returns has a very high kurtosis, indi-
cating that the data might be leptukortic. The histogram of rt has a high
thin peak around its mean as well as heavy tails, this confirms what the
high kurtosis has already implicated. That is, that the normal distribution
is not a good fit. However, the density curve of of the student-t distribution
in Figure 4 (a) seems to fit well to the histogram of rt. Sadly enough, the
QQ-plot in Figure 4 (b) shows that the tails deviates from the straight line.
Still, the conclusion will be that the student-t distribution has a better fit
to the data compared to a normal distribution. It should also be noted that
the analysis made in this section applies to the unconditional distribution
of the log returns.

4.2 Model identification

In subsection 2.2.8 it is stated that volatility is not directly observable.
However, it has some characteristic that can be captured. For example,
volatility is often high for certain periods and low for other periods, known
as volatility clustering. Conditional heteroscedastic models, are often used
to try and model this kind of behaviouring. From subsection 4.1 we know
that volatility clustering seems to exist for the Google daily log returns.
The next step in our path to identify a model, is to check if the series {rt}
is dependent, but serially uncorrelated, or at least has minor lower order
serial correlations. This is often visually done with autocorrelation plots, of
different functions of the series {rt}. The ACF plot of the log returns, shows
if there exists any serial correlation of different lag length, between rt and its
previous values. While the ones for the squared respectively absolute-value

21



of the log returns, reveals if there exists any non-linear dependency in the
time series. The partial autocorrelation function plot, of the squared log
returns, reveals if the series is serially independent or not. If not, the serie
is said to contain ARCH effects.

Figure 5: (a) ACF of log returns, (b) ACF of squared log returns, (c) ACF
of absolute log returns, (d) PACF of squared log returns

It is clear from Figure 5 (a) that the daily log returns of the Google stock
exhibit no significant autocorrelation, supporting the hypothesis that the
returns of a financial asset are uncorrelated across time. However, in Figure
5 (b),(c) there are significant autocorrelations in the squared log returns
and more in the absolute log returns, this confirm the presence of volatility
clustering. The absolute log returns exhibit significant and persistent au-
tocorrelations, a characteristic known as long memory process. Looking at
the PACF of the squared log returns (Figure 5 (d)), it is seen that there are
several big spikes. This means that the series is serially dependent, which
indicates that it contains autoregressive conditional heteroscedastic effects.
Moreover, the conclusions drawn from the ACF and PACF plots in Figure 5
also applies to the data simulated from a student-t distributed GARCH(1, 1)
process.

4.3 Fitting a model

To summarize what has been established so far, the Google daily log returns
seems to be serially uncorrelated, but they have a non-linear dependency.
Which is a sign of volatility clustering. We have also concluded that the

22



mean is approximately zero, see 1 and from the ACF plot of the log returns
in Figure 5 there are no signs of a trend. Hence, we do not need to specify
a mean Equation for the conditional heteroscedastic models, when trying to
model the volatility.

4.3.1 ARCH(m) models

To decide how many lags, (m), that should be used in the ARCH model,
the PACF plot in Figure 5 (D) can be used. This plot indicates that lags up
to order 12 of the squared innovations should be included in the model. As
noted the ARCH model requires many parameters to describe the volatility
of the log returns. Hence, it is be better to try and fit a simpler model such
as the genrealized autoregressive conditional heteroscedastic, GARCH(1, 1),
model.

4.3.2 GARCH(1, 1)

In this section we will fit a GARCH(1, 1) model, using the normal distri-
bution as well as the student-t distribution. Due to previous result it is
assumed that µt = 0, hence, rt = at. Thus, the GARCH(1,1) model can be
written on the form

rt = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1. (27)

Dividing the innovations at with the standard deviation σt yields the stan-
dardized residuals, see equation (19). They form a sequence of independently
and identically distributed random variables. Hence, the series {ãt} can be
used to check if the model is correctly specified. In Figure 6 it can be seen
that the standardized residuals does not satisfy the normality assumption,
when fitting a GARCH(1,1) model, using the normal distribution. Rather
it seems as the student-t distribution has a better fit. However, as can be
seen in the right plot in Figure 6, the right tail of the standardized residuals,
deviates quite a lot from the theoretical line. Still, the conclusion will be
that the student-t distribution seems to be the most appropriate choice.
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Figure 6: QQ-plots of the standardized residuals for the normal distribu-
tion respectively the student-t distribution with 3.94 degrees of freedom

A plot of the squared standardized residuals can be used to check if they
are a white noise process. Looking at Figure 7, this seems to be the case,
since there are no significant spikes. This is further confirmed by the Ljung-
Box test (see equation (10)), which states that we can’t reject at the 5%
significance level that the autocorrelations are jointly zero.

Figure 7: ACF plots for the squared standardized residuals, for (a) the
normal distribution and (b) the student-t distribution

Moreover, it is also assumed that the standardized residuals has a mean
equal to zero and a constant variance. According to Figure 8 the mean
seems to be zero, it looks like the variance is constant and the observations
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seems to be spread out randomly. Hence, the standardized residuals are a
white noise process, with mean zero and variance 1, when both fitting a
GARCH(1, 1) model using the normal distribution as well as the student-t
distribution.

Figure 8: Plots of the standardized residuals, for (a) the normal distribu-
tion and (b) the student-t distribution

Table 2 shows the parameter estimates for the GARCH(1,1) model using
both the normal distribution as well as the student-t distribution. Both gives
similar estimates, however, the intercept, α̂0, is significantly different from
zero when using the normal distribution but insignificant when using the
student-t distribution. Still we will keep the intercept in the GARCH(1,1)
model when using the student-t distribution. What’s more interesting is that
β̂1 is quite high for both distributions (0.918985 n-distribution, 0.965305
t-distribution) while α̂1 is quite low (0.058733 n-distribution, 0.028865 t-
distribution). This can be interpreted as that the squared volatility at time
t depends heavily on the past squared volatility from time period t-1 but
it has a quite low dependency with the previous shock at time period t-1.
Moreover, the sum of α̂1 and β̂1 is 0.977718 using the normal distribution
and 0.99417 using the student-t distribution. Both of them are less then 1
which satisfies the criteria stated in section 2.2.10. Thus the conclusion will
be that the GARCH(1,1) model seems to be the appropriate choice.
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Normal Student-t

Estimate P-value Estimate P-value

α0 0.000007 0.00000 0.000002 0.11135
(0.000002) (0.000001)

α1 0.058733 0.00000 0.028865 0.000880
(0.008690) (0.008678)

β1 0.918985 0.00000 0.965305 0.00000
(0.011004) (0.005519)

Note: Std. Error are given within parenthesis

Table 2: Parameterestimates for GARCH(1,1), to the left normal distribu-
tion and to the right student-t distribution. Data used is the Google stock
daily log returns.
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5 Results

5.1 Back testing

To evaluate how well the GARCH(1, 1) model predicts the one step ahead
volatility of the Google stock log-returns, back testing with rolling window
of length 250, 750 and 1250 days has been constructed for both the normal
distribution as well as the student-t distribution. Figure 9, 10 and 11 shows
95 % prediction intervals using all of the rolling windows length. Not sur-
prisingly it can be seen that the intervals assuming a student-t distribution
is much more wider than the ones assuming a normal distribution. This
result is expected since the student-t distribution is known to have heavier
tails, thus it will capture more of the extreme observations. And from Table
1 in section 5.1 we know that the log-returns have a quite high kurtosis
indicating that the distribution is likely to have heavy tails. Moreover, re-
gardless of the distribution assumption, the intervals are having trouble to
capture the extreme and sudden change of the log-return when using win-
dows longer than 250 days. Indicating that using more recent data makes
the GARCH(1, 1) model more sensitive to changes of the log-returns. This
is also quite expected, since we only are interested in prediction of the one
step ahead volatility. Prediction intervals are also constructed for the simu-
lated data. As can be seen from Figure 14, 15 and 16 in Appendix C, they
show a similar pattern as the ones using the Google stock daily log return.

27



Figure 9: Log-returns with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 250 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 250 days
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Figure 10: Log-returns with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 750 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 750 days
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Figure 11: Log-returns with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 1250 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 1250 days

5.1.1 Unconditional coverage

From Figure 9 we know that the prediction intervals assuming the student-t
distribution is much wider than the ones assuming a normal distribution.
Hence, it is not a surprise that the estimated coverage 1−π̂l−π̂u (see section
3.2.11) in Table 3, is higher for the student-t distribution compared to the
normal distribution, regardless of the window length. It seems as when
assuming a student-t distribution the coverage is constantly over estimated,
that is, all of them are greater than 95%. However, when assuming a normal
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distribution the coverage is under estimated using windows of length 250
days, almost 95% for window length 750 days and over estimated when
using window length 1250 days.

distribution window length τ̂l 1− τ̂l − τ̂u τ̂u
normal 250 0.03211837 0.9400938 0.0277878

student-t 250 0.0111873 0.9790689 0.009743775

normal 750 0.02421841 0.9559665 0.01981506

student-t 750 0.006164685 0.9876706 0.006164685

normal 1250 0.01976285 0.9621683 0.01806889

student-t 1250 0.005646527 0.9875776 0.006775833

Table 3: Estimated probabilities, τl is the lower tail probability and τl is
the upper tail probability

The coverage of the intervals in the section 6.1 is expected to be 95%, due
to the fact that the predicted intervals are calculated with a lower quantile
equal to 2.5% and upper quantile equal to 97.5% . To test this at the 5%-
level the LR-test of unconditional coverage from section 3.2.11 can be used.
From Table 4 that shows the results from the unconditional coverage test it
can be seen that the null hypothesis of correct unconditional coverage is only
accepted at the 5% significance level for window length 750 days assuming a
normal distribution. Otherwise, the null hypothesis of correct unconditional
coverage is rejected.

distribution window length test test-statistic χ2
0.05

normal 250 unconditional coverage 6.266627 5.991465

student-t 250 unconditional coverage 62.80462 5.991465

normal 750 unconditional coverage 2.771981 5.991465

student-t 750 unconditional coverage 96.0462 5.991465

normal 1250 unconditional coverage 6.140014 5.991465

student-t 1250 unconditional coverage 74.60935 5.991465

Table 4: Test result for unconditional coverage of the log returns

5.1.2 Independence

The unconditional coverage test does not take into account that the obser-
vations, S = {1, 2, 3} might come clustered together. However, the indepen-
dence test stated in section 3.2.12 takes this into account, that is, it will test
if the probability of being in the observed state at time period t is dependent
on the state observed at time period t− 1. In Table 5 that shows the result
of the independence test, it can be seen that the null hypothesis of indepen-
dence can only be rejected at the 5% level, for the student-t distribution,
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with window length 250 days. However, this does not necessarily mean that
there exist some dependence with the observation made in time period t−1.
Rather, it is most likely due to too few observations.

distribution window length test test-statistic χ2
0.05

normal 250 independence 7.796351 9.487729

student-t 250 independence 11.14131 9.487729

normal 750 independence 2.455526 9.487729

student-t 750 independence 3.719931 9.487729

normal 1250 independence 2.533295 9.487729

student-t 1250 independence 4.100778 9.487729

Table 5: Test result for independence of the log returns

5.1.3 Conditional coverage

The next step is to jointly test for independence and correct coverage with
the conditional coverage test stated in section 3.2.12. The null hypothesis
of the unconditional coverage test is tested against the alternative of the
independence test. Due to the fact that regardless of the window length, the
student-t distribution always overestimates the unconditional coverage, it is
not a surprise that they do not have a correct conditional coverage, as can
be seen in Table 6. Regarding the normal distribution the test of complete
coverage can only be rejected at 5% significance level, when using window
length 250 days. For longer windows assuming a normal distribution, the
null hypothesis of conditional coverage can not be rejected.

distribution window length test test-statistic χ2
0.05

normal 250 conditional coverage 14.06298 12.59159

student-t 250 conditional coverage 73.94593 12.59159

normal 750 conditional coverage 5.227506 12.59159

student-t 750 conditional coverage 99.76613 12.59159

normal 1250 conditional coverage 8.673309 12.59159

student-t 1250 conditional coverage 78.71013 12.59159

Table 6: Test result for conditional coverage of the log returns

5.1.4 Density forecast

To test how well the GARCH(1, 1) model predicts over all possible per-
centiles the density forecast method explained in section 2.2.13 is used. If
the model predictions are correct then the cumulative distribution function
of the one step ahead standardized residuals should be U(0, 1) distributed.
When assuming a normal distribution with window length 250 days, the
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histogram of the standardized residuals in Figure 12 does not have a rect-
angular form as it should have. Instead it has to many observation in the
middle, indicating that the normality assumption does not hold. The same
results holds for longer windows, as can be seen from the histograms in Ap-
pendix D, see Figure 23 and 24. To formally test these results the one sample
Kolmogorv Smirnov test from section 3.2.14 is applied. The result from this
test states that the cumulative distribution function of the one step ahead
standardized residuals are not U(0, 1) distributed. These results also holds
for the simulated data as can be seen from the histograms in Appendix C,
Figure 17, 19 and 20.

Figure 12: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 250 days. Data used is the
Google stock daily log returns.

Moreover, when assuming a student-t distribution with window length 250
days, the histogram of the standardized residuals seems to be quite rectan-
gular, except for the high bar to the right, as can be seen in Figure 13. When
using windows longer then 250 days the bars seems to be higher near the
value 1, as can be seen from the histograms in Appendix D, see Figure 25
and 26. When applying the Kolmogorov Smirnov test, the null hypothesis
that the standardized residuals are U(0, 1) distributed, is only accepted for
window length 250 days. For longer windows the null hypothesis is rejected.
However, when using the simulated data the null hypothesis of the uniform
distribution is always accepted, regardless of the window length. The inter-
ested reader can see these histograms in Appendix C. This result is expected
since we know that the underlying distribution is the student-t distribution,
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since the data is simulated from a student-t distributed GARCH(1, 1) pro-
cess.

Figure 13: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 250 days. Data used
is the Google stock daily log returns.
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6 Discussion and conclusion

In section 5.1 it is concluded that the Google stock daily log returns seems
to follow a student-t distribution, see Figure 4, and that the financial time
series data of the log returns are containing ARCH effects, as can be seen in
Figure 5(d). These results where expected and are agreeing with the theory
from Tsay(2010). When fitting a GARCH(1,1) model to the log returns se-
ries it is revealed that the squared volatility seems to depend heavily on the
past squared volatility observed at time t−1 but not so much on the previous
shock observed at time t− 1, as can be seen in Table 2. It is also concluded
from Figure 6 that the standardized residuals from the GARCH(1, 1) model
seems to follow a student-t distribution. However, it should be noted that
the right tail deviates from the straight line, indicating that the distribution
of the standardized residuals might be skewed. Hence, a skewed student-t
distribution might have a better fit.

Moreover, the interval forecasts in section 6.1 reveals that the intervals as-
suming a student-t distribution is much wider than the ones assuming a
normal distribution, which is not a surprise since the student-t distribution
has heavier tails compared to the normal distribution. It can also be con-
cluded from Figure 10 and Figure 11, that regardless of the distribution
assumption, the GARCH(1, 1) model has trouble to capture the sudden
changes of the log returns, when using a window length greater than 250
days. This indicates that it might be better to use more recent data when
trying to forecast the one step ahead volatility. The unconditional coverage
test in section 6.1.1 states that the null hypothesis of unconditional cover-
age, p = 0.95, can be rejected regardless of the window length when using
a student-t distribution. But when assuming a normal distribution the null
hypothesis of unconditional coverage, p = 0.95, is rejected for window length
of 250 days respectively 1250 days. But when using windows length 750 days
the null cannot be rejected.

Regarding the independence test explained in section 2.2.12 and applied in
section 5.1.2, it should be noted that it only test for dependency in one
step. Hence, this test does not consider whether the observations outside of
the interval comes in clusters for a longer period. Another problem is that
there might be too few observations outside the interval. To get around this
problem, Christoffersen(2012, page 306) reefers to the Monte Carlo method,
which can be used to simulate p-values. Our result from the independence
test, see Table 5, states that the null hypothesis of one step independence
can only be rejected for the student-t distribution using window length 250
days. This result does not necessarily mean that there exist a dependence
with the observation made the day before. Rather, it could be due to the
fact that we have too few observations outside the interval. Thus, for further
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research it is recommended to simulate p-values.

The results from the conditional coverage test in section 5.1.3 states that
the null hypothesis of correct conditional coverage, p = 0.95, is rejected re-
gardless of the window length, when assuming a student-t distribution, see
Table 6. This indicates that the intervals assuming a student-t distribution
are too cautious. These results are in line with the ones Christoffersen(1998)
gets when the true coverage probability is, p = 0.95. When we assume a nor-
mal distribution, the null hypothesis is only rejected for window length 250
days, otherwise the null hypothesis of correct conditional coverage can’t be
rejected, see Table 6. These results implies that assuming a normal distribu-
tion with window length greater than 250 days, yields a correct conditional
coverage for p = 0.95. Which indicates that intervals that are less sensitive
to changes of the log returns, yields a more precise conditional coverage for
p = 0.95. However, it should be noted that this does not mean that assum-
ing a normal distribution using windows length 750 days respectively 1250
days, will always yield good interval forecasts. For instance, we have only
applied intervals with coverage probability, p = 0.95. Thus, we could get
different results using different values of p. Christoffersen(1998) who were
the one first suggesting the conditional coverage test, let the actual coverage
probability, p, vary between 0.50 and 0.95. He concluded that interval fore-
casts from the student-t distributed GARCH(1, 1) model where to cautious
for p = 0.95 but when the actual coverage probability, p, where less than
0.95 the GARCH model provided good interval forecasts.

Moreover, to test how well the GARCH(1, 1) model predicts over all possible
percentiles, we use the density forecast method. The one sample Kolmogorov
Smirnov test in section 5.1.4, states that when assuming a normal distribu-
tion the one step ahead standardized residuals are not U(0, 1) distributed,
regardless of the window length. And the histogram in Figure 12 shows that
there is too many observations in the middle. When assuming a student-t
distribution the one sample Kolmogorov Smirnov test states that the null
hypothesis of uniformly distributed one step ahead standardized residuals is
only accepted using rolling windows of length 250 days, otherwise it is re-
jected. When using windows longer than 250 days the histograms in Figure
25 and 26 shows that there seems to be more observations near the value one,
indicating that the underlying distribution might be skewed. This result in
combination with the outliers in the right tail of the QQ-plot, see Figure 6,
implies that it might be better to assume a skewed student-t distribution. It
should be noted that these plots indicates that there seems to exist outliers
of positive returns.

Since the results from the interval forecasts respectively density forecasts,
contradicts each other. For further research it is suggested to calculate
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interval forecast, letting the actual coverage probability, p, for instance vary
between 0.8 and 0.95. It is also suggested that in addition to the normal
and student-t distribution also include the skewed student-t distribution.
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Bagdonavičius, V., Julius, K. and Nikulin, M. S., (2011). Goodness-of-fit
Tests Based on Empirical Processes, in Non-parametric Tests for Complete
Data. Hoboken, NJ, USA: John Wiley Sons, Inc.

Christoffersen, P.F., (1998). Evaluating Interval Forecasts. International
Economic Review, 841–862.

Christoffersen, P.F., (2012). Elements of financial risk management. 2 edn.
225 Wyman Street, Waltham, MA 02451, USA: Elsevier.

Gut, L. (2009). An Intermediate Course in Probability. Springer-Verlag
New York
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A Appendix

A.1 Normal distribution

The theory in this section is from Gut(2009, page 292)

Let X be a normally distributed random variable, with mean µ and variance
σ2. Then the density function of X is

f(x) =
1√

2πσ2
t

exp

{
−(x− µ)2

2σ2
t

}
, x ∈ (−∞,∞).

A.2 Student-t distribution

The theory in this section is from Tsay(2010, page 121)

Let X be a student-t distributed random variable with ν degrees of freedom

f(x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπ

(
1 +

x2

ν

)− ν+1
2

, ν > 2

A.3 Chi-square distribution

The theory in this section is from Gut(2009, page 291)

Let X be a chi-square distributed random variable, with degrees of freedom
ν, mean ν and variance 2ν. Then the density function of X is

f(x) =
1

Γ
(
ν
2

)x 1
2
ν−1

(
1

2

) ν
2

e−
x
2 , x > 0, ν = 1, 2, 3, . . .
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B Appendix

B.1 Maximum Likelihood (ML)

The theory in this section is from Held and Sabane’s Bove’(2014, section
2.1.1, section 5.1 and appendix C.1.3) and Li(2007, section 3.2)

Let X = (x1, . . . , xn) be a vector, containing random variables, assumed
to be independently and identically distributed, with probability mass or
density function f(x1, . . . , xn; θ). Where θ is an unknown parameter-vector.
The maximum likelihood estimate θ̂ML is the most plausible estimate of θ

θ̂ = arg max
θ∈Θ

L(θ).

Where L(θ) is the likelihood function

L(θ) =
n∏
i=1

f(xi; θ),

due to computational convenience the log-likelihood is frequently used

logL(θ) = l(θ) =
n∑
i=1

f(xi; θ).

The Score vector is the gradient of the log-likelihood

S(θ) = ∇l(θ) =
∂lt(θ)

∂θ

and the expected Fisher information matrix

J(θ) = E

[
−∂

2lt(θ)

∂θ∂θT

]
.

The Newton-Raphson (NR) Method is then applied to numerically maxi-
mize the log-likelihood function. This method is frequently utilized to find
the root/roots of a equation. In every iteration t of the NR method, the
derivative of θ is approximated using a Taylor expansion around the current
approximation. Let θ(t) denote the parameter-vector after the t:th iteration.
The next iteration is then given by

θ(t+1) = θ(t) + J(θ)−1S(θ) (28)

B.1.1 GARCH(m, s) assuming normal distribution

The theory in this section is from Li(2007, section 3.2) and Tsay(2010, sec-
tion 3.4.3)
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Let at = εtσt and assuming that the log returns are conditionally nor-
mally distributed, we have that εt ∼ N(0, 1). Hence, at/σt ∼ N(0, 1) and
(at/σt)

2 ∼ χ2(1). Then the likelihood function is given by

L(θ) =
T∏

t=m+1

f(at|Ft−1, θ) =
T∏

t=m+1

1√
2πσ2

t

exp

{
− a2

t

2σ2
t

}
and the log-likelihood

lt(θ) =

T∑
t=m+1

log f(at|Ft−1, θ)

=

T∑
t=m+1

log

(
1√

2πσ2
t

exp

{
− a2

t

2σ2
t

})

=

T∑
t=m+1

(
−1

2
log 2π − 1

2
log σ2

t −
a2
t

2σ2
t

)
.

Where θ = (α0, α1, . . . , αm, β1, . . . , βs). Thus,

∂lt(θ)

∂θ
=

(
− 1

2σ2
t

+
a2
t

2(σ2
t )

2

)
∂σ2

t

∂θ
=

(
a2
t

2(σ2
t )

2
− 1

2σ2
t

)
∂σ2

t

∂θ

and

∂2lt(θ)

∂θ
=

(
a2
t

2(σ2
t )

2
− 1

2σ2
t

)
∂2σ2

t

∂θ∂θT
+

(
1

2(σ2
t )

2
− a2

t

(σ2
t )

3

)
∂σ2

t

∂θ∂θT
,

where
∂σ2
t

∂θ = (1, a2
t−1, . . . , a

2
t−m, σ

2
t−1, . . . , σ

2
t−s). Hence, the Score vector

S(θ) =
1

2

T∑
t=m+1

(
a2
t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t

∂θ

and the Fisher information matrix
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J(θ) = E

[
−∂

2lt(θ)

∂θ∂θT

]
=

T∑
t=m+1

E

[
−
(

a2
t

2(σ2
t )

2
− 1

2σ2
t

)
∂2σ2

t

∂θ∂θT
−
(

1

2(σ2
t )

2
− a2

t

(σ2
t )

3

)
∂σ2

t

∂θ∂θT

]

=
1

2

T∑
t=m+1

E

[(
1

σ2
t

− 1

(σ2
t )

2
+

2a2
t

(σ2
t )

3
− a2

t

(σ2
t )

2

)
∂σ2

t

∂θ∂θT

]

=
1

2

T∑
t=m+1

E

[(
σ2
t

(σ2
t )

2
− 1

(σ2
t )

2
+

2a2
t

σ2
t (σ

2
t )

2
− a2

tσ
2
t

σ2
t (σ

2
t )

2

)
∂σ2

t

∂θ∂θT

]
=

{
utilizes that

a2
t

σ2
t

∼ χ2(1), with mean 1

}
=

1

2

T∑
t=m+1

E

[(
− 1

(σ2
t )

2
+

2

(σ2
t )

2

)
∂σ2

t

∂θ∂θT

]

=
1

2

T∑
t=m+1

E

[
1

(σ2
t )

2

∂σ2
t

∂θ∂θT

]
The next step is to apply the Newton-Raphson method (see equation 28) to
numerically decide the maximum likelihood estimates.
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C Appendix

Figure 14: Simulated data with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 250 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 250 days
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Figure 15: Simulated data with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 750 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 750 days
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Figure 16: Simulated data with 95% prediction intervals,
(a) GARCH(1,1) normal distribution, rolling windows length 1250 days,
(b) GARCH(1,1) student-t distribution, rolling windows length 1250 days
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Figure 17: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 250 days with simulated
data

Figure 18: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 250 days with sim-
ulated data
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Figure 19: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 750 days with simulated
data

Figure 20: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 750 days with sim-
ulated data

47



Figure 21: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 1250 days with simulated
data

Figure 22: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 1250 days with sim-
ulated data
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D Appendix

Figure 23: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 750 days, Data used is the
Google stock daily log returns.
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Figure 24: Histogram of the standardized residuals, for GARCH(1,1) nor-
mal distribution using rolling window length of 1250 days. Data used is the
Google stock daily log returns.

Figure 25: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 750 days. Data used is
the Google stock daily log returns.
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Figure 26: Histogram of the standardized residuals, for GARCH(1,1)
student-t distribution using rolling window length of 1250 days. Data used
is the Google stock daily log returns.
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