
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Logistic Regression versus Support
Vector Machines
Alexander Nöu

Matematiska institutionen

Kandidatuppsats 2018:20
Matematisk statistik
Juni 2018

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2018:20

http://www.math.su.se

Logistic Regression versus Support Vector

Machines

Alexander Nöu∗

June 2018

Abstract

In binary classification, the objective is to identify if an observation
belongs to one of two classes, on the basis of data consisting of ob-
servations with known classes. Logistic regression and support vector
machines are two of several classification methods, where the former is
a traditional statistics method, and the latter is part of the closely re-
lated field of machine learning. The purpose of this thesis is to analyze
and compare these methods, both theoretically and practically.

In the theoretical part, each method is described in detail, from
concept to model fitting. Despite their different approaches to the clas-
sification problem, it turns out that the parameters for both methods
can be obtained by minimizing an objective function, consisting of a
loss and penalty function. The logistic regression loss and the support
vector machine loss behave similarly, and as a result, they often have
similar prediction accuracies.

The practical part consists of four different experiments, where in
each experiment, a number of binary data sets are simulated. The aim
is to analyze how each classifier performs on different types of data,
by varying a number of parameters that characterize a data set.

The results coincided with the theory, showing that the predictive
power of logistic regression and the support vector machine was close
to equal (a few minor differences were observed). It was also shown
that each method can be modified in order to obtain some of the
advantages of the other method, making them even more alike.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: alexander.lacson.nou@gmail.com. Supervisor: Ola Hössjer and Disa Hansson.

Acknowledgements

I would like to thank my supervisors Ola Hössjer and Disa Hansson for
their valuable guidance, suggestions and feedback during the writing
of this thesis.

Contents

1 Introduction 3

1.1 Background . 3

1.2 Outline . 3

2 Theory 4

2.1 Logistic Regression . 4

2.1.1 Fitting Logistic Regression Models 6

2.1.2 Shrinkage Methods . 8

2.2 Support Vector Machines . 9

2.2.1 Maximal Margin Classifier 9

2.2.2 Support Vector Classifier 14

2.2.3 Support Vector Machines and Kernels 17

2.3 Parameter Tuning . 19

2.3.1 Misclassification Rate 19

2.3.2 AUC . 20

2.3.3 Cross-Validation . 21

2.4 Relationship Between the Classifiers 22

3 Simulation and Modeling 24

3.1 Simulation Process . 24

3.2 Experiments . 25

3.2.1 Number of Observations and Predictors 25

3.2.2 Correlated and High-Dimensional Data 25

1

3.2.3 Magnitude of Predictor-Effects 26

3.2.4 Separation of Classes 26

3.3 Model Fitting . 27

3.3.1 Support Vector Machines 28

3.3.2 Logistic Regression . 28

4 Results 28

5 Discussion 30

5.1 Predictive Power . 30

5.2 Interpretability . 32

5.3 Nonlinearity . 32

5.4 Conclusion . 33

6 Appendix 34

6.1 Results . 34

References 37

2

1 Introduction

In statistics and machine learning, classification is the process of predicting
the category (or class), that an observation belongs to, on the basis of data
where the category of each observation is known. For example, identifying
one of several medical conditions or predicting the winner of a horse race
both represent multiclass classification problems.

There exists a number of methods for classification. Different methods suit
well for different types of situations, and different types of data. This thesis
will focus on binary (two classes) classification, where the goal is to com-
pare and analyze two popular classifiers, namely logistic regression and the
support vector machine, on a variety of simulated data sets.

1.1 Background

While logistic regression (LR) comes from classical statistics, support vec-
tor machines (SVMs) take a geometric approach on classifying data. The
method gained a lot of attention when it was introduced in the mid 1990s
[8], and is today one of the more popular classification methods in machine
learning communities, whereas LR is the commonly used method in statis-
tics. Even though their approaches to the classification problem are very
different, there is actually a connection between the two (which is shown in
section 2.4). According to [8], SVMs may yield slightly better results when
classes are well separated, while for more overlapping data, logistic regres-
sion is often preferred. In general, their prediction accuracies are supposedly
similar on most types of data.

The goal of the thesis is to dissect the theory behind these two methods, and
discuss their strengths, weaknesses and similarities. We will consider aspects
such as predictive power, interpretability and computational complexity.
The practical part of the project aims to investigate how SVMs and LR
perform on different types of data, by varying a number of parameters that
characterize data.

1.2 Outline

The thesis begins in section 2, presenting the theory for LR and SVMs.
It is followed by a description of the performance measures that are being
used in the simulation study, and a method for parameter tuning. The

3

theory section ends by showing how the two classifiers are related theoret-
ically (section 2.4). Section 3 describes the practical part of the thesis. It
presents a method for simulating binary data sets, and describes how the
final models are fitted for each method. The results of the simulations are
thereafter presented in section 4, and section 5 contains a discussion of the
advantages/disadvantages that come with each method.

2 Theory

In binary classification, the response variable Y is categorical with two pos-
sible outcomes (typically 0 and 1, or −1 and 1), and the p explanatory
variables X = (X1, . . . , Xp)

T can be either continuous or categorical (we
stick to continuous variables in this project). The following section covers
the theory for how logistic regression and support vector machines predict
the outcome of Y for new observations.

2.1 Logistic Regression

The theory for logistic regression models is taken from [1], unless stated
otherwise.

Let Y take either of the values 1 and 0, and let

π(x) = P (Y = 1 | X = x) = 1− P (Y = 0 | X = x).

The multiple logistic regression model is

π(x) =
exp(β0 + β1x1 + . . .+ βpxp)

1 + exp(β0 + β1x1 + . . .+ βpxp)
=

exp(β0 + βTx)

1 + exp(β0 + βTx)
, (2.1)

where β = (β1, . . . , βp)
T contains the effect parameters for all explanatory

variables. Alternatively, taking the log odds, or logit, the model can be
formulated as the linear combination

logit[π(x)] = log
π(x)

1− π(x)
= β0 + β1x1 + . . .+ βpxp. (2.2)

4

Figure 1: The logistic regression model, fitted to some data. The orange ticks
represent the binary outcomes (0 or 1) of the given data, and the curve is
the logistic regression model’s estimated probabilities for class 1. The figure
is from [8].

Thus, the LR model provides the conditional probabilities for the outcome
of Y based on the predictor variable values x = (x1, . . . , xp)

T , and some
parameters β0 and β that need to be estimated. For p = 1, the estimated
probabilities can be illustrated as an S-shaped curve fitted to the given data
(Figure 1). The coefficients βi are interpreted as the increase in conditional
log odds when increasing xi by one unit, holding the other xj fixed.

Since the LR model provides estimated probabilities, it does not classify
observations. However, the model can easily be turned into a classifier if we
choose a cutoff c such that if

P (Y = 1 | X = x∗) > c

we assign the new observation x∗ to class 1, otherwise to 0. The choice of
c may vary, depending on the situation, and the data [8]. For example, the
focus of this project lies on prediction accuracy, where data will be simu-
lated in such a way that the outcome of the response variable is balanced.
Therefore, a cutoff c = 0.5 is being used throughout the simulations. This
means that we choose the class that has the highest probability. Using (2.1)
and (2.2), the classification condition

π(x∗) =
exp(β0 + βTx∗)

1 + exp(β0 + βTx∗)
> 0.5,

5

Figure 2: The figure shows three different decision boundaries in the two-
dimensional feature space. The binary outcome of the given observations is
represented by the color of each point. The figure is from [7].

can be rewritten as

logit[π(x∗)] = β0 + βTx∗ > 0.

The observation x∗ is identified as class 1 for a positive log odds, and as 0
for a negative one. The class of an observation therefore depends on a linear
combination of the explanatory variables. This is called a linear classifier [7].
The easiest way of illustrating a linear classifier is by plotting the predictors
against each other in what is known as the feature space (feature is the term
used for predictor variables in the field of machine learning). In the feature
space, a decision boundary β0 + βTx = 0 corresponds to a hyperplane, and
for p = 2 the boundary is a line (Figure 2). Which side of the boundary a
new observation falls on decides its predicted class.

2.1.1 Fitting Logistic Regression Models

For a given data set (often called training data), let xi = (xi1, . . . , xip)
T

denote the values of each predictor, and let yi denote the outcome, for
observation i = 1, . . . , N . Only using continuous predictor variables results

6

in one outcome per setting xi. In addition, since the response is binary,
y1, . . . , yN are drawn from independent binomial distributions with n = 1
trials. The likelihood function is

L(β0,β) =
N∏
i=1

π(xi)
yi [1− π(xi)]

1−yi

=
N∏
i=1

(
π(xi)

1− π(xi)

)yi N∏
i=1

[1− π(xi)]

= exp

(
N∑
i=1

yilog
π(xi)

1− π(xi)

)
N∏
i=1

[1− π(xi)]

= exp

 N∑
i=1

yi

β0 +

p∑
j=1

βjxij

 N∏
i=1

1 + exp

β0 +

p∑
j=1

βjxij

−1 ,
where we used the LR model ((2.1) and (2.2)) in the last equality. The log
likelihood becomes

N∑
i=1

yi

β0 +

p∑
j=1

βjxij

− N∑
i=1

log

1 + exp

β0 +

p∑
j=1

βjxij

 . (2.3)

Through maximization of the log likelihood (2.3), the intercept β0 and the
coefficients β are estimated. This is done by first setting the partial deriva-
tives equal to 0:

∂logL(β0,β)

∂β0
=

N∑
i=1

yi −
N∑
i=1

exp
(
β0 +

∑p
k=1 βkxik

)
1 + exp

(
β0 +

∑p
k=1 βkxik

) = 0,

∂logL(β0,β)

∂βj
=

N∑
i=1

yixij −
N∑
i=1

xij
exp

(
β0 +

∑p
k=1 βkxik

)
1 + exp

(
β0 +

∑p
k=1 βkxik

) = 0,

j = 1, . . . , p. The likelihood equations are then expressed as

N∑
i=1

yi −
N∑
i=1

π̂ = 0,

N∑
i=1

yixij −
N∑
i=1

π̂xij = 0, j = 1, . . . , p,

7

where π̂i = exp
(
β̂0 +

∑p
k=1 β̂kxik

)
/
[
1 + exp

(
β̂0 +

∑p
k=1 β̂kxik

)]
are the

maximum likelihood estimates of the conditional probabilities π(xi). These
p + 1 equations are nonlinear and can be solved with the Newton-Raphson
algorithm or coordinate descent methods [7].

2.1.2 Shrinkage Methods

In model selection, one seeks for a subset of variables that makes the model
easier to interpret and possibly yields higher prediction accuracy. Meth-
ods such as forward- and backward-stepwise selection [8] are commonly used
and may work well when the number of predictors is not too large and when
variables are not highly correlated. Because of the discrete steps involved,
where variables are either included or excluded, these methods often suffer
from high variance and the prediction error might not be reduced compared
to the full model [7]. Since this study focuses on predictive power, where
the simulated data will be of both high dimension and correlations, we will
instead be using a combination of shrinkage methods (also called regulariza-
tion methods), namely ridge regression and the lasso. According to [7], they
are more continuous, which results in lower variance.

Ridge regression [10] combats overfitting and collinearity by restricting the
sizes of the regression coefficients. Instead of maximizing the log likelihood
(2.3), we introduce a penalized version:

N∑
i=1

yi

β0 +

p∑
j=1

βjxij

− N∑
i=1

log

1 + exp

β0 +

p∑
j=1

βjxij

− λ p∑
j=1

β2j ,

where the ridge parameter λ controls the amount of shrinkage of coefficients
β = (β1, . . . , βp)

T . The inputs are normally standardized before optimizing
the penalized log likelihood, and the intercept is left out of the penalty term.
In [10], it is explained that a large number of predictors, and/or highly
correlated data will result in unstable parameter estimates, but through
shrinking of the coefficients toward 0, we obtain a more stabilized system
that yields estimates with smaller variance. Ridge regression, however, does
not shrink parameters exactly to 0, resulting in all variables being kept in
the model.

The lasso [7], or LASSO (least absolute shrinkage and selection operator),
also puts a constraint on the coefficients through a penalty term. For logistic
regression, the function that is to be maximized is

8

N∑
i=1

yi

β0 +

p∑
j=1

βjxij

− N∑
i=1

log

1 + exp

β0 +

p∑
j=1

βjxij

− λ p∑
j=1

|βj |.

Unlike ridge regression, the lasso may shrink coefficients to be exactly 0 and
thus works for variable selection.

A combination of ridge regression and the lasso, called elastic net, will be
used in the simulations. Elastic net works as a shrinkage and selection
method, where the log likelihood is maximized with the following penalty
term [5]:

N∑
i=1

yi

β0 +

p∑
j=1

βjxij

− N∑
i=1

log

1 + exp

β0 +

p∑
j=1

βjxij

− λPα(β),

where

Pα(β) =

p∑
j=1

[(1− α)β2j + α|βj |].

The lasso corresponds to α = 1, while for ridge regression α = 0. The
optimal choice of λ and α is obtained through cross-validation (section 2.3).
The R package glmnet [6] provides a function for logistic regression with
the use of elastic net, where the penalized log likelihood is maximized with
coordinate descent methods.

2.2 Support Vector Machines

This section introduces the second classifier of the thesis; support vector ma-
chines [2]. The theory is taken from [7] and [8], if nothing else is mentioned.
In section 2.1, a decision boundary in the two-dimensional feature space was
illustrated (Figure 2). We will once again use this setting for illustrations,
as it helps understanding the concept behind SVMs.

2.2.1 Maximal Margin Classifier

As with logistic regression, let Y be the binary response variable, but with
outcomes 1 and −1, and let X = (X1, . . . , Xp)

T be the explanatory variables.

9

Figure 3: The figure shows the case where two classes are perfectly separa-
ble. The solid line represents a decision boundary for the maximal margin
classifier, and the broken lines are the margin borders. The figure is from
[7].

We begin by considering the simplest case, where two classes can be perfectly
separated by a hyperplane (a line for p = 2, Figure 3). This separating
hyperplane (an infinite of such hyperplanes exists) has the property that for
some vector β and scalar β0,

β0 + β1xi1 + . . .+ βpxip > 0 if yi = 1

and

β0 + β1xi1 + . . .+ βpxip < 0 if yi = −1,

for all observations i = 1, . . . , N . These can equivalently be formulated as

yi(β0 + β1xi1 + . . .+ βpxip) > 0.

Note that this is not a condition for classification, but a property of the
separating hyperplane. We can, however, directly use the hyperplane as a

10

decision boundary to create a linear classifier: if f(x∗) = β0+β1x
∗
1+. . .+βpx

∗
p

is positive, we assign the new observation x∗ to class 1. If f(x∗) is negative,
we assign it to −1. For p = 2, we classify x∗ based on whichever side of the
line it lands on.

Since there will exist an infinite amount of separating hyperplanes, one nat-
urally wishes to seek out the ”optimal” decision boundary. The maximal
margin classifier (or optimal separating hyperplane) is a linear classifier
that maximizes the distance between the hyperplane and the closest obser-
vations from both classes (Figure 3). This distance is called margin (hence
the name of the classifier), and the closest observations are support vectors.
The maximal margin hyperplane only depends on the support vectors and
would therefore not be affected by moving the other observations as long as
they do not cross the margins.

Before getting to the maximization of the margins, some linear algebraic
properties need to be listed. For any point x0 lying in the hyperplane β0 +
βTx = 0 (Figure 4),

βTx0 = −β0. (2.4)

It directly follows that for any two points x0 and x1 lying in β0 + βTx = 0,
βT (x0 − x1) = 0, which means that β∗ = β/||β|| is a vector normal to the
the surface of the hyperplane. The distance of any point x to the hyperplane
(negative for points of class −1) can be written as

β∗T (x− x0) =
1

||β||
(βTx− βTx0) =

1

||β||
(βTx + β0), (2.5)

where we first projected x− x0 onto β, then used (2.4) in the last equality.
The optimization of the margin can now be formulated as

max
β0,β

M

subject to
1

||β||
yi(x

T
i β + β0) ≥M, i = 1, . . . , N.

The signed distance from any point to the hyperplane was given in equation
(2.5). The constraints for the optimization problem therefore ensure that
no points are inside the margin, which is to be maximized. By rewriting the
constraint as

11

Figure 4: The linear algebra of a hyperplane. The figure is from [7].

yi(x
T
i β + β0) ≥M ||β||,

we see that for any β and β0 satisfying the inequality, any positively scaled
multiple does as well. This means that we can arbitrarily choose ||β|| =
1/M . Thus, we wish to maximize a margin with thickness 1/||β||, which
is equivalent to minimizing 1

2 ||β||
2 (for mathematical convenience). Finally,

the optimization problem is rewritten as

min
β0,β

1

2
||β||2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N. (2.6)

This convex optimization problem can be simplified by the use of Lagrange
multipliers α1, . . . , αN , which is a method for constrained optimization [14].
First, we set up the Lagrange function

L =
1

2
||β||2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1], (2.7)

and thereafter set the derivatives to zero:

12

∂L

∂β
= β −

N∑
i=1

αiyixi = 0,

∂L

∂β0
= −

N∑
i=1

αiyi = 0.

Substituting β =
∑N

i=1 αiyixi and
∑N

i=1 αiyi = 0 in (2.7) gives us

L =
1

2

(
N∑
i=1

αiyix
T
i

N∑
k=1

αkykxk

)
−

N∑
i=1

αiyix
T
i

N∑
k=1

αkykxk

−
N∑
i=1

αiyiβ0 +

N∑
i=1

αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk. (2.8)

This is called a Wolfe dual problem [16]; a simpler optimization problem
than the original one, and the solution to the original problem can be found
by instead maximizing (2.8), subject to

N∑
i=1

αiyi = 0,

αi[yi(x
T
i β + β0)− 1] = 0,

and αi ≥ 0, i = 1, . . . , N . From the constraints, we see that if αi > 0, then
yi(x

T
i β + β0) = 1 and xi is on the margin border. The maximal margin

solution β̂ =
∑N

i=1 α̂iyixi therefore depends on a linear combination of only
the support vectors, and the classifier is the function

f̂(x∗) = x∗T β̂ + β̂0 = x∗T
N∑
i=1

α̂iyixi + β̂0 =

N∑
i=1

α̂iyix
∗Txi + β̂0,

where the class of x∗ is decided by the sign of f̂(x∗).

13

Figure 5: The nonseparable case. The solid line represents a decision bound-
ary for the support vector classifier. Points ξ∗i are on the wrong side of the
margin by a distance ξ∗i = Mξi. The figure is from [7].

2.2.2 Support Vector Classifier

The maximal margin classifier can be used when classes are perfectly sep-
arable. However, the more common case is when classes are overlapping
and no such classifier exists. By introducing a soft margin, which is to be
maximized while allowing some observations to be on the wrong side of the
margin, or even on the wrong side of the hyperplane, we get what [8] calls
the support vector classifier (also known as soft margin classifier).

Let ξ = (ξ1, . . . , ξN)T denote the proportional distances of which each ob-
servation is on the wrong side of the margin (Figure 5). An observation is
therefore on the right side of the margin if ξi = 0. If ξi > 1, the distance is
larger than the margin, which means that the observation is on the wrong
side of the decision boundary. As with the maximal margin classifier, we seek
to maximize a margin M , subject to a set of constraints. The constraints

1

||β||
yi(x

T
i β + β0) ≥M(1− ξi), i = 1, . . . , N,

once again ensure that each observation is at least a distance away from the
hyperplane. For the support vector classifier, the distance does not need to

14

be the entire margin, since M(1 − ξi) allows some proportional distance ξi
to be on the wrong side of the margin. Just as in (2.6), with M = 1/||β||,
the optimization problem is reformulated as

min
β0,β

1

2
||β||2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , N. (2.9)

The term C
∑N

i=1 ξi can be interpreted as a form of penalty on the pro-
portional distances on the wrong side of the margin. A larger C results
in larger punishment, hence a smaller total sum of errors is allowed. The
optimal value for the cost parameter C is obtained through cross-validation
(section 2.3). The Lagrange function is

L =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi, (2.10)

where αi and µi are the multipliers. This function is to be optimized with
respect to β, β0 and ξi. For β and β0, setting the derivatives to zero leads
to the same equations as for the maximal margin Lagrange function:

β =
N∑
i=1

αiyixi (2.11)

and

N∑
i=1

αiyi = 0. (2.12)

For the last set of partial derivatives we get

∂L

∂ξi
= C − αi − µi = 0, i = 1, . . . , N. (2.13)

By substituting (2.11), (2.12) and (2.13) into (2.10), the Wolfe dual problem
becomes (look back at (2.8))

15

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk + (αi + µi)

N∑
i=1

ξi

− αi
N∑
i=1

ξi − µi
N∑
i=1

ξi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk. (2.14)

Once again, this is a simpler convex quadratic programming problem com-
pared to the original optimization problem. Equation (2.14) is maximized
under constraints (2.12), (2.13) and

0 ≤ αi ≤ C,

αi[yi(x
T
i β + β0)− (1− ξi)] = 0,

µiξi = 0,

yi(x
T
i β + β0)− (1− ξi) ≥ 0,

i = 1, . . . , N . From (2.11), the support vector classifier’s solution for β is
written as

β̂ =
N∑
i=1

α̂iyixi, (2.15)

and the decision boundary becomes

xT β̂ + β̂0 = xT
N∑
i=1

α̂iyixi + β̂0 =
N∑
i=1

α̂iyix
Txi + β̂0 = 0. (2.16)

As with the maximal margin classifier, αi > 0 means that

yi(x
T
i β + β0) = 1− ξi. (2.17)

16

Observation i is therefore a support vector, meaning that it lies on the
margin border or on the wrong side of the border. As a result, β̂ is a linear
combination of the support vectors. Equation (2.17) also tells us that β0 can
be solved by using any of the support vectors on the margin border (αi > 0
and ξi = 0). In addition, it follows from the constraints µiξi = 0 and (2.13)
that observations on the wrong side of the margin (ξi > 0) have αi = C.

2.2.3 Support Vector Machines and Kernels

So far, the maximal margin classifier has been introduced for when classes
can be perfectly separated by a linear decision boundary, and the extension,
the support vector classifier, is used for overlapping classes. The final clas-
sifier expands on these methods even further, by generalizing for cases when
classes can not be separated well with a linear boundary.

The idea is to enlarge the feature space to a higher dimension where there
exists a linear decision boundary. This can be done, for example, by adding
higher-order polynomial terms or by transforming the predictors. In the
original feature space, the transformations translate to a nonlinear decision
boundary (Figure 6). However, problems such as overfitting and heavy com-
putations may occur when adding too many features. The support vector
machine is a solution to these issues.

Consider the transformations h(xi) = [h1(xi), . . . , hq(xi)]
T of the p predic-

tors xi = (xi1, . . . , xip)
T . The support vector classifier’s Lagrange optimiza-

tion problem (2.14), using the transformed predictors, is

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykh(xi)
Th(xk),

with a decision boundary (2.16)

N∑
i=1

α̂iyih(x)Th(xi) + β̂0 = 0.

It turns out that the optimization problem and the decision boundary only
depend on

h(xi)
Th(xk) = 〈h(xi),h(xk)〉,

17

Figure 6: Two classes separated by a nonlinear decision boundary. The
figure is from [8].

which is the inner product of the transformed predictors. This means that
we do not need to find the actual transformations h(xi). Instead, all we
need is knowledge of the inner product, called kernel function:

K(xi,xk) = 〈h(xi),h(xk)〉.

Some of the more popular kernels are

dth-Degree polynomial: (1 + 〈xi,xk〉)d,
Radial basis: exp(−γ||xi − xk||)2.

Kernels are outside the scope of this thesis, since focus will be on data where
linear boundaries fit well. The linear kernel K(xi,xk) = xTi xk (the support
vector classifier) is therefore sufficient.

Finally, the decision boundary for the support vector machine is

18

N∑
i=1

α̂iyiK(x,xi) + β̂0 = 0.

There are computational advantages of using SVMs and kernels, instead of
simply enlarging the feature space. The transformations do not need to
be computed, which can be difficult when the transformed space is of very
high dimension. For some kernels, the feature space may even be infinite-
dimensional. One only needs to compute K(xi,xk) for all distinct pairs i,
k, which can be done without working in the transformed feature space.

If the transformations are complex enough, it is likely that a decision bound-
ary that perfectly separates the classes can be found. This is not necessarily
a good thing since it may lead to overfitting and thus will not be able to
classify new data well. The cost parameter C prevents this by allowing a cer-
tain amount of overlapping between classes. By finding the optimal values
for the cost- and kernel parameters, the support vector machine manages to
balance the transformation of the predictors to capture systematic nonlinear
behaviour, and the amount of overlapping classes caused by variance.

2.3 Parameter Tuning

When choosing the penalty parameter for the logistic regression, or the cost-
and kernel parameters for the support vector machine, one wishes to find the
values that provide the best performing model. This section describes two
measures of performance for binary classification (section 2.3.1 and 2.3.2),
and a method for finding the optimal parameter values (section 2.3.3).

2.3.1 Misclassification Rate

The misclassification rate, or error rate, is the proportion of incorrectly clas-
sified observations made by a model [8]. For the outcomes yi, i = 1, . . . , N ,
the misclassification rate is

1

N

N∑
i=1

I(yi 6= ŷi),

where ŷi is the predicted class of observation i, and I(yi 6= ŷi) is an indicator
variable that equals to 1 if the observation is incorrectly classified, and 0 if
it is classified correctly.

19

2.3.2 AUC

For binary classification, there is an alternative performance measure that
uses receiver operating characteristics (ROC) graphs.

Let the outcome of an observation be labeled as positive or negative. If an
observation is positive and a model predicts it as positive, we define it as a
true positive [4], and if it is predicted as a negative we call it a false negative.
Moreover, if an observation is negative and also is predicted as such by a
model, we define it as a true negative, otherwise it is a false positive. The
true positive rate and false positive rate can now be defined as

TP rate =
True positives

True positives + False negatives

and

FP rate =
False positives

True negatives + False positives
.

A ROC graph is a two-dimensional space where the true positive rate is
plotted against the false positive rate (Figure 7). In Figure 7, coordinates
(0, 0) correspond to a classifier that classifies zero observations as positive.
As a result, none of the positive observations will be classified correctly, and
zero negative observations will be incorrectly classified. On the other hand,
(1, 1) results in a classifier that only predicts positive outcomes. All positive
observations will therefore be correctly classified while all negative ones are
misclassified.

By changing a classifier’s threshold for when to assign an observation to
the positive class, we receive different points on the ROC graph, and if
it is varied enough (conceptually from −∞ to ∞), a ROC curve may be
computed. The performance of a classifier can be quantified by calculating
the area under the ROC curve (AUC).

A diagonal line on the ROC graph, having the area 0.5, corresponds to a
classifier that randomly guesses the outcome. Classifiers having an AUC
value of 1 classify perfectly.

20

Figure 7: A ROC graph showing the performance of different classifiers.
The figure is from [4].

2.3.3 Cross-Validation

Dividing observations into a training set and a validation set is a common
approach when assessing the performance of a model. The training set
is used to fit a model, which is then validated on the other set by some
performance measure. The idea is that one does not want to validate a model
on the same data that is used for the model fitting process, since that would
provide no information on the model’s ability to predict new observations
and could lead to overfitting the model on the training set. The downside
with this approach is when data sets are relatively small, since one has to
leave out a portion of the data for validation, which means that there are
less observations to fit the model with. In addition, the results may differ,
depending on which observations that are in the training and validation set.

K-fold cross-validation [8] extends the idea of splitting up the data, by divid-
ing the observations into K roughly equal-sized parts. We let K−1 parts of
the data be the training set, and after fitting the model it is used to predict
the kth part that was left out. The procedure is repeated for k = 1, . . . ,K.
Using misclassification rate as measure, the K-fold cross-validation estimate
is

21

CV(K) =
1

K

K∑
k=1

MRk,

where MRk is the misclassification rate for the model that was trained on
all parts of the data except for the kth part. The choice of K depends
on factors such as the size of the data set and if the fitting procedure is
computationally intensive. For example, K = N , called leave-one-out cross-
validation, requires the training of a model to be repeated N times, which
could be very expensive computationally. Standard choices for K are 5 and
10 [8].

For the classification methods in this thesis, the model selection procedure
consists of finding the optimal values for one or several parameters, such
as the penalty parameter for shrinkage methods or the cost parameter for
SVMs. We seek to minimize

CV(α)(K) =
1

K

K∑
k=1

MR(α)k,

which is the cross-validation estimate for a model fitted with the tuning
parameter α [7]. The value α̂ that minimizes the average prediction error is
used to fit the final model on all of the data.

2.4 Relationship Between the Classifiers

Let f(x) = xTβ + β0 and y = (y1, . . . , yN)T . It can be shown that the opti-
mization problem (2.9) for the support vector classifier can be reformulated
as

min
β0,β

N∑
i=1

max [0, 1− yif(xi)] + λ||β||2,

where λ is a tuning parameter [8]. This is a more general form, consisting
of a loss function L(X,y,β) that quantifies the fit of a model on some data
(X,y), and a penalty P (β) on the model parameters. For support vector
classifiers,

L(X,y,β) =

N∑
i=1

max[0, 1− yif(xi)]

22

is called hinge loss and

λP (β) = λ||β||2

is the ridge penalty term, where λ controls the penalty effect.

The penalized logistic regression (section 2.1.2) can also be written on the
”loss + penalty” form:

L(X,y,β) =

N∑
i=1

[log{1 + exp[f(xi)]} − yif(xi)],

with a shrinkage method penalty term, and the loss function being the neg-
ative log likelihood. These two methods are therefore not so different from
each other, as it may appear at first. They do have different loss functions,
but they turn out to be quite similar as well; [8] demonstrates the similarity
in behaviour between the SVM hinge loss and the logistic regression loss
(also called binomial deviance) in Figure 8, which is why logistic regression
and SVMs often yield similar results. Note that, in Figure 8, in order to
compare the loss of each observation, the outcome is set to yi ∈ {−1, 1},
which results in a slightly different binomial log likelihood than the one that
is presented above.

One difference, however, is how the parameters for SVMs only depend on ob-
servations on the margin border or on the wrong side of the margin (section
2.2.2). This can be seen in Figure 8, where the loss for observations having
yif(xi) ≥ 1 (i.e. support vectors (2.17)) is zero. The logistic regression loss
is not exactly zero anywhere, but the loss is very small for observations that
are on the right side, and far away from the decision boundary.

23

Figure 8: The hinge loss and logistic regression loss of an observation, plotted
against yif(xi). The response variable is set to the outcomes 1 and −1. The
figure is from [8].

3 Simulation and Modeling

This section describes the simulation and model fitting process. Logistic
regression and the support vector machine will be evaluated and compared
on a number of simulated data sets. The study consists of four larger ex-
periments, where in each experiment, the goal is to isolate and vary some
of the parameters. The entire simulation study is done in R.

3.1 Simulation Process

The following method is common for simulating binary data:

For each observation i = 1, . . . , N , the p predictor variable values xi =
(xi1, . . . , xip)

T are randomly generated from a multivariate normal distribu-
tion having the probability density function

f(x) =

(
1

2π

)p/2 1√
det(Σ)

exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
,

24

where µ is the mean vector and Σ is the covariance matrix. The binary
outcomes yi are generated by plugging xi and some effect vector β =
(β1, . . . , βp)

T into the logistic regression model (2.1):

π(xi) =
exp(βTxi)

1 + exp(βTxi)
,

where the intercept is left out to balance the outcomes of the two classes.
The generated probabilities are then used to simulate yi from a Bernoulli
distribution with probability π(xi). Through variation of N , p, µ, Σ and β,
different attributes can be isolated for comparison of performance between
the classification methods.

3.2 Experiments

3.2.1 Number of Observations and Predictors

In the first experiment, the aim is to analyze how the classifiers perform
when varying the number of observations N and explanatory variables p.
Six different settings will be used, where N varies in the range of 200 and
1000, and p is between 20 and 500.

As described in the previous section, predictor values are randomly gener-
ated from a multivariate normal distribution. For the first set of simulations,
we let the predictors be independent standard normal variables. In other
words, values for the mean vector µ = (µ1, . . . , µp)

T are

µ1 = . . . = µp = 0,

and the covariance matrix is the identity matrix. Furthermore, the effect
parameters β are set to

β1 = . . . = βp = 0.5.

3.2.2 Correlated and High-Dimensional Data

The second experiment focuses on high-dimensional data sets, where the
predictors are correlated. In each case, p will be at least as large as N .

25

For the simulation of predictor values, we follow [9] and [13], and construct
a covariance matrix where the covariances between variables are based on
their indices:

Σ =

c
|1−1| . . . c|1−p|

...
. . .

...

c|p−1| . . . c|p−p|

 ,

where 0 < c < 1. As a result, the diagonal elements, that represent the
variances, are all equal to 1. The other elements will now represent the cor-
relation between two variables, and also the covariance. Elements that are
close to the diagonal will have a higher correlation, while elements where the
difference between indices is large will have lower correlation. The mean vec-
tor and the effect parameters are defined as in the first experiment (section
3.2.1). The correlation parameter c is chosen to be 0.5 and 0.9.

3.2.3 Magnitude of Predictor-Effects

So far, ratios between N and p, and correlation between variables have been
explored. In the following experiment, we vary the magnitude of the effect
that a predictor has on the response variable.

The setting used in the last experiment is used here as well (c = 0.5), with
the difference that β is altered in several ways. In the first case, 20% of the
variables are randomly picked and set to have β = 0.5, while the rest of the
predictors are set to β = 0.01. The idea is to investigate how each method
handles data where a majority of predictors have no, or close to no effect on
the response variable. For the second case, each effect parameter is drawn
from a uniform distribution between 0.01 and 3.

3.2.4 Separation of Classes

The final experiment explores the separability of classes. By adjusting β
and µ, different data sets are generated, where the separation of classes
varies from perfectly separated to very overlapping. The two-dimensional
case (p = 2) is chosen for this experiment, since it is easier to visualize the
overlap between classes. The effect parameters and mean values for the two
predictors are defined as:

26

Figure 9: Generated data sets in R. The first data set is when β1 = 10,
µ1 = 2, and the classes are perfectly separated. The second data set is when
β1 = 0.5, µ1 = 1, and the classes have a lot of overlap.

β2 = β1,

µ2 = −µ1,

where β1 ∈ {0.1, 0.5, 1, 5, 10} and µ1 ∈ {1, 2}. This way, a larger β1 and
µ1 results in a more separated data. Figure 9 demonstrates two of the
settings in the simulations. For all settings, N = 500 and the predictors are
independent.

3.3 Model Fitting

For each data set, 2N observations are generated. Half of the observations
are used to train and validate the models, and the other half is left out for
testing of the final models.

27

3.3.1 Support Vector Machines

The R package e1071 [11] provides tuning of the cost parameter and kernel
parameters for support vector machines. Since the predictor values are sim-
ulated from a normal distribution and thereafter run through the logistic
regression model, classes can be linearly separated (not perfectly). The lin-
ear kernel (the support vector classifier) will therefore be optimal. The cost
parameter is obtained by searching through a sequence of values between
0.1 and 20. The parameter that yields the lowest mean misclassification rate
through 10-fold cross-validation (section 2.3.3) is used in the final model.

3.3.2 Logistic Regression

Parameter tuning for the logistic regression model can be done with the R
package Glmnet [6]. By searching through a grid of values for the elastic
net parameter α and the penalty parameter λ, the optimal values are once
again obtained through 10-fold cross-validation, using the misclassification
rate as performance measure. The sequence of values for α are chosen as
seven numbers between 0.01 and 0.99. For λ, Glmnet computes its own
sequence of 100 values.

4 Results

After retrieving the final models, they are evaluated by predicting the classes
of a test data set of size N . The whole procedure is repeated 50 times,
and the mean and standard deviation for the misclassification rates (MR)
and AUC-values are calculated. Tables 1-6 present the mean difference in
percentage points for MR and AUC (standard deviation in parentheses).
For MR, the difference in means is the SVM minus LR, and the opposite
for AUC. That way, for both performance measures, a positive value corre-
sponds to LR having better prediction accuracy, and a negative value means
that LR performs worse. The full results are presented in the appendix (Ta-
bles 7-12).

28

N p MR diff (%) AUC diff (%)

1000 20 0.01 (0.26) -0.01 (0.26)
1000 200 0.86 (0.28) 0.86 (0.28)
1000 500 0.80 (0.27) 0.80 (0.27)
200 500 -2.35 (0.74) -2.52 (0.75)
100 20 1.24 (1.01) 1.24 (1.04)
100 50 1.00 (0.92) 0.89 (0.90)

Table 1: Experiment 3.2.1. The objective is to investigate if there exist any
differences in performance, when varying the number of observations and
the number of predictors.

N p MR diff (%) AUC diff (%)

500 5000 -3.63 (0.43) -3.61 (0.43)
500 1000 -0.76 (0.38) -0.76 (0.38)
500 500 0.56 (0.39) 0.56 (0.40)

Table 2: First case of experiment 3.2.2, where c = 0.5. The experiment
consists of high-dimensional data sets with correlated predictor variables.

N p MR diff (%) AUC diff (%)

500 5000 -2.57 (0.43) -2.58 (0.43)
500 1000 -0.03 (0.29) -0.01 (0.29)
500 500 0.15 (0.24) 0.14 (0.23)

Table 3: Second case of experiment 3.2.2, where c = 0.9. The experiment
consists of high-dimensional data sets with highly correlated predictor vari-
ables.

N p MR diff (%) AUC diff (%)

500 5000 -2.00 (0.41) -2.12 (0.43)
500 1000 1.03 (0.44) 1.05 (0.44)
500 500 2.12 (0.37) 2.12 (0.37)

Table 4: First case of experiment 3.2.3, which analyzes data with a lot of
noise (80% of the predictors have almost no effect on the response variable).

29

N p MR diff (%) AUC diff (%)

500 5000 -2.90 (0.51) -2.94 (0.51)
500 1000 -0.90 (0.43) -0.89 (0.42)
500 500 0.51 (0.38) 0.51 (0.38)

Table 5: Second case of experiment 3.2.3. Each effect parameter is drawn
from a uniform distribution between 0.01 and 3.

β µ MR diff (%) AUC diff (%)

10 2 0.02 (0.02) 0.02 (0.02)
5 1 0.12 (0.17) 0.12 (0.17)
1 1 -0.32 (0.36) -0.34 (0.36)

0.5 1 0.03 (0.38) -0.00 (0.38)
0.1 1 0.26 (0.61) 0.11 (0.55)

Table 6: Experiment 3.2.4. Two-dimensional analysis (p = 2) with different
separations between classes.

5 Discussion

5.1 Predictive Power

Section 4 (Tables 1-6) presents the comparison in prediction accuracy be-
tween the methods, in terms of the difference in mean misclassification rate
(MR) and AUC. According to the theory in section 2.4, the support vector
machine (SVM) and logistic regression (LR) often predict similarly. From
the results in this project, the classifiers turned out to have almost identical
predictive power.

Overall, the difference in mean MR and AUC is close to 0 percentage points.
A few minor differences were observed:

In Table 1, the SVM has a slightly lower mean MR by 2.35 percentage points,
when the number of observations is N = 200 and the number of predictors
is p = 500. For most settings, however, the difference in prediction accuracy
is less than 1 percentage point, which means that the classifiers behave
similarly for uncorrelated data with different ratios between N and p. The
second experiment (Table 2 and 3) explored correlated data with a large
number of predictors. For N = 500, p = 5000, the SVM has a 2.57 and
3.63 percentage point lower MR. This coincides with the result in Table
1, suggesting that LR may perform somewhat worse when the number of

30

predictors is much larger than the number of observations. Table 4 and 5
present the results of the third experiment. Once again, the SVM performs
slightly better when N = 500, p = 5000. In Table 4, where most of the
predictors are set to have almost no effect on the response variable, LR has
a lower MR for N = 500, p = 500 (2.12 percentage points). Lastly, in Table
5, where the separation of classes was varied, the difference in prediction
acccuracy is negligible.

There are probably numerous other experiments that would be of interest,
but since this project is on an undergraduate level, where both time and
knowledge is limited, restrictions on the simulation process have been made.
For example, the parameters could have been varied a lot more, or isolated
and combined in other ways. It would also be interesting to analyze different
probability distributions, and testing other methods for simulation of binary
data.

Moreover, with the same reasoning as before, and for computational reasons,
the fitting process might not be optimized. The value 10 was used in the
K-fold cross-validations for all data sets, regardless of their sizes. Also,
because of the large running time to fit the models 50 times for each setting,
the search grid for parameter tuning was quite coarse.

To conclude, the results in section 4 are very consistent; in terms of misclas-
sification rate and AUC, the predictive power of logistic regression and the
support vector machine are close to identical. When the number of predic-
tors is much larger than the number of observations, the SVM performed
slightly better. However, the differences are very small, and the fact that
the modeling and simulation process was limited needs to be taken into con-
sideration before drawing any definite conclusions. In addition, none of the
papers that are referred to in this thesis mentions that SVMs performs bet-
ter in such cases. In [8], it is stated that the SVM may yield better results
when classes are well separated. With that in mind, a possibility is that
the simulated data sets with a large number of predictors resulted in classes
that are well separated.

There are ways to combine several classifiers and potentially increase pre-
diction accuracy. Ensemble learning is the idea of constructing a set of
classifiers [3], and predict new observations on the basis of some combina-
tion of their individual predictions. If the individual classifiers predict some
observations differently, a combination of them could potentially capture the
strengths of each classifier and result in a lower error rate than the individual
predictions.

In our case, the SVM and LR have very similar performance, and this sug-

31

gests that they also predict the same observations correctly. If a combination
of the two does not capture any differences in prediction, we will not ob-
tain an ensemble classifier that yields a higher prediction accuracy. If they,
however, do predict observations differently and still provide such similar
results, an ensemble method could improve the predictive power.

5.2 Interpretability

One is often more interested in the interpretation of a model, rather than
focusing on classification accuracy. For example, estimating the probability
of a medical condition being present and obtaining the possible main causes
is more informative than simply classifying if a person has the medical con-
dition or not. That is when the logistic regression model has the advantage
of being a probabilistic model; it produces estimated probabilities for the
outcome of a response variable, and the parameters can easily be interpreted
in terms of the log odds. Model selection methods such as forward selection
might be preferable, as one would want to overlook the smaller details pro-
vided by a more complex model in order to capture the primary effects and
getting the bigger picture, while also saving time (potentially) with a less
computationally intensive model selection process.

Classification is more often used when the objective is to automate a pro-
cess, and each observation needs to be assigned to one of several classes.
The field of machine learning contains a number of methods that provide
discrete outputs, such as SVMs and k-nearest neighbours [7]. But just as
the logistic regression model can be modified into a classifier, the outputs of
these methods can be transformed into probabilistic outputs. Platt scaling
[12] does exactly this, by fitting a logistic regression model to the classifi-
cation scores (the linear combination of the predictor values and the effect
parameters) of the classifier. For SVMs, the distance between the decision
boundary and an observation can be thought of as a probability; observa-
tions that are far away from the decision boundary are assigned to the right
class with higher certainty.

There are also variable selection methods for the SVM [15], which could
improve the interpretation, and/or improve generalization performance.

5.3 Nonlinearity

The experiments of this thesis focused on data where observations were
best classified by a linear decision boundary, but support vector machines

32

(section 2.2.3) are generalized to handle separation of classes with nonlinear
boundaries. With the use of kernels, the SVM’s way of transforming the
predictors to higher dimensions has great computational advantages.

At first, the idea of using kernels was thought to be unique to the SVM [8],
but it has since been shown that the they can be applied to other methods
as well, such as logistic regression. Despite this, kernels are most commonly
used with SVMs, and the more popular kernel functions are usually available
in standard SVM packages (for example, the package used in this thesis [11]).
Why is kernel logistic regression not as popular? It is explained in [17] that it
is computationally more expensive to apply kernels to LR. Additionally, the
estimated parameters for SVMs only depend on the support points, which
also results in advantages when coding the algorithms. Another possible
reason, is that the SVM is seen as a more modern method (20 years old),
whereas logistic regression is a traditional statistical tool.

5.4 Conclusion

In section 2, we focused on the theory of logistic regression and support vec-
tor machines. The first approach is probabilistic, and maximizes a binomial
log likelihood in order to estimate the parameters of the linear classifier.
The support vector machine maximizes the margin, which is the distance
between the ”closest” observations from two different classes, while allowing
some observations to be on the wrong side of the margin.

At first glimpse, these two methods seemed to be completely unalike. Not
only do their approaches to the classification problem seem very different,
but they also come from different scientific fields. LR is a method that
even people outside of statistics are familiar with, but not all statisticians
have heard of SVMs, which is a member of a group of machine learning
algorithms.

In section 2.4, it was shown that the optimization problem of the penalized
LR model and the support vector classifier, both could be reformulated
as a more general form, consisting of a loss function and a penalty term.
Furthermore, Figure 8 demonstrated the similarity in behaviour between
the SVM hinge loss function and the LR loss function. Consequently, the
two methods provide similar classifiers in many cases, and therefore have
similar predictive power. The results in section 4 confirmed this, with the
difference in prediction accuracy being close to 0 percentage points in all
experiments. There was, however, a small difference when the number of
predictors was much larger than the number of observations, suggesting that

33

SVMs perform slightly better in such settings (section 5.1 explains why that
might not be the case).

To make these two methods even more alike; section 5.2 and 5.3 explained
how each classifier can be modified in order to obtain attributes of the other
classifier. Which method should we then use? If interpretation is of primary
interest, LR would require less work since it naturally produces probabilities,
and there are very straight forward methods for selecting the main predictor
variables (such as forward selection). For data sets with nonlinear behaviour,
the SVM is the easy choice. Kernels are included in standard SVMs packages
for programming languages such as Python and R, and applying them to
SVMs has some computational advantages over kernel LR.

In light of these arguments, the simple answer is pick the method that
best suits the situation. This thesis has, however, solely focused on binary
classification. Both methods can also be applied to multiclass classification,
but this we have not explored.

6 Appendix

6.1 Results

The full results are presented in Tables 7-12. For logistic regression (LR)
and the support vector machine (SVM), the misclassification rate and AUC
are displayed (the mean, with standard deviation in the parentheses), along
with parameter values that have been varied.

Misclassification Rate AUC

N p LR SVM LR SVM
1000 20 0.21 (0.01) 0.21 (0.01) 0.79 (0.01) 0.79 (0.01)
1000 200 0.14 (0.01) 0.14 (0.01) 0.86 (0.01) 0.86 (0.01)
1000 500 0.20 (0.01) 0.21 (0.01) 0.80 (0.01) 0.79 (0.01)
200 500 0.38 (0.04) 0.35 (0.03) 0.62 (0.04) 0.65 (0.03)
100 20 0.27 (0.05) 0.29 (0.05) 0.72 (0.05) 0.71 (0.05)
100 50 0.26 (0.05) 0.27 (0.04) 0.74 (0.05) 0.73 (0.04)

Table 7: Experiment 3.2.1. The objective is to investigate if there exist any
differences in performance, when varying the number of observations and
the number of predictors.

34

Misclassification Rate AUC

N p LR SVM LR SVM
500 5000 0.36 (0.02) 0.33 (0.02) 0.64 (0.02) 0.67 (0.02)
500 1000 0.22 (0.02) 0.21 (0.02) 0.78 (0.02) 0.79 (0.02)
500 500 0.17 (0.02) 0.17 (0.02) 0.83 (0.02) 0.83 (0.02)

Table 8: First case of experiment 3.2.2, where c = 0.5. The experiment
consists of high-dimensional data sets with correlated predictor variables.

Misclassification Rate AUC

N p LR SVM LR SVM
500 5000 0.20 (0.02) 0.18 (0.02) 0.80 (0.02) 0.82 (0.02)
500 1000 0.09 (0.01) 0.09 (0.01) 0.91 (0.01) 0.91 (0.01)
500 500 0.06 (0.01) 0.06 (0.01) 0.94 (0.01) 0.94 (0.01)

Table 9: Second case of experiment 3.2.2, where c = 0.9. The experiment
consists of high-dimensional data sets with highly correlated predictor vari-
ables.

Misclassification Rate AUC

N p LR SVM LR SVM
500 5000 0.39 (0.02) 0.37 (0.02) 0.61 (0.02) 0.63 (0.02)
500 1000 0.27 (0.02) 0.28 (0.02) 0.73 (0.02) 0.72 (0.02)
500 500 0.22 (0.02) 0.24 (0.02) 0.78 (0.02) 0.76 (0.02)

Table 10: First case of experiment 3.2.3, which analyzes data with a lot of
noise (80% of the predictors have almost no effect on the response variable).

Misclassification Rate AUC

N p LR SVM LR SVM
500 5000 0.36 (0.03) 0.33 (0.02) 0.64 (0.03) 0.67 (0.02)
500 1000 0.23 (0.02) 0.22 (0.02) 0.77 (0.02) 0.78 (0.02)
500 500 0.17 (0.02) 0.18 (0.02) 0.83 (0.02) 0.82 (0.02)

Table 11: Second case of experiment 3.2.3. Each effect parameter is drawn
from a uniform distribution between 0.01 and 3.

35

Misclassification Rate AUC

β µ LR SVM LR SVM
10 2 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
5 1 0.03 (0.01) 0.03 (0.01) 0.97 (0.01) 0.97 (0.01)
1 1 0.16 (0.02) 0.16 (0.02) 0.84 (0.02) 0.84 (0.02)

0.50 1 0.28 (0.02) 0.28 (0.02) 0.72 (0.02) 0.72 (0.02)
0.10 1 0.45 (0.03) 0.46 (0.03) 0.55 (0.03) 0.55 (0.03)

Table 12: Experiment 3.2.4. Two-dimensional analysis (p = 2) with differ-
ent separations between classes.

36

References

[1] Agresti, A. (2002). Categorical Data Analysis, second edition. John
Wiley & Sons, Inc., Hoboken, New Jersey.

[2] Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Ma-
chine Learning, 20(3), 273-297. Kluwer Academic Publishers, Boston.

[3] Dietterich, G. T. (2000). Ensemble Methods in Machine Learning.
Lecture Notes in Computer Science, 1857, Multiple Classifier Systems,
1-15. Springer, New York.

[4] Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern
Recognition Letters, 27(8), 861-874. Elsevier.

[5] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regular-
ization Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software, 33(1), 1-22. American Statistical Asso-
ciation.

[6] Friedman, J., Hastie, T., Tibshirani, R. and Simon, N. (2018).
Lasso and Elastic-Net Regularized Generalized Linear Models. https:
//cran.r-project.org/web/packages/glmnet/glmnet.pdf

[7] Hastie, T., Tibshirani, R. and Friedman, J. (2017). The Ele-
ments of Statistical Learning, second edition. Springer, New York.

[8] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2017).
An Introduction to Statistical Learning. Springer, New York.

[9] Krona, E. (2017). A Simulation Study of Model Fitting to High Di-
mensional Data using Penalized Logistic Regression. Stockholms uni-
versitet. https://www.math.su.se/publikationer/uppsatsarkiv/

[10] Le Cessie, S. and Van Houwelingen, J. C. (1992). Ridge Esti-
mators in Logistic Regression. Journal of the Royal Statistical Society,
series C, 41(1), 191-201. Wiley, Hoboken, New Jersey.

[11] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. and
Leisch, F. (2017). Misc Functions of the Department of Statistics,
Probability Theory Group, TU Wien. https://cran.r-project.org/
web/packages/e1071/e1071.pdf

[12] Platt, C. J. (2000). Probabilistic Outputs for Support Vector Ma-
chines and Comparisons to Regularized Likelihood Methods. Advances
in Large Margin Classifiers, 61-74. MIT Press, Cambridge, Mas-
sachusetts.

37

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
https://www.math.su.se/publikationer/uppsatsarkiv/
https://cran.r-project.org/web/packages/e1071/e1071.pdf
https://cran.r-project.org/web/packages/e1071/e1071.pdf

[13] Tibshirani, R. (1996). Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society, series B, 58(1), 267-288.
Wiley, Hoboken, New Jersey.

[14] Vapnyarskii, I. B. (2001). Lagrange multipliers. Encyclopedia of
Mathematics, Kluwer Academic Publishers, Boston.

[15] Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio,
T. and Vapnik, V. (2000). Feature Selection for SVMs. Advances in
Neural Information Processing Systems 13, 647-653. MIT Press, Cam-
bridge, Massachusetts.

[16] Wolfe, P. (1961). A Duality Theorem For Non-linear Programming.
Quarterly of Applied Mathematics, 19(3), 239-244. Brown University,
Providence, Rhode Island.

[17] Zhu, J., Hastie, T. (2002). Support Vector Machines, Kernel Logistic
Regression, and Boosting. Lecture Notes in Computer Science, 2364,
Multiple Classifier Systems, 16-26. Springer, New York.

38

