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Abstract

Volatility, the degree of fluctuation of a price series, is a main
concern within finance. Accurate measures and good predictions of
volatility are crucial for implementations and evaluations. The EUR/USD
currency pair is the most heavily traded exchange traded currency pair
according to the Bank of International Settlements. In this thesis the
GARCH(1,1) model with conditionally normal and t-distributed error
terms will be used to make 1-step-ahead predictions of the Euro/US
Dollar FX Spot Rate volatility. The forecasting evaluation is con-
cerned with the fractions of violations of interval forecasts and the
independence of these violations. Furthermore, by using the probabil-
ity integral transform the entire density forecasts as well as the tails of
the density forecasts will be evaluated. The results suggests that the
GARCH(1,1) model assuming conditionally t-distributed error terms
seems to be favourable for making volatility predictions.
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1 Introduction

Volatility, the degree of fluctuation of a price series, is a main concern within finance.
Accurate measures and good predictions of volatility are crucial for implementations
and evaluations. It is a critical input to risk exposure evaluation, stress testing, asset
allocation, derivatives pricing and risk management. Hence, the importance of volatility
modeling is well acknowledged.

The volatility can not be directly observed, however, it can be estimated and predicted
using conditional heteroscedastic models. These models mimics the underlying volatility
process of time series that consists of time-varying volatility and volatility clustering.
Hence, the term heteroscedastic.

One financial asset return series that typically displays signs of heteroscedasticity is
the EUR/USD currency pair return series. It is also the most heavily exchange traded
currency pair according to the latest Triennial Survey from 2016 by the Bank of Inter-
national Settlements.

This thesis addresses the theory and forecasting performance of the GARCH(1,1) model
for the EUR/USD currency pair return series. The error terms in the two different model
specifications are assumed to be conditionally normal and conditionally t-distributed.

1.1 Background

Financial asset returns exhibit some statistical regularities also known as stylized facts.
These findings dates back to Mandelbrot (1963) and Fama (1965) and includes the fact
that short-horizon financial asset returns commonly displays time-varying fluctuations
that occur in clusters. In other words, it is indicated that the volatility evolves over
time and periods of high volatility tends to be followed by periods of low volatility. This
non-constant volatility is referred to as heteroscedasticity.

There are two landmarks in the history of volatility modeling. The first is when Engle
(1982) introduced the ARCH model that captures conditional heteroscedasticity. The
second is when Bollerslev (1986) proposed an extension to the ARCH model framework,
the GARCH model. The GARCH framework, in addition, incorporates known condi-
tional variance.

Backtesting is used to investigate the accuracy of the predictions from a model and
can be seen as a final step of a diagnostics check. Traditional research in economic fore-
casting is commonly focused on producing and evaluating point forecasts (Christoffersen,
1998). These are relatively easy to compute, easy to interpret and provides actionable
guidance for the forecaster. The straightforwardness makes them tractable but they are
often of limited value. The forecaster is left with only one possible outcome and with
no information about its uncertainty. Lately, it has been more common to also produce
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and evaluate interval forecasts as well as density forecasts.

Kupiec (1995) presented a means of interval forecast evaluation by testing for the
promised fractions of violations, i.e. the realized fractions of observations outside of
the series of forecast intervals. This is known as a test for correct unconditional cover-
age. However, even if the model produces the correct coverage on average Christoffersen
(1998) argues that it may not do so at every point in time (Berkowitz, Christoffersen &
Pelletier, 2001). Hence, Christoffersen (1998) extended the forecast interval evaluation
of Kupiec (1995) to a framework for conditional interval forecast evaluation. The idea
is that the violations should occur at a given fraction over time as well as not appearing
in clusters. In other words, the violations should be conditional unpredictable. This is
known as a test for conditional coverage.

Diebold, Gunther & Tay (1997) proposed methods for evaluating density forecasts based
on a probability integral transform. The idea is that the realized cumulative distribution
forecasts should be standard uniformly distributed. The authors argues that approaches
such as interval forecasts evaluations leads to incomplete evaluation. Interval forecasts
evaluations answers the question whether the series of prediction intervals are correctly
conditionally calibrated at a given confidence level. However, and as Diebold et al. (1997)
emphasizes, the result does not give any information about any other confidence levels
of the prediction intervals than of the one at hand. Consequently, correct conditionally
calibrated density forecasts amounts to the interval forecast being correct conditionally
calibrated for all confidence levels simultaneously (Diebold et al, 1997, page 3).

Testing the entire return distribution may lead to rejecting a model that capture the
tails of the distribution well but not the rest of the distribution. In applications, the
ability to capture the tails of the density forecasts is usually what one is really interested
in. Christoffersen (2012) presents the idea and means for backtesting the tails of the
density forecasts.

1.2 Purpose and aim

Accordingly, the purpose of this bachelor thesis is twofold:

1. Describe and apply the GARCH(1,1) model with normal and t-distributed error
terms to make 1-step-ahead predictions for the EUR/USD FX Spot Rate returns.

2. Evaluate the 1-step-ahead predictions by means of describing and applying tests
for backtesting.

The backtesting in this thesis is concerned with the fractions of violations of the interval
forecasts and the independence of these violations. Furthermore, by using the probability
integral transform the entire density forecasts as well as the tails of the density forecasts
will be evaluated.
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2 Theoretical framework

In this chapter the necessary theory for the analysis will be presented. The theory in
this chapter is from Tsay (2012, chapter 1-3) unless stated otherwise.

2.1 Asset returns

In financial studies the conventional way is to deal with returns instead of prices of
assets. Return series are a universal and scale-free summary of a given investment and
are more convenient to work with due to more attractive statistical properties.

2.1.1 Definition of asset returns

Let Pt be the price of an asset at time t. The simple gross return by holding an asset
from time t− 1 to time t is then

1 +Rt =
Pt
Pt−1

.

The traditional assumption in financial studies is that the simple returns {Rt}Tt=1 are i.i.d.
normal with mean µ and σ2, which makes the statistical properties of {Rt} tractable.
However, Pt > 0 and Pt−1 > 0 for all t and thus Pt

Pt−1
> 0 for all t. It means that

the simple gross return have a lower bound, i.e. 1 + Rt > 0. Since the normal and the
t-distribution are defined for all real numbers the log return

rt = log(1 +Rt) = log

(
Pt
Pt−1

)
,

is often used. Hereafter the log return will simply be referred to as the return. Note
that T denotes the size of the data sample and will do so throughout this thesis.

2.1.2 Skewness

Skewness is defined as

S(X) = E

[
(X − µx)3

σ3
x

]
.

It is the normalized third moment of a continuous random variable X and measures the
symmetry of X with respect to its mean, i.e. it summarizes the asymmetry of X. If the
distribution is symmetric then the the value is zero. Notice that a zero value could also
mean an asymmetric distribution with asymmetries that even out.

The skewness is estimated using the sample counterpart

Ŝ(x) =
1

(T − 1)σ̂3
x

T∑
t=1

(xt − µ̂x)3,
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where

µ̂x =
1

T

T∑
t=1

xt and σ̂2
x =

1

(T − 1)

T∑
t=1

(xt − µ̂x)2.

2.1.3 Kurtosis

Kurtosis is defined as

K(X) = E

[
(X − µx)4

σ4
x

]
,

and is estimated by its sample counterpart

K̂(x) =
1

(T − 1)σ̂4
x

T∑
t=1

(xt − µ̂x)4.

It is the normalized fourth moment of a continuous random variable X and puts weight
on measuring the tail behaviour of X. More specifically, it is a measure of tail thickness.
For a normal distribution K(x) - 3 is equal to zero, hence, K(x) - 3 is called the excess
kurtosis. A distribution with a positive excess kurtosis have more probability mass in
the tails and are said to have heavy or fat tails. This is also known as leptokurtic. In
practice, it means that the distribution contains more extreme values than the normal
distribution would suggest.

2.2 Linear time series analysis

By treating log returns as a sequence of random variables over time it will amount to a
time series {rt}Tt=1. A time series {rt} is said to be linear if it can be written as

rt = µ+
∞∑
i=0

ψiat−i,

where µ is the mean of rt, ψ0 = 1 and {at}Tt=1 is a series of i.i.d. random variables
with mean zero and unit variance. In other words, {at} is a white noise series and will
henceforth be referred to as the innovations.

2.2.1 Stationarity

A corner-stone of time series analysis is the idea of a stationary stochastic process. A
time series {rt} is said to be strictly stationary if the unconditional joint distribution
function is invariant under time shift, i.e. if

Ft(r1, ..., rk) = Ft+m(r1, ..., rk), for all t,

where k is a positive integer and (t1, ...tk) is a sequence of k positive integers.
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A time series {rt} is said to be weakly stationary if the mean of rt and the covari-
ance between rt and rt−l, where l is an arbitrary integer, are invariant under time shift.
Put differently, a time series {rt} is said to be weakly stationary if

E[rt] = µ, Cov(rt, rt−l) = γl,

where µ is a constant and γl only depends on l. In line with convention within finance
literature it will hereafter be assumed that {rt} is weakly stationary.

2.2.2 Autocorrelation function (ACF)

Considering rt, a weakly stationary series, and the linear dependence between rt and its
past values rt−i, the concept of correlation can be generalized to autocorrelation. The
correlation between rt and rt−l is called the lag-l autocorrelation of rt, denoted ρl, and
is defined as

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0
,

where ρ0 = 1, ρl = ρ−l and −1 ≤ ρl ≤ 1 follows from the definition of correlation. The
fact that V ar(rt) = V ar(rt−l) follows from the definition of weakly stationarity. The
l-sample autocorrelation of rt is consequently defined as

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ l < T − 1.

This statistic, the sample autocorrelation function, captures the linear dynamic of the
data and is thus of great significance when modeling and analyzing linear time series.

To test a specific sample ACF a hypothesis test can be performed. The null hypothesis
H0 : ρl = 0 are tested against the alternative hypothesis Ha : ρl 6= 0. The test statistic
is given by the

t ratio =
ρ̂l√(

1 + 2
∑l−1

i=1 ρ̂i
2
)
/T

.

The decision rule is to reject H0 if |t ratio| > Zα/2. The significance level is denoted
by α and Zα/2 is the 100

(
1 − α

2

)
th percentile of the standard normal distribution. In

practice it is common to use
√

1/T as the asymptotic standard deviation of ρ̂l for all
l 6= 0.

2.2.3 Ljung-Box test

To test that several autocorrelations of rt are jointly zero a hypothesis test can be
performed. The hypothesis test is formally specified as

H0 : ρ1 = ... = ρm = 0,
Ha : ρi 6= 0, for some i ∈ {1, ...,m}.
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For this purpose, Ljung and Box (1978) proposes the test statistic

Q(m) = T (T + 2)

m∑
l=1

ρ̂2

T − l
∼ χ2(m).

The null hypothesis is rejected if Q(m) > χ2
α(m), where α is the significance level and

χ2
α(m) denotes the 100(1-α)th percentile of a χ2-distribution with m degrees of freedom.

The choice of m ≈ log(T ) is a general rule for analysis of non-seasonal time series
(Tsay, 2012, page 33) or when there is no obvious guidance for a specific number of lags
(Christoffersen, 2012, chapter 3).

2.2.4 White noise

A time series {rt} is said to be a white noise if {rt} is a sequence of i.i.d. random
variables with finite mean and unit variance. For a white noise series all ACFs are zero.
In practice, a series is a white noise series when all the sample ACFs are close to zero.

2.2.5 Autoregressive (AR) models

If there are autocorrelations in {rt} one can use this to build forecasting models. For
example, if a time series shows statistically significant lag-1 autocorrelation it indicates
that rt−1 can be used to predict rt. This would result in the simplest and most common
AR model, the AR(1) model. It is defined as

rt = φ0 + φ1rt−1 + at,

where {at} is assumed to be a white noise series with mean zero and unit variance and
where rt−1 and at are independent. This can be generalized to the AR(c) model which
is defined as

rt = φ0 +

c∑
i=1

φirt−i + at,

where {at} is assumed to be a white noise series with mean zero and unit variance and
where rt−i and at are independent for all i > 0.

Notice that the AR(1) and AR(c) models have the form of a simple and a multiple
regression model respectively. An AR model can thus be estimated using the least
squares method as well as maximum likelihood estimation.

In applications, the AR order c of {rt} is not known, and thus has to be determined.
This is often referred to as the order determination of an AR model. It can be done using
two different approaches. The first is to make use of the partial autocorrelation function
and the second is to make use of information criteria. These different approaches may
result in different choices of c, however, there is no evidence for choosing one approach
over the other.
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2.2.6 Partial autocorrelation function (PACF)

The PACF of a stationary time series gives the marginal contribution of an additional
lag-term in the applied AR model. It is simple and intuitive to introduce PACF by
considering the consecutive AR models

rt = φ0,1 + φ1,1rt−1 + a1t,
rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + a2t,
rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + a3t,
..
.

..

.

where φ0,c is the constant term, φi,c the coefficient of rt−i and act the error term in
the AR(c) model. The PACF is now the collection of the highest order coefficients
{φ1,1, φ2,2, φ3,3, ...} and the optimal lag c is the largest value of c such that φc,c is sig-
nificant. In theory, this is seen in the PACF plot where the sample PACF cuts off at
lag c. In practice, however, there can be several cut-offs. It will be seen later in Figure
3 (d). This makes the decision of what lags to include in the model somewhat unclear.
Another method for order determination is to use information criteria, for example AIC
or BIC. There is no evidence for one method outperforming the other in applications.

2.2.7 AIC & BIC

The theory presented in this subsection is from Held & Sabanés Bové (2014).

Let θ be a parameter vector with dimension k and let l(θ̂ML) be the maximum value
of the log likelihood function for a model. The Akaike Information Criterion and the
Bayesian Information Criterion are then respectively defined as

AIC = −2l(θ̂ML) + 2k, (1)

BIC = −2l(θ̂ML) + k log(T ). (2)

The AIC and BIC are information criteria (goodness of fit measures) for likelihood-based
model selection. They combine the likelihood function evaluated at the likelihood value
estimates with a penalty term. For the AIC the penalty term is solely a function of
the model complexity, i.e. the number of parameters estimated in the model. For the
BIC the penalty term is a combination of model complexity and the sample size. Since
log(T ) ≥ 2 for T ≥ 8 the BIC penalizes for model complexity more distinctly in general.
The penalty term corrects for the bias that occurs by using the same data twice (Held
& Sabanés Bové, 2014, page 226); On the one hand to calculate the estimates and, on
the other hand, to calculate the log likelihood. AIC and BIC are negatively oriented
and thus the model with the minimum value is chosen to be the best model fit. Note
that for identical values of the maximized log likelihood functions (as well as identical
sample sizes for the BIC) the model with less parameters is chosen.
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For an AR(c) model k = c + 1. The order of the AR(c) model is determined by the
lowest value of the given information criterion.

2.3 Conditional heteroscedastic models

In this section models for the purpose of modeling volatility of financial returns will be
presented, models referred to as conditional heteroscedastic models. One thing to bare
in mind about volatility is that it is not directly observable from return data since there
are a limited number of observed returns. Hence, the volatility is estimated using the
conditional standard deviation of the underlying asset return.

The basic idea of conditional heteroscedastic models is that even though the financial
time series {rt} is serially uncorrelated (or show minor serial correlations of lower order)
these models capture and make use of other dependencies in the time series. To under-
stand these dependencies and the usefulness of the volatility models and its applications,
some empirical observations from financial time series will be covered before the models
employed in this thesis are introduced.

2.3.1 Stylized facts of asset returns

The theory in this subsection is from Francq & Zaköıan (2010, section 1.3).

The analysis of financial time series is a non-trivial problem. This is partly due to
the spectra of different types of financial time series data (stocks, exchange rates, in-
terest rates etc.) which in turn can be analyzed using different frequencies (seconds,
minutes, hours, days, weeks, months etc.). The complexity is, however, mainly due to
some statistical regularities in the financial time series, known in the financial literature
as stylized facts. These stylized facts appears to be common in many financial time se-
ries and often come in various shapes depending on the different types and frequencies
of the financial time series. The following properties that are addressed appears to be
universal to most daily financial time series. Most of them are the ones that this thesis
will depend upon and demonstrate during the analysis.

(i) Non-stationary price series and weakly stationary return series. In general, price
moves are similar to a random walk without intercept. This is remedied by using
price variations, i.e. log returns.

(ii) Non-existent or small autocorrelations in the return series. The log return series
contains small or no autocorrelations. In other words, {rt} is serially uncorrelated
which means it is close to a white noise series.

(iii) Autocorrelations in squared and absolute return series. Squared and absolute re-
turn series, {r2

t } and {|rt|}, contains strong autocorrelations.

(iv) Volatility clustering. Larger values of |rt| and r2
t tends to appear in clusters, i.e.

periods of high fluctuations are followed by periods of low fluctuations and vice

10



versa. It is a recurring phenomenon, however, it does not occur in a periodic
fashion. This contradicts the assumption of a homoscedastic marginal distribution
for rt.

(v) Fat-tailed distributions. Empirical distributions of daily returns generally does
not resemble the normal distribution. They typically display thicker tails and a
higher peak around the mean, i.e. they are leptokurtic. When the frequency of the
data decrease, i.e. when the horizon for the calculated return increases (e.g. when
monthly returns are used), the leptokurticity tend to disappear and the empirical
distribution gets closer to the normal distribution.

(vi) Leverage effect. Refers to the asymmetry in responses to negative returns vs.
positive returns. Negative returns tends to be followed by an increased volatility
by a larger factor than positive returns of the same magnitude.

2.3.2 The structure of a linear time series model

To get to the volatility process from {rt} the mean and variance of {rt} at time t are
firstly defined by conditioning on the information set available up to time t−1, denoted
Ft−1. Thus,

µt = E[rt|Ft−1], σ2
t = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1)]. (3)

Further, {rt} can be split into two parts to get the linear form

rt = µt + at, (4)

where µt and at are the mean equation and the innovation respectively. The innovation
at will be subject for a volatility model. Combining (3) and (4), the volatility equation

σ2
t = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1] = E[(at)

2|Ft−1] = V ar(at|Ft−1),

is obtained. It is the evolution through time of the volatility equation that the conditional
heteroscedastic models in this thesis are focused on. Notice that the volatility equation
suggests that the volatility is determined by at. With the stylized facts in mind and
when the mean is accounted for, the innovations squared dittos should now show strong
autocorrelations (hence the term conditional heteroscedastic). This is also known as the
ARCH effects. As shall be seen, the conditional heteroscedastic models in this thesis
will be governed by these effects.

2.3.3 ARCH models

The Autoregressive Conditional Heteroscedastic (ARCH) model was introduced by Engle
(1982). The idea is that the shock at of an asset return is serially uncorrelated but
dependent of its own squared lagged values {a2

t−1}mt=1. The ARCH(m) model is defined
as

at = σtεt, σ2
t = α0 + α1a

2
t−1 + ...+ αma

2
t−m, (5)
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where α0 > 0, αi ≥ 0 for i > 0 and {εt}Tt=1 is an i.i.d. sequence of random variables
with mean zero and unit variance. In practice, εt is often assumed to follow a standard
normal or a standardized t(ν)-distribution with ν degrees of freedom.

The ARCH model allows the conditional variance to change over time as a function
of past squared innovations. Notice that larger past squared shocks a2

t−1 imply a larger
conditional variance σ2

t and thus a larger innovation at. This allows for the model to
capture the empirically indicated volatility clustering observed in financial returns. The
ARCH model is intuitive and straightforward, however, it often requires a lot of param-
eters to obtain a model that properly captures the underlying heteroscedastic process of
a financial asset return.

If ARCH effects are evident, when the mean equation is specified or accounted for,
then the PACF of at as well as AIC or BIC can be used to determine the ARCH order.

2.3.4 GARCH models

It often requires many parameters in the ARCH model to be able to describe the volatility
process of an asset return properly. Hence, a more parsimonious and tractable model is
desired. The Generalised Autoregressive Conditional Heteroscedastic (GARCH) model
is a useful extension of the ARCH model, proposed by Bollerslev (1986). The model
does not only incorporates lagged squared innovations a2

t−i but also lagged conditional
variances σ2

t−j . The GARCH(m, s) model are defined as of Bollerslev (1986)

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j ,

where {εt}Tt=1 again is an i.i.d. sequence of random variables with mean zero and unit
variance, s ≥ 0, m > 0, α0 > 0, αi ≥ 0 for i = {1, ...,m}, βj ≥ 0 for j = {1, ..., s}
and

∑max(m,s)
i=1 (αi + βi) < 1. The latter ensures that the unconditional variance of at is

finite. In practice, εt is often (and in this thesis) assumed to follow a standard normal or
a standardized t(ν)-distribution with ν degrees of freedom. Notice that both the ARCH
model and the GARCH model are unable to capture the leverage effect.

The simplest GARCH model, and the one which will be used in this thesis, is the
GARCH(1,1) model. The conditional variance of at will then have the form

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1.

The 1-step-ahead forecast, σ2
t+1, using a GARCH(1,1) model are given by

σ2
t+1 = α0 + α1a

2
t + β1σ

2
t ,

where at and σ2
t are known at time t. This prediction can then be used to form a

prediction interval by computing an approximate prediction interval for rt+1, called

12



Wald confidence interval. Note that, to avoid confusion between the time indexing and
the t-distribution, the time indexing for this particular definition and until the next line
break is denoted by h instead of t. The limits of an approximate γ · 100% confidence
interval for rh+1 are given by

PIh+1(γ) =

 µ± z 1+γ
2
σh+1 for εh ∼ N(0,1)

µ± q 1+γ
2

(ν)σh+1 for εh ∼ t(0, 1, ν)
, (6)

where z 1+γ
2

and q 1+γ
2

(ν) are the γ · 100% percentiles of the standard normal distribution

and the standardized t(ν)-distribution with ν degrees of freedom respectively (Held &
Sabanés Bové, 2014, chapter 2). The t(ν)-distribution with ν degrees of freedom will
henceforth be denoted t instead of t(ν). Note that E[eh] = 0 and Var(eh) = 1 for both the
normal and the t-distribution. Hence, they are and will be referred to as the standard
normal and the standardized t-distribution throughout this thesis.

Given the information set Ft−1 available at time t, at is conditionally independent (Tsay,
2012, page 15) for all t. The conditional likelihood for {at} is then given by

L(θ,FT−1|a1, a2, ..., aT ) = f(a1, a2, ..., aT |θ,FT−1) =

T∏
t=1

f(at|θ,Ft−1).

The GARCH models in this thesis will be estimated using Maximum Likelihood Estimation,
see Appendix B for more information.

2.3.5 Building a volatility model

Building a volatility model consists of three basic steps.

1. Specify a mean equation. If serial dependence is evident in {rt}, remove the linear
dependence on past returns, for example by applying an AR model. If no serial
dependence is present, building a mean equation amounts to removing the sample
mean of {rt} if it is significantly different from zero.

2. Check for conditional heteroscedasticity. Check if it exist an underlying het-
eroscedastic process, i.e. test the innovations {at} for ARCH effects. If ARCH
effects are evident, specify a volatility equation for the innovations and estimate
the mean and volatility equations jointly.

3. Check the fitted volatility model. Check significance of the parameters in the model
and if {εt}, the series of standardized innovations, seems to be a white noise series
as assumed by the volatility model.

13



2.4 Forecasting evaluation and backtesting

The theory in this subsection is from Christoffersen (2011, chapter 13) if not stated
otherwise.

Backtesting is used to investigate the accuracy of the predictions from a model and
can be seen as a final step of a diagnostics check of a model. The backtesting in this
thesis are concerned with the fractions of violations of the interval forecasts and the
independence of these violations. Furthermore, the entire density forecasts as well as
the tails of the density forecasts will be evaluated.

2.4.1 Backtesting violations

Considering a time series with predictions and the corresponding actual returns, the ”hit
sequence” of violations can be defined as

Ht+1(γ)


1, if r t+1 < U(γ)t+1

-1, if r t+1 > L(γ)t+1

0, else

, (7)

where U(γ)t+1 and L(γ)t+1 are the upper and lower limits of the γ · 100% prediction
interval PIt+1(γ) from Equation (6) respectively.

In other words, the hit sequence returns 1 on a day when the actual return is greater
than the upper limit of the prediction interval and -1 on a day when the actual return is
below the lower limit of the prediction interval. If the prediction interval is not violated,
i.e. if the return is covered by the prediction interval the hit sequence returns 0. It
will result in the series {Ht+1}nt=1 across n days of predictions that contains information
of what kind of violations and when they occurred. This trinary (with three possible
values) series will be the basis of our tests for Unconditional Coverage, Independence,
Conditional Coverage and serial dependence.

The idea is that given that the model is perfect, one should not be able to predict
when or how the violations occur, i.e. the hit sequence should be unpredictable and
distributed independently over time. If not, this information could be incorporated into
a new, better model.

2.4.2 Unconditional Coverage

The Unconditional Coverage test is concerned with the fractions of violations of the
interval forecasts. This can be represented by the first-order Markov chain transition
probability matrix

Π0 =

p1 1− p1 − p-1 p-1

p1 1− p1 − p-1 p-1

p1 1− p1 − p-1 p-1

 ,
14



where p1 and p-1 are the fractions of observations over and below the γ ·100% prediction
interval respectively and where 1−p1−p-1 = p0 is the fraction of observations within the
γ · 100% prediction interval. The first-order property refers to the fact that the outcome
at time t only depends on day t− 1. The null hypothesis to be tested can be formulated
as

H0 : P (Ht+1 = 1) = P (Ht+1 = −1) = p.

The likelihood function under the null can be written as

L(p) = pT1(1− p− p)T0pT-1 = pT1+T-1(1− 2p)T0 ,

where T1, T0 and T-1 are the number of 1s, 0s and -1s in the hit sequence. The likelihood
function under the alternative hypothesis can be written as

L(Π0) = pT11 (1− p1 − p-1)T0pT-1-1 ,

where the maximum likelihood estimates are given by

p̂1 =
T1

T1 + T-1 + T0
and p̂-1 =

T-1

T1 + T-1 + T0
.

The null hypothesis is tested using the likelihood ratio

Luc = −2log

(
L(p)

L(Π̂0)

)
= −2log

(
pT1(1− p− p)T0pT-1

p̂T11 (1− p̂1 + p̂-1)T0 p̂T-1-1

)
asym.∼ χ2(d− 1) = χ2(2),

where d is the number of possible states. The decision rule is to reject the null hypothesis
if Luc > χ2

α(d − 1), where α is the chosen significance level and χ2
α(d − 1) denotes the

100(1-α)th percentile of a χ2-distribution with d− 1 degrees of freedom.

2.4.3 Independence

The Independence test of Christoffersen (1998) is concerned with the fact that violations
might occur in clusters. If the forecaster know that a violation today changes the prob-
ability for a violation tomorrow that should be incorporated into a new, better model,
regardless of the unconditional coverage being correct on average. It is consequently
desirable to test the null hypothesis of independent violations in order to reject models
that imply clustered violations in time. The null hypothesis can be formulated as

H0 : Ht ⊥⊥ Ht+1, for all t.

Assuming that the hit sequence is dependent over time it can be described by a first-order
Markov chain represented by the transition probability matrix

Π2 =

π1,1 1− π1,1 − π1,-1 π1,-1

π0,1 1− π0,1 − π0,-1 π0,-1

π-1,1 1− π-1,1 − π-1,-1 π-1,-1

 ,
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where πi,j = P (Ht+1 = j|Ht = i), i, j ∈ {1, -1, 0} are the transition probabilities for a j
following an i. The corresponding likelihood function can be written as

L(Π2) = π
T1,1
1,1 (1− π1,1 − π1,-1)T1,1+T1,-1π

T1,-1
1,-1

× πT0,10,1 (1− π0,1 − π0,-1)T0,1+T0,-1π
T0,-1
0,-1

× πT-1,1-1,1 (1− π-1,1 − π-1,-1)T-1,1+T-1,-1π
T-1,-1
-1,-1 ,

where Ti,j , i, j ∈ {1, -1, 0} are the number of transitions to a j from an i.

On the other hand, if the hit sequence is independent over time then a violation at
time t+1 does not depend on whether it occurred a violation at time t. This means that
π1,1 = π0,1 = π-1,1 = π1 as well as π1,-1 = π0,-1 = π-1,-1 = π-1. The transition probability
matrix under the null is then given by

Π1 =

π1 1− π1 − π-1 π-1

π1 1− π1 − π-1 π-1

π1 1− π1 − π-1 π-1

 ,
and the corresponding likelihood function can be written as

L(Π1) = πT11 (1− π1 − π-1)T1+T-1πT-1-1 .

Note that under the null hypothesis the probability transition matrix is homogeneous.
In other words, the probability distribution for the next state is independent of the cur-
rent state. The probability transition matrix under the alternative hypothesis is on the
other hand non-homogeneous. In other words, the probability distribution for the next
state is dependent on the current state.

The null is tested using the likelihood ratio

LRind = −2log

(
L(Π̂1)

L(Π̂2)

)
asym.∼ χ2((d− 1)2) = χ2(4).

2.4.4 Conditional Coverage

The Conditional Coverage test simultaneously tests if the fractions of violations are
correct on average and that they are independent. This is done using the likelihood
ratio

LRcc = −2 log

[
L(p)

L(Π̂1)

]
asym.∼ χ2(d(d− 1)) = χ2(6).

As seen, the LRcc uses the likelihood function from the null hypothesis in Unconditional
Coverage test and the likelihood function from the alternative hypothesis in Indepen-
dence test.
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Notice the relationships, regarding the promised fractions, with the Unconditional Cov-
erage test and the Independence test. The Unconditional Coverage test is concerned
with the fractions on average and the Independence test is concerned with the fractions
being independent from time t to time t + 1. The Conditional Coverage is concerned
with the promised fractions on average from time t to time t + 1. This means that the
Unconditional Coverage test can be strongly rejected without the Conditional Coverage
test being rejected.

2.4.5 Monte Carlo simulated p-values

The likelihood ratio statistics in the previous sections are based on asymptotic assump-
tions. However, this thesis is faced with finite data samples and typically do not have
many violations. The violations are the informative observations. Consequently, the
obtained critical values and p-values from the χ2-distribution can be highly misleading.
This thesis will therefore rely on a Monte Carlo technique presented by Dufour (2006).
These simulated p-values will be obtained for the tests in sections 2.4.2, 2.4.3 and 2.4.4.

The idea is to generate artificial test statistics and calculate how many times these
are larger than the original test statistic. To construct artificial test statistics i.i.d.
Bernoulli(p) random variables will be generated representing the fractions of violations,
where p is the corresponding fraction of violations under the given hypothesis. The
sample size used will be the data sample at hand, i.e. the length of the hit sequence.
This process will be done 9999 times in total. The p-value is then given by

p-value =
1

10000

(
1 +

9999∑
i=1

1(LRi > LR0)

)
,

where LRi is the ith artificial test statistic, LR0 is the original test statistic and 1 is
an indicator variable. The indicator variable returns 1 if the artificial test statistics is
greater than the original test statistic and zero otherwise.

The simulated p-value is the probability of observing a likelihood ratio from a ran-
dom series of likelihood ratios, simulated under the null, that is greater than the actual
observed likelihood ratio.

2.4.6 Higher-order dependencies

The Independence test in section 2.4.3 only test dependence between two adjacent time
periods. To test for higher-order dependence in the hit sequence one can use the ACF
and the Ljung-Box test specified in section 2.2.2 and 2.2.3 (Christoffersen, 2012, chapter
13).
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2.4.7 Backtesting density forecasts

The preceding methods for interval tests evaluate whether the series of γ · 100% predic-
tion intervals corresponding to the series of density forecasts are correctly conditionally
calibrated (Diebold et al, 1997, page 3). Correct conditional calibrated density fore-
casts corresponds to the simultaneous correct calibration of all possible interval forecasts
(Diebold et al, 1997). Hence, a density forecast provides a complete description of the
uncertainty of the predictions (Tay & Wallis, 2000).

”A density forecast of the realization of a random variable at some future time is an
estimate of the probability distribution of the possible future values of that variable.”

– Kay & Wallis (2000)

A volatility model at time t produces a cumulative distribution forecast for the re-
turn at time t + 1, the predictive distribution Ft(·). This will result in a sequence of n
density forecasts through time, {Ft(·)}nt=1. The task is to determine whether the true
data generating process {F t(·)} and the sequence of density forecasts available are equal.
Since the true data generating process is never observed, even after the fact, this is a
daunting task. However, these are related through the probability integral transform, the
key for backtesting density forecasts that dates back to Rosenblatt (1952).

The probability integral transform is the value of the predictive distribution Ft(y) =
Pt(Y ≤ y) at the realized value y (Held & Sabanés Bové, 2014, page 309). The realized
value y has a cumulative distribution function F (·) if y = F−1(U) where U ∼ U(0,1). It
is then implied that F (y) ∼ U(0,1) (Held & Sabanés Bové, 2014, page 309-310).

The idea is that if the predictive distribution Ft(·) is correctly specified it should not be
possible to predict the model’s probability of falling below the actual return. That is,
if the correct risk model is used to forecast the return distribution. Hence, the trans-
form probability Ft

( at+1

σt+1

)
should be U(0, 1) for all t. The null hypothesis to be tested is

accordingly

H0 : Ft

(at+1

σt+1

)
∼ U(0, 1), for all t .

However informal, displaying Ft
( at+1

σt+1

)
in a histogram is a commonly used method to

check calibration of the predictions. Perfectly calibrated predictions will by definition
follow a uniform distribution. Even though visual aids are seen as informal in the context
histograms and QQ-plots can provide more information and guidance as to why when
rejection occurs. A test statistic and its corresponding p-value is rather nonconstructive
(Diebold et al, 1997).

For a formal check, some kind of measure and test of discrepancy between the realized
and the hypothesized distributions is needed. For this purpose the Kolmogorov-Smirnov
One Sample Test can be used.
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2.4.8 Kolmogorov-Smirnov One Sample Test

The theory in this subsection is from Conover (1999, chapter 6).

The Kolmogorov-Smirnov One Sample Test is a nonparametric goodness-of-fit test used
to see if an i.i.d. random sample X1, X2, ..., Xn of size n comes from a hypothesized
distribution, call it F0(x). This can be tested by comparing the empirical distribution
function of the i.i.d. random sample and F0(x). It is required that F0(x) is continuous
(Pratt & Gibbons, 1981) and completely specified, i.e. has no unknown parameters. The
empirical distribution function is an estimate of the unknown distribution function F (x)
and defined as

Sn(x) =
1

n

n∑
i=1

1(Xi ≤ x), −∞ < x <∞,

where 1 is an indicator variable that returns 1 if Xi is less than or equal to x and zero
otherwise. In other words, Sn(x) is the fraction of Xis that are less than or equal to x.
The test is formally specified as

H0 : F 0(x) = F (x), for all x,
Ha : F 0(x) 6= F (x), for at least one x,

and the test statistic is defined as

Dn = sup
x
|F0(x)− Sn(x)|.

As seen, the test uses the maximum vertical distance between the two distribution
functions as a measure of discrepancy, i.e. the maximum vertical distance between F0(x)
and Sn(x). This two-sided test is consistent against all differences between the true
and the hypothesized distribution functions, F (x) and F0(x). The null is rejected if Dn

exceeds the tabulated critical value for a given sample size n and significance level α.
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3 Methodology

3.1 Data

The data for the purpose of the analysis in this thesis is the daily closing prices of the
Euro/US Dollar FX Spot Rate from 2 January 1998 to 1 January 2018. It has been
collected from the database Eikon provided by Thomson Reuters. 5214 trading days
are provided which gives 5213 log returns. Dividing the 5213 observations by 20 years
means approximately 261 log returns per year. Hence, there are 521 log returns for two
years, 782 log returns for three years etc.

3.2 Modeling

Predictions will be evaluated from the following two models:

• GARCH(1,1) with conditional normal distributed innovations.
Henceforth denoted GARCH(1,1)-N.

• GARCH(1,1) with conditional t(ν)-distributed innovations.
Henceforth denoted GARCH(1,1)-t.

Rolling window estimations are employed to compute 1-step-ahead predictions, σ2
t+1, in

every step. For a one year estimation window the method can be concretized as follows:

1. Fit and estimate a GARCH(1,1) model based on the observations from day 1 to
261 and make the prediction σ2

262.

2. Fit and estimate a GARCH(1,1) model based on the observations from day 2 to
262 and make the prediction σ2

263.

...

5211. Fit and estimate a GARCH(1,1) model based on the observations from day 4952
to 5212 and make the prediction σ2

5213.

For each model this process are conducted for rolling windows using 1,2,...,10 years
length. Hence, the procedure will be performed 20 times in total. The resulting predic-
tions are then object for backtesting.

3.3 Data processing

All analysis for the purpose of this thesis are done using RStudio. RStudio is an open
source data analysis software. For the sake of estimations the functions ugarchfit and
ugarchspec from the package rugarch are used. The Kolmogorov-Smirnov tests are done
using the function ks.test from the package stats. All other modeling and program-
ming for the purpose of the analysis except for the functions for visualizations (plots,
histograms and QQ-plots) are works by the author.
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3.4 Scientific approach

This thesis will use a quantitative approach governed by deductive reasoning and a pos-
itivist view, i.e. hypotheses are created and can be answered by the quantitative models
with a value free and objective standpoint (Bryman & Bell, 2011). These hypotheses
may or may not change the view of current understandings of the research field (Bryman
& Bell, 2011). The vantage point is the theoretical basis from existing research, which
are replicated and tested for a new data set. In other words, we are taking on an objec-
tivist view where reality or existing research are not affected by our actions or opinions.
Furthermore, the theoretical ground from existing research are means to try to mimic
and explain the true underlying process of time series and can only be interpreted as
just that.
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4 Analysis

In this section the time series analysis of the data we will conducted based on the pre-
sented theoretical framework. The data at hand will be analyzed and the volatility
models will be built and validated. The rolling window procedure will be employed and
prediction intervals will be constructed.

Notice that section 4.1 investigates the unconditional distribution of rt. In other words,
rt are assumed to be i.i.d. It will be seen in Figure 3 that this is not the case.

4.1 Descriptive analysis

From Figure 1 some of the empirical regularities mentioned in section 2.3.1 can be recog-
nized. The price series looks like something of a random walk and the log returns seems
to be weakly stationary. Also, the log returns and the squared log returns shows signs
of volatility clustering; periods of higher fluctuations seems to be followed by periods
of low fluctuations, and vice versa. Furthermore, this seems to occur in a recurrent yet
aperiodic manner. The preceding indicates that a volatility model might be appropriate
to apply.
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Figure 1: Time plot of daily (a) Euro/US Dollar FX Spot Rates, (b) log returns and (c) squared log returns
from 2 January 1998 to 1 January 2018.

From the sample mean, sample skewness and sample excess kurtosis in Table 1 it can be
concluded that the log returns have a very small mean, are almost perfectly symmetric
and have fatter tails than a normal distribution suggests. The latter indicates that
for example the t-distribution would fit the log returns better compared to a normal
distribution.

Mean Standard deviation Skewness Kurtosis Excess kurtosis

-0.0000176 0.0062292 -0.0607749 4.546398 1.546398

Table 1: Descriptive statistics for the log returns, rt.

To investigate the distribution of the log returns further its empirical quantiles are com-
pared to those of the normal distribution and those of a t-distribution. The degrees of
freedom for the t-distribution are empirically often chosen between 4 and 8 (Tsay, 2012,
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page 121). Because of the observed kurtosis for the log returns these are compared to
the theoretical quantiles of a t-distribution with 8 degrees of freedom.

The QQ-plots in Figure 2 illustrates that the normal distribution does not fit very
well to the log returns as the empirical quantiles wanders off from the theoretical dittos
in the tails. However, the fit of the t-distribution with 8 degrees of freedom looks more
satisfactory as the empirical quantiles for the log returns seems to follow the theoretical
quantiles pretty good.

Figure 2: QQ-plots for the log returns against (a) the normal distribution and (b) the t-distribution with 8
degrees of freedom.

The autocorrelations and serial dependencies in the data, with help from ACF and PACF
plots, are displayed in Figure 3. From the ACF plot (a) for {rt} it can be seen that
{rt} is serially uncorrelated. However, as seen in the ACF plots (b) and (c), the squared
log returns and absolute log returns are serially dependent, which was suspected from
Figure 1. This is the basic idea when modeling volatility. Volatility models attempts to
capture this dependency in return series, i.e. {rt} is wanted to be a serially uncorrelated
yet dependent series. Furthermore, the PACF plot suggests a model with at least seven
AR parameters. However, the PACF is ignored at the moment due to the presence of
typical dependencies captured by volatility models.
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Figure 3: Sample ACF and PACF of various functions of daily log returns of the Euro/US Dollar FX Spot Rate
from 2 January 1998 to 1 January 2018: (a) ACF of the log returns, (b) ACF of the squared log returns, (c) ACF
of the absolute log returns and (d) PACF of the squared log returns.

To further solidify the results the Box-Ljung test is performed to test for zero autocor-
relations. The results are presented in Table 2. As suggested by the ACF plots the
Box-Ljung test cannot reject the null hypothesis of zero autocorrelations in the return
series. It also strongly rejects the null for zero autocorrelations in the squared and
absolute return series.

Series Q(m) p-value

{r t} 11.377 0.2507
{| rt |} 582.4 < 2.2e-16
{r2

t } 526.09 < 2.2e-16

Table 2: Ljung-Box test using m ≈ log(5213) for log returns, absolute returns and squared returns.

Remember that {rt} can be split into

rt = µt + at, for all t,

where µt and at is the mean equation and innovations respectively. Since there is no
linear dependence in the past returns the mean equation is just the sample mean. The
last step in specifying a mean equation consists of checking whether the mean from Table
1 is significantly different from zero with a standard t-test. Hence,

H0 : µ = 0 against Ha : µ 6= 0,
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are tested.

t ratio =

∣∣∣∣ µ̂− µs/
√
T

∣∣∣∣ = | − 0.2040603| < |t0.05(T − 1)| = 1.960419,

where µ̂, T and s is the sample mean of {rt}, number of observations in {rt} and the
sample standard deviation of {rt} respectively. Hence, the null is not rejected and the
mean equation is set to zero. This result does not only imply that

rt = at, for all t,

but also that the {at} have been checked for ARCH effects via Figure 3 and Table 2.
The results from Figure 3 and Table 2 valid for {rt} thus also applies to {at}. Hence, it
can be asserted that {at} shows strong ARCH effects and that it exists an underlying
heteroscedastic process.

The PACF plot in Figure 3 can provide guidance in the order determination of a possible
ARCH model. As seen, the PACF cuts off after lag 7, however, it bluntly asserts that
25 out of 37 lags gives a marginal contribution in an applied ARCH model. As men-
tioned earlier the interpretation of the PACF can be somewhat unclear in applications.
However not presented here, it turns out that the AIC and BIC values for fitted ARCH
models unambiguously decreases for models up to more than 40 lags. If possible, one
would rather choose a more parsimonious model.

4.2 Fitting the GARCH(1,1) models

In this section the GARCH(1,1) model

at = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, (8)

will be employed. The εt will be assumed to be i.i.d. standard normal distributed as well
as i.i.d. standard t-distributed. Note that since at = rt then rt = σtεt.

Table 5 shows that all coefficient estimates are highly significant for both distributions.
In other words, the parameters that captures the serial dependence in {a2

t } and {|a|},
the volatility clustering, as well as captures the dependence in {σ2

t }, the lagged condi-
tional variance, are significant for both models. It is also noticed that the coefficients α1

and β1 for both models satisfies the requirement that the sum should be less than one.
Furthermore, the AIC and BIC values suggests that the GARCH(1,1)-t model, albeit
marginally, has a better fit to the data.

Remember that the model assumes that {εt} is a white noise series. The εts’ are es-
timated by the standardized residuals

ãt =
at
σt

=
rt
σt
,
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and can be used for model checking purposes.

Some descriptive statistics for the standardized innovations from the different model
specifications are presented in Table 3 and Table 4. It can be seen that the values are
very similar. The mean values are very close to zero and the standard deviation is
almost one, as suggested by a GARCH model. The values -0.7274564 and -0.7208582
are obtained for the standard normal distributed innovations and the standardized t-
distributed innovations respectively from computing the

t ratio =
µ̂− µ
s/
√
T

for the mean values. The absolute values of these are less than the critical limit 1.96.
Hence, the mean values are not significantly different from zero. Furthermore, the sample
skewness is very low for both the series and the kurtosis for the series are somewhat
greater than the standard normal distribution suggests.

Mean Standard deviation Skewness Kurtosis Excess kurtosis

-0.0099716 0.9987590 -0.0653894 3.7200802 0.7200802

Table 3: Descriptive statistics for the standardized innovations from the GARCH(1,1)-N model.

Mean Standard deviation Skewness Kurtosis Excess kurtosis

-0.0100259 0.9950877 -0.0661156 3.7235701 0.7235701

Table 4: Descriptive statistics for the standardized innovations from the GARCH(1,1)-t model.

By looking at the QQ-plots for the standardized residuals in Figure 4 it can be seen that
the standardized residuals from the GARCH(1,1)-N model follows the theoretical quan-
tiles sufficiently. The standardized residuals from the GARCH(1,1)-t model with the
estimated 10 degrees of freedom seems to follow the theoretical quantiles very satisfac-
tory. Henceforth, it will be assumed that εt are standard normal as well as standardized
t-distributed with ν estimated degrees of freedom when estimating GARCH(1,1) models.
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Figure 4: QQ-plots for the standardized residuals, from the GARCH(1,1) models with respective distribu-
tion assumption, against corresponding theoretical quantiles: (a) the standard normal distribution and (b) the
standardized t-distribution with estimated degrees of freedom.

In Figure 5 it can be seen that there are a few minor serial correlations in {ãt}, {ã2
t },

{|ãt|} for the GARCH(1,1)-t model. The Ljung-Box test, in Table 5, can not reject the
hypotheses for zero autocorrelation for any of the models. Furthermore, the daily time
plots of {ãt} in the bottom right corner of Figure 5 seems to show constant variance.
It does not seem to display any systematic pattern. In conclusion, the standardized
residuals for both models seems to be a white noise series respectively, as wanted.

The corresponding ACF plots and the time series plot for the standardized innova-
tions from the GARCH(1,1)-N model are identical and hence not presented. As seen in
Table 5 the results from the Box-Ljung tests are also the same as for the GARCH(1,1)-t
model.
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GARCH(1,1)-N GARCH(1,1)-t

Coefficient Estimate p-value Estimate p-value

α0 1.418e-07 0.00168 1.267e-07 0.00841
α1 3.609e-02 < 2e-16 3.528e-02 < 2e-16
β1 9.608e-01 < 2e-16 9.623e-01 < 2e-16
ν - - 10 1.84e-14

Information criterion Value Value

AIC -7.438706 -7.451463
BIC -7.434932 -7.446430

Box-Ljung test Statistic p-value Statistic p-value

{at/σt} 10.421 0.3175 10.434 0.3165
{(at/σt)2} 6.8847 0.6491 6.4377 0.6954
{| at/σt|} 8.1833 0.5158 7.9254 0.5417

Table 5: Summary statistics for the GARCH(1,1) models with normal and t-distributed innovations for daily
log returns of the Euro/US Dollar FX Spot Rate from 2 January 1998 to 1 January 2018.

Figure 5: Model checking statistics of the GARCH(1,1) model with t-distributed innovations for daily log returns
of the Euro/US Dollar FX Spot Rate from 2 January 1998 to 1 January 2018. Part (a), (b) and (c) show sample
ACF of the standardized residual series, the squared series and the absolute series respectively. Part (d) is a daily
time plot of the standardized residuals.
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4.3 Forecasting

In this subsection the rolling window estimation will be used to make 1-step-ahead pre-
dictions and to create symmetric prediction intervals.

Since the mean equation for the whole period became zero, this will for simplicity be
assumed for the subperiods that constitute the rolling windows. It is a reasonably as-
sumption to make since most of the subperiods are fairly long in the context (3-10 years).
Because the parameter estimates will be less likely to change for these models, it is im-
plied that the volatility process are assumed to be relatively stationary. For shorter
rolling windows, extreme values have greater impact on the estimates. In other words,
for shorter rolling windows the parameter estimates will be more sensitive and more
likely to change from one subperiod to another.

Since µ are assumed to be zero for all in-sample estimation windows the symmetric
95 % prediction intervals, the Wald confidence intervals (6), at time h will have the form

PIh+1(0.95) =

{
± z 1+0.95

2
σh+1 for εh ∼ N(0,1)

± q 1+0.95
2

(ν)σh+1 for εh ∼ t(0, 1, ν)
. (9)

Note that to avoid confusion between the time indexing and the t-distribution, the time
indexing for this particular definition is denoted by h instead of t.

Figure 6 displays the 95 % prediction intervals for the GARCH(1,1)-N and GARCH(1,1)-
t models for 1 and 10 years in-sample rolling windows respectively. As expected, the
t-distributed based prediction intervals are wider than its normal distributed based dit-
tos. This is due to the fact that the t-distribution assumes more extreme values.
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Figure 6: 95 % prediction intervals of GARCH(1,1) models for daily log returns of the Euro/US Dollar FX
Spot Rate from 2 January 1998 to 1 January 2018. Part (a) shows the log return series and part (b) and (c)
also includes symmetric 95 % prediction intervals from the GARCH(1,1) models using 1 and 10 years rolling
windows respectively. The red and blue lines are prediction intervals using conditionally normal and conditionally
t-distributed innovations respectively.
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5 Results

In this section the GARCH(1,1) models forecasts will be evaluated using different back-
testing methods.

5.1 Backtesting

Backtesting is used to investigate the accuracy of the predictions from a model and can
be seen as a final step of a diagnostics check of a model. The following tests and checks
will be performed:

(i) Unconditional Coverage testing:
- Test the fractions of violations of the interval forecasts.

(ii) Independence testing:
- Test the independence of violations of the interval forecasts.

(iii) Conditional Coverage testing:
- A combined test for correct coverage and independence.

(iv) Higher-Order Dependence testing:
- Test for autocorrelations and serial dependence in the violations.

(v) Entire density forecasts testing:
- Visualize and formally test the entire return distribution.

(vi) Testing density forecasts in the tails:
- Visualize and formally test the tails of the return distribution.

5.1.1 Unconditional Coverage testing

In this subsection the fractions of violations of the interval forecasts will be tested using
the Unconditional Coverage test.

Since 95 % prediction intervals are used, the null hypothesis to be tested is that the
fractions over and below the prediction intervals on average is equal to 2.5 %, i.e.

H0 : p = 0.025.

Figure 7 shows the fractions of violations for all the models. It can be seen that the
GARCH(1,1)-N models have consistently larger fractions of observations outside of the
prediction interval than what is suggested by the null hypothesis. In other words, the
fractions indicate that these models might underestimate the volatility and that a dis-
tribution with more probability mass in the tails might be more suitable.

The GARCH(1,1)-t models have consistently lower fractions of observations outside of
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the prediction interval than suggested by the null hypothesis. These models, which as-
sumes more extreme observations, thus seems to slightly overestimate the volatility. In
other words, the fractions indicate that a distribution with less probability mass in the
tails might be more suitable. The preceding is in line with the findings of Christoffersen
(1998) who found that the GARCH(1,1)-t forecasts is overly cautious.

Given the model specifications, the rolling window length does not seem to matter for
the fractions of violations. In other words, the models seems to perform equally on
average, independent of the rolling window length. Furthermore, the the GARCH(1,1)-
N models are consistently farther off the fractions under the null hypothesis than the
GARCH(1,1)-t.

Figure 7: Fractions of violations.

For a formal test the Unconditional Coverage test presented in section 2.4.2 is performed.
Its corresponding simulated p-values are shown in Figure 8.

It can be seen that the null hypothesis is consistently rejected for the GARCH(1,1)-
N models. Put differently, the GARCH(1,1)-N models significantly underestimates the
volatility in the log returns. These results suggests that the distribution used for the
standardized innovations, the standard normal distribution, contains too few values in
the tails. Consequently, a distribution with more probability mass in tails than the
standard normal distribution would be favourable, all things being equal.

For the GARCH(1,1)-t models the null hypothesis is rejected for the models using a
2, 3 as well as a 4 years rolling window length. This collection of GARCH(1,1)-t models
significantly overestimates the volatility in the log returns. These results suggests that
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the conditional t-distributions used for the innovations contains too much probability
mass in the tails. Put differently, in relation to the 2.5th upper and lower percentiles
of the conditional t-distributions the there are too few observed violations. Conse-
quently, a distribution with less probability mass in the tails than the used conditional
t-distributions would be favourable, all things being equal. For the other rolling window
lengths the test fail to reject the null hypothesis that the fractions of observations over
and below the 95 % prediction interval is equal to 2.5 %. Thus, these models seem to
have 95 % of the predictions inside the 95 % prediction interval as well as 2.5 % above
and below it on average, as wanted. In other words, the used conditional t-distributions
for these models seems to be well specified for the fractions of observations in the upper
and lower 2.5th percentiles as well as the fraction of observations in the middle 95th
percentiles of the return distribution.

Figure 8: Plot of simulated p-values for the Unconditional Coverage tests.

5.1.2 Independence testing

In this subsection the independence of the violations of the interval forecasts will be
tested. It will be done by performing the Independence test presented in section 2.4.3
using first-order Markov chains.

Models that imply that the violations are clustered in time, i.e. dependent, are not
desirable models. These models can be improved by incorporating such structure of de-
pendence. The formal null hypothesis to be tested for this clustering can be formulated
as

H0 : Ht ⊥⊥ Ht+1, for all t,

where H is the violations hit sequence. In other words, if there is a violation at time
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t and the probability for a violation at time t + 1 significantly change, then the null
hypothesis is rejected.

The Independence test is performed and its corresponding simulated p-values are shown
in Figure 9. It can be seen that the null hypothesis of independence between the vi-
olations is not rejected for any model specification or rolling window length. In other
words, the violations of a 95 % prediction interval are not significantly clustered in time
for any model specification or rolling window length. Hence, the probability distribution
for the next state is independent of the current state for all tested models. It means that
there are no evidence of dependence from time t to time t + 1, for all t, that could be
incorporated into the used models. Based on the simulated p-values, the results seem to
be slightly stronger for the GARCH(1,1)-t models in general.

Figure 9: Plot of simulated p-values for the Independence tests.

5.1.3 Conditional Coverage testing

In this subsection the independence of violations and the average number of violations
are tested simultaneously. This is done by using the Conditional Coverage test presented
in section 2.4.4.

The Conditional Coverage test is performed and its corresponding simulated p-values
are shown in Figure 10. It can be seen that the null hypothesis is not rejected for any
model. In other words, tested simultaneously, the violations are independent and the
number of violations are correct on average from time t to time t + 1 for both model
specifications and all rolling window lengths. It means that, given the state at time t,
the probability distribution for the state in time t+1 is independent of the state at time
t and that the probability distribution in fact consists of the promised fractions (0.025,

35



0.95 and 0.025).

Figure 10: Plot of simulated p-values for the Conditional Coverage tests.

Notice the relationships, regarding the promised fractions, with the Unconditional Test
and the Independence test. The Unconditional Coverage test is concerned with the
fractions on average and the Independence test is concerned with the fractions being
independent from time t to time t + 1. The Conditional Coverage test is concerned
with the promised fractions on average from time t to time t + 1. This means that the
Unconditional Coverage test can be strongly rejected without the Conditional Coverage
test being rejected, which is the case for the GARCH(1,1)-N model.

5.1.4 Higher-Order Dependence testing

In this subsection ACFs and the Box-Ljung test will be used to test the violations hit
sequence for autocorrelations/serial dependencies. Several variations of the violations
hit sequence will be considered. To make it perfectly clear, these variations will be
presented and defined one by one together with an illustrative example. The variations
will build upon the definition of the hit sequence in Equation (7) and the example hit
sequence {0, 1, 0,−1, 0}.

• Trinary Hit Sequence. The trinary hit sequence is defined as of Equation (7).
There are three possible outcomes; below, over or inside the prediction interval.
Example: {0, 1, 0,−1, 0}.

• Binary Hit Sequence. The binary hit sequence codes all violations with 1. This
means two possible outcomes; outside or inside the prediction interval.
Example: {0, 1, 0, 1, 0}.
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• Upper Binary Hit Sequence. The upper binary hit sequence is only concerned with
violations over the prediction interval. This means two possible outcomes; over or
not over the prediction interval.
Example: {0, 1, 0, 0, 0}.

• Lower binary hit sequence. The lower binary hit sequence is only concerned with
violations below the prediction interval. This means two possible outcomes; below
or not below the prediction interval.
Example: {0, 0, 0, 1, 0}.

From Figure 11 it can be seen that there are some minor autocorrelations for the
GARCH(1,1)-t model using a 1 year rolling window. However, there are no signifi-
cant autocorrelations for 9 = m ≈ log(n) lags, where n is the length of the hit sequence
in question. This number of lags are used when there is no obvious guidance for a spe-
cific number of lags (Christoffersen, 2012, chapter 3). The ACFs for all the other 76
hit sequences from different model specifications and in-sample lengths does not seem
to contain any significant autocorrelations, with a few exceptions.

For example, for the GARCH(1,1)-t model the trinary hit sequences using 6, 7 and
8 years as rolling window length have one minor significant lag each, lag 6. The binary
hit sequence using 2 years as rolling window length has one minor significant lag at lag
7. An example worth mentioning from the GARCH(1,1)-N models is the model using a
10 years rolling window. Here, the second and the fourth lags are both just significant
for the binary hit sequence.

Due to the extensive amount of hit sequences and plots no more ACF plots than the
ones presented in Figure 11 will be displayed.
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Figure 11: ACF plots for the different violation hit sequences from the GARCH(1,1) model with conditional
t(ν)-distributed innovations using a 1 year rolling window: Part (a) shows the trinary violations hit sequence, (b)
the binary violations hit sequence, (c) the upper binary hit sequence and (d) the lower binary hit sequence.

Figure 12 shows p-values for Box-Ljung tests that test the null hypothesis that the
autocorrelations for lags 1 to lag m are jointly zero. The null is only rejected twice
on a 5 % significance level. It is just rejected for the binary hit sequence from the
GARCH(1,1)-N model using 10 years as rolling window length. This specific sequence
was also noticed from the ACF plots. The null is also just rejected for the trinary hit
sequence from the GARCH(1,1)-t model using 6 years as rolling window length, also
noticed from the ACF-plots. These rejections suggests that the autocorrelations from
lag 1 to lag m are not all zero for these two hit sequences. However, for all the other
model specifications, window lengths and different hit sequences it can be concluded
that the violations seem to be independent and appears to occur in a random fashion.
This is the case since no lag from lag 1 to lag m is not significantly greater than 0 for
the rest of the models, window lengths and hit sequences.
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Figure 12: Plots of p-values of Box-Ljung tests for autocorrelations in the different violation hit sequences. Part
(a) shows p-values associated with the GARCH(1,1) model with conditionally normal distributed innovations.
Part (b) shows p-values associated with the GARCH(1,1) model with conditionally t-distributed innovations.

As seen, there are some minor autocorrelations in a few violations hit sequences. How-
ever, there are no obvious signs of serial dependence in the violations hit sequences.
On the whole, no evidence is provided that the models used have problems with serial
dependencies in the violations hit sequences. Thus, it can be concluded that there is
no need for incorporating any serial dependence in the violations hit sequences in the
models used.

5.1.5 Entire density forecasts testing

In this subsection the entire forecast distribution will be evaluated with help from his-
tograms and QQ-plots as well as the Kolmogorov-Smirnov test. It will be investigated
whether the sequence of density forecasts is correctly conditionally calibrated.

For a given GARCH(1,1) model and in-sample length in the rolling window estima-
tion the model produce a cumulative distribution forecast. This is called the predictive
distribution, Ft(·), for day t + 1. These cumulative distribution forecasts amounts to a
sequence of conditionally calibrated density forecasts, also referred to as the transform
probabilities. Remember that µt = 0 which implies that at = rt. Through the predic-
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tive distribution, or more specifically Ft
( at+1

σt+1

)
= Ft

( rt+1

σt+1

)
, the model’s probability of

observing a return below or equal to the actual return is obtained.

Given that the assumed model is correctly specified and that the conditional distribution
for the innovations used is correctly specified for predicting the return distribution, one
should not be able to predict the model’s probability of falling below or equal the actual
return, Christoffersen (2012, chapter 13). In other words, it should not be possible to
predict the value of Ft

( rt+1

σt+1

)
which consequently should be i.i.d. Uniform(0,1) over time.

Figure 13 provides a visual diagnostic for the sequence of density forecasts in histogram
and QQ-plots. Even though visual aids are seen as informal in the context, histograms
and QQ-plots can provide more information and guidance as to why when rejection oc-
curs. A test statistic and its corresponding p-value is rather nonconstructive (Diebold
et al, 1997).

For example, let the innovations follow conditional t-distributions. If a model with
conditional normal distributed innovations is used one would expect the histogram to
have too many observations close to 0, 1 and 0.5 as well as too few elsewhere (Christof-
fersen, 2012, chapter 13). This is the case when the data contain more observations in
the tails and around 0 than the conditional normal distribution would suggest.

The transform probabilities from the GARCH(1,1)-N and GARCH(1,1)-t models us-
ing 1 year rolling windows are presented in histograms and QQ-plots in Figure 13. As
can be seen in histogram (a) and histogram (c) there seems to be slightly more observa-
tions close to 0.5 as well as 0 and 1. It is more obvious in the case of the GARCH(1,1)-N
model though. This suggests that a model with innovations coming from a distribution
with fatter tails and with more observations around the mean would be needed for the
histograms to look exactly like a uniform distribution, given the amount of predictions.
It can also be noted that there seems to be more observations in the two lower quartiles
than in the two upper quartiles for both model specifications. Put differently, the distri-
bution of the cumulative distributions forecasts seems to be slightly skewed to the left
for both model specifications. This was also seen for the standardized innovations from
the GARCH(1,1) fits on the entire data sample in Table 3 and Table 4. The QQ-plots
shows that the theoretical quantiles of the standard uniform distribution seem to fit the
quantiles of the transform probabilities satisfactory for both model specifications.

Histogram (a) looks farther away from a uniform distribution than histogram (c) and
in QQ-plot (b) the empirical quantiles fits the theoretical quantiles less good than in
QQ-plot (d). Put differently, the transform probabilities from using the conditional
predictive t-distributions follows the theoretical quantiles of the standard uniform dis-
tribution more closely. The preceding suggests that the GARCH(1,1)-t model seems to
produce better predictions of the return distribution than the GARCH(1,1)-N model.
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In conclusion, histogram (a) does not obviously look like a uniform distribution. It
contains slightly more observations in the center and in the tails of the distribution.
The QQ-plots displays a satisfactory match between empirical and theoretical quan-
tiles. It seems that the conditional distributions assumed for the innovations in the
GARCH(1,1)-N model not obviously are correct conditionally specified for capturing
the entire return distribution. Histogram (b) looks more uniformly distributed. It do
not obviously deviate from the straight line of the uniform distribution. The QQ-plots
displays a satisfactory match between empirical and theoretical quantiles. It seems that
the conditional distributions assumed for the innovations in the GARCH(1,1)-t model
are correct conditionally specified for capturing the entire return distribution.

Hence, the predictive t-distributions seems to be slightly better conditionally calibrated
than the normal distributions for predicting the return distribution. It turns out that the
histograms and QQ-plots are similar for all the other models. Due to the amount of other
models and the similarity with the ones already displayed, the remaining histograms and
QQ-plots are not presented in this thesis.

Figure 13: Pairs of histogram and QQ-plots for the distribution of the cumulative distribution forecasts, i.e.
the probabilities from

rt+1

σt+1
being evaluated in the standard normal and standardized t-distribution functions

respectively. The pair (a)-(b) and (c)-(d) are from the GARCH(1,1) model using 1 year rolling windows with
conditional normal and conditional t-distributed innovations respectively.

Histogram and QQ-plots in all its glory, however they are not proper formal statistical
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tests. To formally test the null hypothesis

H0 : Ft

( rt+1

σt+1

)
∼ Uniform(0,1), for all t,

Kolmogorov-Smirnov tests presented in section 2.4.8 are performed for all the 20 models.
The p-values are plotted in Figure 14. The null hypothesis is only rejected, on a 5 %
significance level, for the GARCH(1,1)-N model with an in-sample data length of 3 and 4
years. For all the other model specifications and window lengths the null hypothesis that
the sample

{
Ft(

rt+1

σt+1
)
}

comes from the hypothesized U(0,1)-distribution is not rejected.

This means that the null hypothesis is never rejected for the GARCH(1,1)-t model
specification. Furthermore, the p-values for the GARCH(1,1)-t are consistently higher
than for the GARCH(1,1)-N counterparts. The p-values from the Kolmogorov-Smirnov
tests thus indicates that the predictive t-distributions are better conditionally calibrated
than the predictive normal distributions for predicting the return distribution. This was
also indicated by the histograms and QQ-plots in Figure 13, as well as in the ones that
were omitted. Notice that the null hypothesis for all the GARCH(1,1)-N models would
be rejected on a 10 % significance level and that still no GARCH(1,1)-t model would be
rejected.

Figure 14: Plot of p-values for Kolmogorov-Smirnov tests for the entire return distribution.

Remember that the Kolmogorov-Smirnov test uses the maximum vertical distance be-
tween the hypothesized distribution and the empirical distribution functions. Moreover,
both the empirical and hypothesized cumulative distribution functions converges to 0
and 1. Hence, the Kolmogorov-Smirnov test tends to be more sensitive near the center
of the distribution by definition. The test is in other words more sensitive to skewness.
Despite the slight skewness observerd in the histograms in Figure 13 the null hypotheses
for the GARCH(1,1)-t models were not rejected. Regarding the GARCH(1,1)-N models
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all the p-values are close to or below the significance level. As mentioned, there are
more observations in the tails and near the center of the distribution than suggested by
the standard normal distribution. In combination with the slight skewness observed this
might help to explain the low p-values. In other words, the preceding seems to be the
reasons that a conditional normal distribution are the worse alternative for predicting
the volatility.

5.1.6 Testing the tails of the density forecasts

In this subsection the tails of the distribution of the transform probabilities are of in-
terest. The tails will be checked with help from histograms and QQ-plots as well as
formally tested with the Kolmogorov-Smirnov test.

The Unconditional Coverage test performed is only concerned with the fractions of ob-
servations in comparison to some specified percentiles. It does not say anything about
the distribution within some specified percentiles of the distribution of the observations.
Furthermore, testing the entire distribution of the transform probabilities may lead to
rejecting a model that capture the tails of the distribution well but not capture the rest
of the distribution well.

In applications, the ability to capture the tails of the sequence of the density fore-
casts is usually what one is really interested in. Consequently, it is of great interest to
investigate whether the distributions assumed for the innovations used in the models are
well specified for predicting the tails of the return distribution.

To test whether the tails of
{
Ft

(
rt+1

σt+1

)}
are Uniform(0,1) these tails first need to be

rescaled. Let the rescaled cumulative distribution forecast of the lower and upper tails
be denoted by FLt (·) and FUt (·). Let these rescaled density forecasts of the lower and
upper tails be defined as

FLt

(
rt+1

σt+1

)
=

{
Ft
( rt+1

σt+1

)(
1
λL

)
if Ft

( rt+1

σt+1

)
< λL

Not defined else
,

where λL is the lower λth percentile of
{
Ft

(
rt+1

σt+1

)}
, and

FUt

(
rt+1

σt+1

)
=

{
1−

(
1− Ft

( rt+1

σt+1

))(
1
λU

)
if Ft

( rt+1

σt+1

)
> λU

Not defined else
,

where λU is the upper λth percentile of
{
Ft

(
rt+1

σt+1

)}
.

For example, if λ is chosen to be 5 then the upper and lower 5th percentiles of the
return distribution will be tested.
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The null hypotheses

H0 : FLt
( rt+1

σt+1

)
∼ Uniform(0,1), for all t,

H0 : FUt
( rt+1

σt+1

)
∼ Uniform(0,1), for all t,

can then be tested the same way the entire return density was tested.

When talking about the distribution of something stochastic the amount of data is
of great importance. However, the number of predictions in this thesis are limited. In
order for the histograms and QQ-plots to be somewhat meaningful for the tails of the
density forecasts the tests will look at the 5th upper and lower percentiles of the trans-
form probability distributions. These tails will have 124 observations at least and 248
observations at the most depending on the rolling window length.

The tails, the upper and lower 5th percentiles, of the sequence of cumulative distribution
forecasts from the GARCH(1,1)-t model using 1 year rolling windows are presented in
histograms and QQ-plots in Figure 15. Due to the extensive amount of histograms and
QQ-plots in total, the histograms and QQ-plots for the rest of the models are commented
but not displayed in the thesis. Histogram (a) for the left tail does not clearly resemble
the shape of a uniform distribution. Histogram (b) is somewhat similar to a uniform
distribution, but with some deviations from a straight line. The empirical quantiles for
the left tail in QQ-plot (c) moderately follows the theoretical quantiles of the uniform
distribution, but with some notable deviation. The empirical quantiles for the right
tail in QQ-plot (d) seems to follow the theoretical quantiles of the uniform distribution
fairly good. The preceding is valid for all the other nine GARCH(1,1)-t models using
rolling windows ranging from 2 to 10 years with two exceptions. Regarding the ten
GARCH(1,1)-N models, the histograms seems farther from uniform and the empirical
quantiles clearly deviates even more from the theoretical quantiles. The left tails con-
sistently have more observations in the 10th percentiles of the tail and the right tails
consistently seem to have more observations in the upper 60th percentiles of the tail.
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Figure 15: Pairs of histogram and QQ-plots for the 5th upper and lower percentiles of the distribution of the
cumulative distribution forecasts from a GARCH(1,1) model using t-distributed innovations and 1 year rolling
windows. The pair (a)-(c) and (b)-(d) of histograms and QQ-plots consists of observations from the left and the
right tail respectively.

The plot in Figure 16 shows the p-values from the Kolmogorov-Smirnov tests for the
tails of the distribution of the cumulative distribution forecasts. It illustrates that no
null hypothesis is rejected for the 5th upper and lower percentiles of the density forecasts
from the GARCH(1,1)-t specification. The Kolmogorov-Smirnov tests, together with the
histograms and QQ-plots, thus suggests that the conditional t-distributions used for the
density forecasts are correctly conditionally calibrated even for the 5th upper and lower
percentiles.

The p-values for the GARCH(1,1)-N models are in general lower and the null hypothesis
for the 5th upper percentiles are rejected for 1, 2 and 5 years rolling windows. Regarding
the 5th lower percentiles the null hypothesis is rejected except for the models using 6-9
years of rolling window lengths. In general, the conditional normal distribution does not
seem to be well calibrated for the 5th upper and lower percentiles of the density forecasts.

As for the entire density forecasts, the p-values for the GARCH(1,1)-t models are higher
for both the upper and lower tails than of the GARCH(1,1)-N dittos (with one excep-
tion). It is in line with the differences observed in the histograms and the QQ-plots.
In conclusion, the conditional t-distributions seems to be better calibrated than the
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conditional normal distributions for predicting the tails of the return distribution.

Figure 16: Plot of p-values from Kolmogorov-Smirnov tests for the upper and lower 5 percentiles of the return
distribution.

5.2 Backtesting using simulated data

The following procedure has been performed:

1. Simulate new data. Simulate T (=5213) new observations from the GARCH(1,1)-
N and the GARCH(1,1)-t models with estimated parameters that was fitted in
Section 4.2.

2. Rolling window estimations. Perform the rolling window estimation procedure
described in Section 3.2 on the corresponding simulated data. Depending on the
distribution assumption, let the two model specifications used on the corresponding
simulated data be denoted SIM.GARCH(1,1)-N and SIM.GARCH(1,1)-t.

3. Obtain histograms and QQ-plots. Visualize the distribution of the probability
transforms in histograms and QQ-plots for the whole distribution as well as for
the tails (5th upper and lower percentiles). Do this for all 20 models using the
different distribution assumptions and different rolling window lengths used in this
thesis.

4. Compare. Compare the obtained histograms and QQ-plots to the corresponding
ones derived from the original data.

In this way, problems that arise from the backtesting being carried out on arbitrar-
ily chosen data or periods are avoided. The obtained histograms and QQ-plots shows
how the distribution of the probability transformations would look like if the the true
data generating process are the GARCH(1,1)-N or the GARCH(1,1)-t models (fitted in
section 4.2) respectively. In other words, the shape of the histograms shows how the
histograms in Sections 5.1.5 and 5.1.6 would look like if the true data generating process
are the assumed to be described as the GARCH(1,1)-N process or the GARCH(1,1)-t
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process from section 4.2.

Figure 17 shows histograms and QQ-plots for the series of cumulative distribution fore-
casts for the SIM.GARCH(1,1)-N model and the SIM.GARCH(1,1)-t model. The mod-
els used a 1 year length rolling window and the data samples were simulated from the
GARCH(1,1)-N model and the GARCH(1,1)-t model from section 4.2 respectively. It
can be seen that the histograms clearly resembles she shape of the uniform distribution.
Histogram (a) in Figure 17 for the SIM.GARCH(1,1)-N model is not obviously similar to
histogram (a) in Figure 13 for the corresponding GARCH(1,1)-N model. The histogram
for the GARCH(1,1)-N model have visibly slightly more observations in the tails and
in the center of the distribution than the histogram for the SIM.GARCH(1,1)-N model.
Histogram (b) in Figure 17 for the SIM.GARCH(1,1)-t model does not obviously deviate
from histogram (b) in Figure 13 for the corresponding GARCH(1,1)-t model.

Notice that only histograms and QQ-plots for the SIM.GARCH(1,1) models using 1
year window length are displayed in this thesis. This is due to the size and no visible
difference from the rest of the figures containing pairs of histograms and QQ-plots.

Based on the analysis of the entire density forecasts for real and simulated data, it
can be concluded the GARCH(1,1)-N model specification does not obviously seem to be
well specified for predicting the entire return distribution. Regarding the GARCH(1,1)-t
model specification it can be concluded that it seems to be well specified for predicting
the entire return distribution.

47



Figure 17: Pairs of histogram and QQ-plots for the distribution of the sequence of cumulative distribution
forecasts using simulated data. The observations are a result from GARCH(1,1) models using 1 year rolling
window. The pair (a)-(b) are observations from the GARCH(1,1) model using conditional normal distributed
innovations fitted on simulated data from the original GARCH(1,1)-N model. The pair (c)-(d) are observations
from the GARCH(1,1) model using conditional t-distributed innovations fitted on simulated data from the original
GARCH(1,1)-t model.

Due to the extensive amount of histograms and QQ-plots for the tails these are not
presented, yet commented.

In the histograms and QQ-plots for the tails from the SIM.GARCH(1,1)-N model it
can be seen that they more clearly resemble a uniform distribution than the correspond-
ing histograms and QQ-plots obtained based on the real data. This is the case for all
the rolling window lengths. Hence, it can be concluded that the GARCH(1,1)-N model
is not well specified for predicting the 5th upper and lower tails of the return distribution.

From the histograms and QQ-plots for the tails from the SIM.GARCH(1,1)-t model
it can be seen that they clearly resemble the histograms and QQ-plots obtained based
on the real data. This is the case for all the rolling window lengths. Hence, it can be
concluded the GARCH(1,1)-t model seems to be well specified for predicting the 5th
upper and lower tails of the return distribution.
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6 Conclusion

GARCH(1,1)-N and GARCH(1,1)-t models have been estimated using a rolling window
procedure with rolling window lengths ranging from 1 to 10 years. The 1-step-ahead
predictions have been evaluated with various backtesting methods.

The GARCH(1,1)-N specification seems to consistently underestimate the volatility.
Thus, the model does not adequately account for fat tails in the return distribution. The
results for the unconditional coverage are significant for all possible window lengths. The
GARCH(1,1)-t specification seems to consistently overestimate the volatility, however,
the results for the unconditional coverage are only significant for three out of ten window
lengths. The preceding is in line with the findings of Christoffersen (1998) who found
that the GARCH(1,1)-t forecasts is overly cautious.

The violations of the 95 % forecast intervals do not seem to be clustered in time ac-
cording to the Independence test. This is the case for both model specifications. Thus,
the probability distribution for the next state is independent of the current state for
both model specifications.

The violations of the 95 % prediction interval seem to be conditional unpredictable
for both model specifications according to the Conditional Coverage test. The violations
appears to occur below and over the forecast interval 2.5 % of the time respectively and
does not seem to be clustered in time.

There are no obvious signs of autocorrelations in the different violations hit sequences.
Hence, no evidence is provided that the model specifications used have problems with
serial dependencies in any of the violations hit sequences.

The results indicates that the GARCH(1,1)-N model specification not obviously seems
to be well conditionally calibrated for predicting the entire return distribution on the
whole. However, the results clearly indicates that it is not well calibrated for predicting
the 5th upper and lower percentiles of the return distribution. Furthermore, the results
suggests that the GARCH(1,1)-t model specification seems to be well conditionally cal-
ibrated for predicting the entire return distribution as well as the 5th upper and lower
percentiles of the return distribution.

It is noticed that the model specification providing the lowest AIC and BIC values
on the whole data sample also seems to be better for predicting the volatility.

All in all, the GARCH(1,1)-tmodel specification seems to be favourable over the GARCH(1,1)-
N model specification for making volatility predictions.

49



7 Discussion

As seen throughout the thesis, the GARCH(1,1)-t model specification seems to be
favourable over the GARCH(1,1)-N model specification for making predictions. That is,
given the tests performed and the data at hand. Hence, it should in no way be inter-
preted as a result in a broader context than that. For example, the tests for Uncondi-
tional Coverage, Independence, Conditional Coverage, serial dependence are conditional
on the 95% forecasts interval. Hence, the results are not valid for any other confidence
level.

The purpose of this thesis is to apply the GARCH(1,1) model and evaluate its 1-step-
ahead predictions. After finding GARCH(1,1) models appropriate for the entire data
sample we use the same model specifications in the rolling window estimation procedure.
In effect, we bluntly assume that the data does not consists of any local trends or struc-
tural breaks. For example, the data sample stretches over two financial crises which
might affect our analysis. Furthermore, we do not devote any thoughts to potential
regime shifts such as changes in monetary policies or increased regulatory compliance
requirements. This is a recurring issue in statistics when trying to model the reality; the
trade-off between model complexity and model efficiency.

We do not see any signs in our analysis that shorter rolling window lengths would imply
better predictions. If any, we rather see signs of the opposite. For the GARCH(1,1)-
t model longer rolling windows seems to lead to higher p-values for the unconditional
coverage test. In effect, a model that more strongly assumes that the underlying volatil-
ity process is stationary in terms of less sensitive parameter estimates seems to provide
stronger results. This is in line with the findings of Christoffersen (1998) who found that
parametric forecasts often are rejected in favor of static interval forecasts, in particular
when the desired coverage rate is high.

In this thesis we have chosen to focus on measures that contain information about
the uncertainty of the predictions. In effect, we have skipped conventional measures
like the RMSE. The evaluation of a point forecasts provides no information about the
uncertainty of the prediction, however, it provides the forecaster with information of
how far off the predictions are from the realized observations.

The GARCH(1,1) model used in this thesis do not account for the leverage effect men-
tioned in Section 2.3.1. Furthermore, nonparametric tests such as the Kolmogorov-
Smirnov test are notoriously data intensive. Research of Crnkovic & Drachman (1996)
suggests that at least 1000 observations are needed. Hence, the p-values from the
Kolmogorov-Smirnov tests for the tails in Figure 16 does not provide much power and
should alone not be the basis of a conclusion.
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8 Further research

We will in this section present ideas for further research, which we believe could go down
several directions.

As stressed, the tests of Unconditional Coverage, Independence, Conditional Coverage
and serial dependence in this thesis are only performed on a 95 % coverage rate. For fur-
ther research we suggests looking at several coverage rates. For example, Christoffersen
(1998) looks at 10 different coverage rates ranging from 50 % to 95 %. In doing so, the
results will be less dependent on the probability transform and the Kolmogorov-Smirnov
tests.

Another interesting idea for further research is to test the independence between viola-
tions using the duration based approach presented by Christoffersen & Pelletier (2003).
The idea is that if the 1-step-ahead prediction model is correctly specified for a coverage
rate p, then, every day, the conditional expected duration until the next violation should
be a constant 1/p days.

As mentioned earlier, the model specifications used in this thesis does not capture the
leverage effect, i.e. the asymmetry in responses to negative returns vs. positive returns.
For this purpose, further research could employ the exponential GARCH (EGARCH)
model proposed by Nelson (1991) or any other model that are intended for the same
purpose.

The tests for Unconditional Coverage, Independence, Conditional Coverage and higher-
order dependence only use information on past violations and might not have much
power to detect if the risk model is misspecified (Christoffersen, 2012, chapter 13). To
increase the power of the preceding tests and to understand the areas where the model
fail, Christoffersen (2012, chapter 13) suggests increasing the information set for the
aforementioned tests. By considering other explanatory variables, such as interest rate
spreads, one might be able to help explain when the violations occur.

Lastly, other distributions could be assumed for the innovations. Ellis, Steyn & Venter
(2003) used a Pareto-Normal-Pareto distribution that assumes that the innovations are
normal distributed between two threshold values with Pareto tails below and above the
respective thresholds. The authors found that using Pareto-risk based methods such as
this gives more accuracy than the conventional assumption of normal or t-distributed
innovations.
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A Appendix

A.1 Probability Distributions

A.1.1 Normal Distribution

The definition of the normal distribution is from Alm & Britton (2008, chapter 3).

A continuous random variable X are said to be normal distributed, denoted X ∼
N(µ, σ2), with parameters µ ∈ R and σ2 > 0 if the density is given by

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x <∞,

for which E[X] = µ, Var(X) = σ2, S(X) = 0 and K(X) = 3. Furthermore, if X ∼
N(µ, σ2) then X−µ

σ ∼ N(0, 1). The latter is known as the standardized normal distribu-
tion.

A.1.2 t-Distribution

The definition of the t-distribution is from Tsay (2012, chapter 3) and Gut (2009, ap-
pendix B).

A random variable X are standardized t-distributed, denoted X ∼ t(ν), with ν degrees
of freedom if the density is given by

fX(x) =
Γ[(ν + 1)/2]

Γ[(ν/2)]
√

(ν − 2)π

(
1 +

x2

ν − 2

)−(ν+1)/2

, ν > 2, −∞ < x <∞,

where Γ is the gamma function and for which E[X] = 0 if ν > 1 and Var(X) = ν
ν−2 if

ν > 2.

A.1.3 Chi-square Distribution

The definition of the Chi-square distribution is from Gut (2009, Appendix B).

A random variable X are said to be Chi-square distributed, denoted X ∼ χ2(k), with k
degrees of freedom if the density is given by

fX(x) =
x(k−2)/2e−x/2

2k/2Γ(k/2)
, k ∈ Z+, x > 0,

where Γ is the gamma function and for which E[X] = k and Var(X) = 2k.

If X1, ..., Xk are i.i.d N(0, 1) then

k∑
i=1

X2
i ∼ χ2(k), (10)
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(Alm & Britton, 2008, page 322).

B Estimation

In this section the estimation methods used in this thesis are presented. The theory in
this section is from Held & Sabanés Bové (2014).

B.1 Likelihood

Let X be a random variable, X = x be a realization of X, f(x|θ) the density function
of X given fixed and typically unknown θ, where θ is a scalar or vector with parameters
that take values in the parameter space Θ. It can be shown that for both discrete and
continuous data, the likelihood function

L(θ|X) = f(X|θ), (11)

is the density function of the realization of x viewed as a function of θ. For numerical
convenience the natural logarithm of the likelihood function can be used when computing
the maximum likelihood estimate,

l(θ|X) = logL(θ|X),

known as the log-likelihood function.

Given a sample x1:T = (x1, x2, ..., xT ) of T i.i.d. observations from the distribution
f(x|θ) the likelihood function

L(θ|x1, x2, ..., xT ) = f(x1, x2, ..., xT |θ) =

= f(x1|θ)f(x2|θ)× ...× f(xT |θ) =
T∏
i=1

f(xi|θ),

and thus the log-likelihood function

log L(θ|x1, x2, ..., xT ) = logf(x1, x2, ..., xT |θ) =

= logf(x1|θ) + logf(x2|θ) + ...+ logf(xT |θ) =
T∑
i=1

logf(xi|θ).

The maximum likelihood estimate, i.e. the value of θ that maximizes the likelihood func-
tion,

θ̂ML = arg max
θ∈Θ

L(θ|x1:T ),

is the most plausible value of θ given the data. Because the natural logarithm is a strictly
monotone function we have that

θ̂ML = arg max
θ∈Θ

l(θ|x1:T ).
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The maximum likelihood estimate is obtained by solving the score equation S(θ) = 0.
The Score function S(θ) is defined as the gradient (vector of partial derivatives) of the
log likelihood function,

S(θ) = ∇logL(θ|x1:T ) =

(
∂logL(θ|x1:T )

∂θ1
, ...,

∂logL(θ|x1:T )

∂θT

)
.

The Fisher information is defined as the negative Hessian (quadratic matrix of second-
order partial derivatives) of the log likelihood function,

I(θ) = −Hessian(logL(θ|x1:T )) = −∂
2l(θ|x1:T )

∂θ2
= −∂

2S(θ)

∂θi∂θj
.

The expected Fisher information is the expectation of the Fisher information,

J(θ) = E[I(θ)].

B.2 The Newton-Raphson algorithm

Explicit or analytic expressions for maximum likelihood estimate(s) and Fisher infor-
mation are rare. It can only be obtained for very simple models. In other situations,
such as in this thesis, numerical optimization are needed for computing the maximum
likelihood estimates and the Fisher information matrix. One technique for this purpose
is the Newton-Raphson algorithm

θ(t+1) = θ(t) +
S(θt)

I(θ(t))
,

which after iterative application and convergence (when θ(t+1) = θ(t) on a given number
of decimals) provides the maximum likelihood estimate(s) θ̂ML. The observed Fisher information
I(θ̂ML) is also provided.

B.3 Maximum Likelihood Estimation for GARCH(1,1)

For the GARCH(1,1) model

at = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1,

the maximum likelihood estimates will be given by

θ̂ML = (α̂0, α̂1, β̂1)T = arg max
θ∈Θ

L(θ|a1:T ),

where bold T denotes the transpose, do not confuse this with the observations T .

Given the information set Ft−1 available at time t, at is conditionally independent (Tsay,
2012, page 15) for all t. The conditional likelihood for {at} is then given by

L(θ,FT−1|a1, a2, ..., aT ) = f(a1, a2, ..., aT |θ,FT−1) =

T∏
t=1

f(at|θ,Ft−1).
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B.3.1 Normal distribution.

If εt are assumed to follow a standard normal distribution we know that

at|Ft−1 ∼ N(0, σ2
t (θ)), alt. at ∼ N(0, σ2

t (θ)|Ft−1).

We will then have the density

f(at|θ,Ft−1) =
1√

2πσ2
t (θ)

exp

(
− a2

t

2σ2
t (θ)

)
,

the likelihood function

L(θ,Ft−1|a1:T ) =
T∏
t=1

f(at|θ,Ft−1) =
T∏
t=1

1√
2πσ2

t (θ)
exp

(
− a2

t

2σ2
t (θ)

)
=

=

(
1√
2π

)T T∏
t=1

1√
σ2
t (θ)

exp

(
− a2

t

2σ2
t (θ)

)
= (2π)−T/2

T∏
t=1

(σ2
t (θ))

−1/2 exp

(
− 1

2

a2
t

σ2
t (θ)

)
,

the log likelihood function

logL(θ,Ft−1|a1:T ) =

T∑
t=1

logf(at|θ,Ft−1) =

= −T
2

log(2π) +
T∑
t=1

(
− 1

2
log
(
σ2
t (θ)

)
− 1

2

a2
t

σ2
t (θ)

)
=

= −T
2

log(2π)− 1

2

T∑
t=1

log(σ2
t (θ))−

1

2

T∑
t=1

a2
t

σ2
t (θ)

,

the Score function

S(θ) =
∂logL(θ,Ft−1|a1:T )

∂θ
=

−1

2

T∑
t=1

1

σ2
t (θ)

∂σ2
t (θ)

∂θ
− 1

2

T∑
t=1

(−1)
a2
t

(σ2
t (θ))

2

∂σ2
t (θ)

∂θ
=

= −1

2

T∑
t=1

(
1

σ2
t (θ)

− a2
t

(σ2
t (θ))

2

)(
∂σ2

t (θ)

∂θ

)
,

where (
∂σ2

t (θ)

∂θ

)
= (1, a2

t−1, σ
2
t−1)T + β1

∂σ2
t−1(θ)

∂θ
.

The maximum likelihood estimates are then obtained by solving the Score equation,
S(θ) = 0, using numerical optimization, for example by using the Newton-Raphson al-
gorithm.

57



The Fisher information

I(θ) = −∂S(θ)

∂θ
=

=
1

2

T∑
t=1

[(
− 1

(σ2
t (θ))

2
+

2a2
t

(σ2
t (θ))

3

)(
∂2σ2

t (θ)

∂θ∂θT

)
+

(
1

σ2
t (θ)

− a2
t

(σ2
t (θ))

2

)(
∂2σ2

t (θ)

∂θ∂θT

)]
=

=
1

2

T∑
t=1

[(
− 1

(σ2
t (θ))

2
+

2a2
t

(σ2
t (θ))

3
+

1

σ2
t (θ)

− a2
t

(σ2
t (θ))

2

)(
∂2σ2

t (θ)

∂θ∂θT

)]
.

Before taking expectation to get the expected Fisher information we remind ourselves
of (10) and that

εt ∼ N(0, 1)⇔ at
σt
∼ N(0, 1),

which means that (
at
σt

)2

∼ χ2(1), with mean 1.

Taking expectation and re-arranging we get the expected Fisher information matrix

J(θ) =

= E

[
1

2

T∑
t=1

[(
− 1

(σ2
t (θ))

2
+

2

(σ2
t (θ))

2

a2
t

σ2
t (θ)

+
σ2
t (θ)

(σ2
t (θ))

2
− σ2

t (θ)

(σ2
t (θ))

2

a2
t

σ2
t (θ)

)(
∂2σ2

t (θ)

∂θ∂θT

)]]
=

= E

[
1

2

T∑
t=1

[(
− 1

(σ2
t (θ))

2
+

2

(σ2
t (θ))

2
· 1 +

σ2
t (θ)

(σ2
t (θ))

2
− σ2

t (θ)

(σ2
t (θ))

2
· 1
)(

∂2σ2
t (θ)

∂θ∂θT

)]]
=

=
1

2

T∑
t=1

E

[
1

(σ2
t (θ))

2

∂2σ2
t (θ)

∂θ∂θT

]
.

B.3.2 t-distribution

The method for the maximum likelihood estimation for the GARCH(1,1) model using a
t-distribution is analogous to that of the normal distribution.
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