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Abstract

Bootstrap methods can be used to non-parametrically make in-
ference about a sample estimates e.g. through its bias, standard er-
ror and confidence intervals. In this thesis we consider four differ-
ent block bootstrap methods, namely the non-overlapping block boot-
strap (NBB), moving block bootstrap (MBB), circular block bootstrap
(CBB) and stationary bootstrap (SB) which are commonly used for
data correlated in time. The purpose of the thesis is to quantify and
compare the efficiency of the block bootstrap methods. We do this
by simulations of linear time series models such as the AR and MA
model and evaluate the bootstrap methods in estimating the sample
mean as well as refit the model parameters and autocorrelation when
varying sample size and block length.

We find that the methods preform different when sample size and
block length varies, but common for all methods is that the depen-
dence is underestimated compared to the true underlying model. The
conclusion is that methods using overlapping blocks are to be preferred
over non-overlapping blocks and that random block lengths leads to a
larger variance of the parameter estimates than for the other methods
when block length is fixed.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
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Some of the notation

X - random variable
{xt} - sample
xt - sample value at time t
”∗” - bootstrap variable, X∗ is a bootstrap data set generated from X
θ - or other Greek letters are parameters
F - probability distribution
f - probability density function
` - lag between two time series obesvations
ρ - correlation coefficient
γ - covariance

BM - bench mark, optimal value
CBB- circular block bootstrap
MBB- moving block bootstrap
NBB- none overlapping block bootstrap
SB - stationary bootstrap
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1 Introduction

In statistics a common problem is forecasting future events or explain how
events happen over time. We try to forecast e.g. the closing price of a stock
or when the next earthquake will hit. When historical data are available
we can develop models that fit the data to make accurate forecasts. Some
classical time series models used for forecasting are the autoregressive (AR)
models and moving average (MA) models. These models describes future
behavior based on past behavior and are used when there is some correla-
tion between the values in data. The AR model is a linear regression of the
current value against past values of data while in the MA model the present
value can be seen as a weighted sum of the past values.

When we have developed a model based on historical data, what can we
say about the accuracy of it? Resampling methods such as the bootstrap
is a way of answering this questions without the use of any parametric
assumptions. Efron first introduced the bootstrap method with the main
idea to replicate the original data using sampling with replacement, see
[Efron, 1979]. New estimators of parameters can be made from the pseudo
data generated this way and when repeating this process we can derive
confidence intervals and standard errors of the parameter estimate which
can be used to make inference about the model parameter.

Efron’s initial bootstrap method of resampling individual observations
works well for independent data but when there are dependence in the
data simple sampling with replacement has been proved, among others by
[Carlstein, 1986], to perform poorly. The simple bootstrap will not be able
to replicate the original data well as it will not capture the dependence struc-
ture. Several methods have been proposed for bootstrapping dependent data
in attempts to reproduce different aspects of the dependence. Some of these
methods include resampling of blocks instead of individual observations, so
called block bootstrap methods. In this paper we consider some of the most
popular block bootstrap methods and try to quantify their effecencies in es-
timating parameters and their standard errors and confidence intervals when
fitting time series models. We are interested in how sample size and block
length affect the bootstrap method’s effiencies in preserving the dependence
structure from the original data sets. The methods considered are:

1. Non overlapping block bootstrap (NBB) by [Carlstein, 1986].

2. Moving block bootstrap (MBB), proposed by both [Künch, 1989] and
[Liu and Singh, 1992].

3. Circular block bootstrap (CBB), proposed by [Politis and Romano, 1992].

4. Stationary bootstrap (SB), also proposed by [Politis and Romano, 1994].

The first three methods resample blocks of observations with a nonrandom
block length while the last method, the SB method, uses a random block
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length. A description of these methods are presented in Section 3.3. We
evaluate the performance of the bootstrap methods through a simulation
study found in Section 4. Data is simulated from AR and MA processes
and based on pseudo data generated by the different bootstrap methods we
investigate besides the dependence also how well we can refit the models
from which data is simulated. We evaluate the accuracy of the estimated
parameters and their deviations through e.g. their confidence intervals.

The rest of this thesis is organized as follows. Section 2 and 3 is the the-
oretical framework of the simulation. Section 2 includes theory about time
series analysis, e.g. properies of time series and time series models. Boot-
strap methods are described in Section 3 and Section 5 provides concluding
comments.

2 Time Series Analysis

Treating observations as a collection of random variables over a specified
time period corresponds to a time series. Example of a time series can be
the closing price of a stock or the temperature outside for each hour. If the
observations have been collected at equally-spaced time points we can use
the notation xt, (t = ...,−1, 0, 1, 2, ...) so that the observations are indexed
with the time t at which they were collected. A time series process is a
stochastic process of random variables xt indexed in time. We denote this
process {xt, t ∈ T }, or simply {xt}.

Time series analysis is the framework of analyzing the structure and
behavior of the time series process. It is common that statistical models
assume that observations are independent random variables, in contrast in
time series analysis concerned with describing the dependence among obser-
vations in data. In this section, we describe some properties of time series,
including stationarity, the autocorrelation function and two time series mod-
els. The models are autoregressive (AR) models and moving average (MA)
models. All theory (unless stated otherwise) used in this section is found in
[Tsay, 2005], Chapter 2.

2.1 Stationarity

Time series models are often based on the assumption of stationarity. A
stationary time series process is a process whose behaviour does not de-
pend on when we start to observe it, which implies that the series will look
roughly the same at different intervals of the same length. In application
the stationarity of a time series makes it possible to make inference about
the future based on previous observations.
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A time series process is stationary if it for all integers r, s and t the
following three properties hold:

(i) E(xt) = µ, a constant

(ii) Var(xt) ≤ ∞

(iii) Cov(xt, xt+s) = γs,

where the covariance γs is a function of s and independent t as it only
depends on the length of the interval between the time points. Time se-
ries with these properties are called weakly stationary. For a time series
to be strictly stationary the joint distribution of (xt1 , ..., xtk) is identical to
(xt1+s , ..., xtk−s

) for all s. This condition is very strong and hard to verify
empirically which is why the weaker condition of stationarity is often con-
sidered. As we will only consider weak stationarity in this thesis we will
simply denote it stationarity further on.

2.2 Autocorrelation function

A first step in analyzing a time series process is to look at the correlation
pattern at different time points. This can be made by plotting the sample
autocorrelation function (ACF). The ACF for a stationary time series does
not depend on the time in the time series but on the length between the
observations in {xt}, we denote this length the lag `. The ACF between xt
and xt−` is denoted ρ` and defined as

ρ` =
Cov(xt, xt−`)√

Var(xt)Var(xt−`)
=

Cov(xt, xt−`)

Var(xt)
=
γ`
γ0
, (1)

where we use the property Var(xt)=Var(xt−`) of a weakly stationary series.
Eq. (1) is the regular definition of a correlation coefficient. From this defi-
nition we have that ρ0 = 1, ρ` = ρ−` and -1 ≤ ρ` ≤ 1. A weakly stationary
series is not serially correlated if and only if ρ` = 0 for all ` > 0. For a
sample of observations {xt, t = 1, ..., T}, let x̄ =

∑T
t=1 xt/T be the sample

mean, the lag-` sample autocorrelation is defined as

ρ̂` =

∑T
t=`+1(xt − x̄)(xt−` − x̄)∑T

t=`+1(xt − x̄)2
, 0 ≤ ` < T − 1. (2)

The statistics ρ̂1, ρ̂2,... defined in Eq. (2) is the sample autocorrelation func-
tion of {xt}. The ACF is important in time series analysis as a time series
model can be characterized by its ACF since it describes the correlation
pattern of observations in the data.
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2.3 White noise

Let at be a time series, then

at ∼WhiteNoise(0, σ2a)

if and only if γ0 = σ2a ∈ R and γk = 0 for all lags k > 0. That is, if a time
series process has zero mean and zero covariance between its values it is said
to be a white noise process.

2.4 Linear time series models

A time series {xt} is considered linear if it can be written as

xt = µ+
∞∑
i=0

ψiat−i,

where µ is the series mean, the parameter ψ0 = 1 and {at} is a white noise
series (i.e. a sequence of i.i.d. random variables with finite mean and vari-
ance). We let at denote the new information of the time series at time t,
also called the chock or innovation at time t. Not all times series are lin-
ear, however in this paper we will not consider nonlinear time series. Two
common linear time series models are the AR models and MA models.

The AR model specifies that the output variable depends linearly on its
previous values and a stochastic term, hence it can be seen as a multiple
linear regression on past values. The notation AR(p) indicates an autore-
gressive model of order p which means that the output value xt can be
expressed in terms of p past values and the stochastic term. An AR(p)
model is defined

xt = c+

p∑
i=1

ϕixt−i + εt, (3)

where ϕ1, ..., ϕp are the parameters of the model, c is a constant and εt is
a sequence of uncorrelated error terms (a white noise process). The εt are
often assumed to be normally distributed, N(0, σ2ε), but is valid given that
εt is i.i.d.

The MA model specifies that the output variable depends linearly on the
current and past values of a stochastic variable. The notation MA(q) refers
to a moving average model of order q. We define the MA(q) model

xt = c+ εt +

q∑
i=1

θiεt−i (4)

where c is the series mean and θ1, ..., θq the parameters of the model and
εt, εt−1, ..., εt−q are white noise error terms with zero mean and variance σ2ε .
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MA-models are always stationary as they are finite linear combinations of a
white noise series for which the first two moments are time invariant.

2.5 Properties of AR/MA models

In this section we will look at some properties of the time series models
described in Section 2.4, including their ACF. Detailed results are given for
models of order 1 and 2 and more general results for higher orders of p/q.
For simplicity we assume c = 0 for the AR/MA models. We also assume
that the time series are stationary.

For the AR model the stationary condition means that E(xt) = µ,
Var(xt) = γ0 and Cov(xt, xt−s) = γs, where c and γ0 are constant and
γs is a function of s and doeas not depend of t. The expectation for an
AR(1) model is

E(xt) = ϕ0 + ϕ1E(xt−1) = µ,

which follows by taken the expectation of (3) and because E(εt)=0. We use
the stationary condition, E(xt) = E(xt−1) = µ, to get following result

E(xt) =
ϕ0

1− ϕ1
.

The variance of the AR(1) model is

Var(xt) = ϕ2
1Var(xt−1) + σ2ε ,

again using the stationary condition we get

Var(xt) = γ0 =
σ2ε

1− ϕ2
1

and γ` = ϕ1γ`−1, for ` > 0.

That is

γ` =

{
ϕ1γ1 + σ2ε if ` = 0
ϕ1γ`−1 if ` > 0,

where we use that γ` = γ−`. From this we can see that the ACF of xt is

ρ` = ϕ1ρ`−1, for ` > 0.

Since ρ0 = 1 the ACF of an AR(1) process can be written as ρ` = ϕ`1. This
results implies that the ACF of a stationary AR(1) series has a starting
value ρ0 = 1 and declines exponentially with rate ϕ1. For an AR(2) process
the theoretical ACF for the first two lags are

ρ1 =
ϕ1

1− ϕ2
and ρ2 =

ϕ2
1

1− ϕ2
+ ϕ2, (5)

and will after the second lag decline exponentially. The ACF for AR(p)
processes are derived in the same way according to Eq. (1) and will decline
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exponentially after lag p. The sample ACF for a simulated AR(2) process
is shown in Fig. 8, where one can observe the exponentially declining ACF
after lag 2.

Next we will look at properties for an MA process. Taking the expecta-
tion of Eq. (4), we have

E(xt) = c,

which is time invariant. The variance of the same equation will give us

Var(xt) = (1 + θ21 + θ22 + · · ·+ θ2q)σ
2
ε .

This implies that if we look at the simple case of an MA(1) process the
covariance is

γ1 = −θ1σ2a and γ` = 0, for ` > 0.

This will give us the followong ACF for the MA(1) model

ρ0 = 1, ρ1 =
−θ1

1 + θ21
, ρ` = 0, for ` ≥ 2.

For an MA(2) process the theoretical ACF is

ρ1 =
θ1 + θ1θ2

1 + θ21 + θ22
, ρ2 =

θ2
1 + θ21 + θ22

and ρ` = 0 for ` ≥ 3. (6)

As shown above the ACF for an MA(1) model will cut off after lag 1 the
ACF for an MA(2) will cut off after lag two. It follows that the ACF for a
MA(q) model that the ACF will cut off after lag q, that is ρ` = 0 for ` > q.
This can be observed for an MA(2) model in Fig. 10 in the Appendix. This
implies that the MA(q) time series is only linearly related to the first q lag
values.

2.6 Order determination and parameter estimation

In application the order p and q of an AR/MA model is unknown and must
be specified empirically. One way of determine the order is by model selec-
tion techniques such as the Akaike and Bayesian information criterion (AIC
and BIC) methods which are based on maximum likelihood theory. We will
in this subsection look at these techniques and discuss when they might not
be appropriate.

We want to estimate the model parameter θ from a sample {xt}, (t =
1, ..., T ). If xt ∼ f(x; θ) the likelihood function of θ, denoted L(θ), is given
by

L(θ) = f(x1, ...xT ; θ) =
T∏
t=1

f(xt; θ),
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where f(x1, ...xT ; θ) is the joint density of {xt}. The log likelihood function
is defined similarly

ln L(θ) =

T∑
t=1

ln f(xt; θ).

The maximum likelihood estimate θ̂ML is the value of θ that maximizes the
log likelihood. We define the estimate

θ̂ML = arg max
θ

ln L(θ).

For time series samples we assume that the sample values are not i.i.d., hence
the conditional density is no longer the product of the marginal densities of
xt. We recall the definition of conditional density that given that a random
variable Y takes the value y the conditional density of the random variable
X is

fX|Y (x; θ) =
fX,Y (x, y; θ)

fY (y; θ)
,

or equivalent
fX,Y (x, y; θ) = fY (y; θ)fX|Y (x; θ).

When applied to a time series the joint density of {xt} is

f(x1, x2, ..., xT ; θ) = f(x1; θ)f(x2|x1; θ)...f(xT |x1, x2, ..., xT−1; θ).

This can also be written as

f(x1, x2, ..., xT ; θ) = f(x1; θ)
T∏
t=2

f(xt|x1, ..., xt−1; θ),

where f(x1; θ) is the marginal density of the very first observation and
f(xt|x1, ..., xt−1; θ) is the conditional density of xt given previous obser-
vations. E.g. for an AR(1) process where xt = ϕxt−1 + εt, (t = 1, ..., T )
and εt ∼ i.i.d. N(0, σ2) we want to estimate θ = θ(ϕ, σ2). The conditional
density the AR(1) process is

f(xt|x1, ..., xt−1; θ) = f(xt|xt−1; θ).

We also know that xt|xt−1 ∼ N(E(xt|xt−1),Var(xt|xt−1)), where E(xt|xt−1) =
ϕxt−1 and Var(xt|xt−1) = σ2. It follows that the conditional density is

f(xt|xt−1; θ) =
1

σ
√

2πσ2
exp

{
− (xt − ϕxt−1)2

2σ2

}
. (7)

The conditional likelihood for an AR(1) process is therefore

L(θ) = f(x1; θ)
T∏
t=2

f(xt|xt−1; θ),
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where f(xt|xt−1; θ) is given of Eq. (7). The model parameters are estimated
so that the likelihood function is maximized but can also be used when
comparing two models. If one model have a higher likelihood than another
model, then the former fits better to data. An information criterion is
a function of the likelihood value and the number of parameters. The two
most common information criterions are the AIC and BIC which are defined
as

AIC = 2p− 2ˆ̀ and BIC = −2ˆ̀+ pln(T ),

where p is the number of estimated model parameters, ˆ̀ the log-likelihood
value and T is the sample size. Both information criterions rewards models
with a high likelihood but penalizes a model for each added parameter.

According to [Neusser, 2016] another way to determine the order of
an AR/MA process, preferred when data can not be assumed e.g. normal
and/or sample size is small, is by testing the significance of the ACF . Since
the ACF is the correlation between current values of the time series and
values at different time points, as described in section 2.1, meaning that
is describes the dependence of observations as a function of the time lag
between them. In the case of an AR(p) model, the ACF will decline expo-
nentially after lag p and for an MA(q) model the ACF cuts off after lag q
as was described in Section 2.5. This can be observed in the ACF for an
AR and MA model of order two in Fig. 8 and Fig. 10 which are found in
the Appendix. For an AR process it might be more appropriate to look at
the partial autocorrelation function (PACF), this is due to the fact that for
an AR(p) process the PACF cuts off at lag p. In this paper we will limit
us to the ACF but the interested reader can find more about the PACF in
[Tsay, 2005] Chapter 2.

3 Bootstrap Methods

Two of the most important problems in applied statistics are determination
of an estimator and its standard error and the determination of confidence
intervals. Without any assumptions made about the asymptotic distribution
of the parameter, these problems can be answered with the use of resampling
methods as the bootstrap.

The bootstrap method was first published in [Efron, 1979], based on
earlier work on the jackknife in [Quenouille, 1949]. The jackknife is a a
resampling technique mainly used for variance and bias estimation. The
jackknife estimator of a parameter is derived by systematically leaving out
each observation from a data set and calculating the estimate and then
finding the average of these calculations.

In this section the bootstrap will be presented more in detail followed
by description of the four block bootstrap methods considered in this paper.
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Lastly we look closer on how to choose the optimal block length in block
bootstrap and one way of constructing bootstrap confidence intervals, the
percentile method.

3.1 Simple bootstrap

In this subsection we consider bootstrap methods that are applicable to
samples of data with i.i.d. values. We let X be a sample with sample values
x1, x2, ..., xn from an unknown population with probability distribution F .
The sample is used to make inference about a population characteristic
which can be expressed as a parameter θ estimated by the sample denoted
θ̂. To each sample value xj we put equal probabilities n−1, we call this
the empirical distribution denoted F̂ . The bootstrap can then be used to
answer questions about the probability distribution of θ, like its variance or
quantiles, with the use of θ̂.

The basic idea underlying the bootstrap is to recreate the original pop-
ulation with resampling with replacement from the sample. The bootstrap
method of [Efron, 1979] suggest that when the sample is small we can es-
timate the properties we require from simulated data sets with the same
size as the original sample, denoted x∗1, ..., x

∗
n and where x∗j is independently

sampled from F̂ . From a simulated data set we can calculate the parameter
of interest, denoted θ̂∗ and repeat this k times. Properties of θ can now be
estimated from θ̂∗1, ..., θ̂

∗
k. The procedure of this method is

1. Generate a sample of size n, same size of the original data set with
replacement from the empirical distribution.

2. Compute θ̂∗, the value of θ̂ obtained by using the bootstrap sample in
place of the original sample.

3. Repeat steps 1 and 2 k times.

For example, if we let θ̄∗ = k−1
∑k

i=1 θ̂
∗
i , the standard error of θ̂ is

sd(θ̂) =

√√√√ 1

k − 1

k∑
i=1

(θ̂∗i − θ̄∗)2. (8)

Other similar moments can be derived in the same way. According to
[Davidson and Hinkley, 1997] page 16, these approximations of Eq. (8) are
justified by the law of large numbers. For Xn = x1 + ... + xn, a sample of
size n with finite mean µ and variance σ2 the law of large numbers states
that

P (|Xn

n
− µ| > ε)→ 0 as n→∞, for all > 0,

i.e.,
Xn

n

p→ µ as n→∞,

which is shown e.g. in Example 1.3. in [Gut, 1995].
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3.2 Bootstrap methods for time series

When there is dependence present in data, which is highly common in the
case of a time series, the simple resampling procedure will fail as it is not able
to replicate the dependence structure. Since the introduction of the boot-
strap, several extensions of the method has been made for it to be applicable
for dependent data. One of these extensions are the block bootstap, first
introduced in [Carlstein, 1986], other methods are the residual bootstrap (a
type of model-based bootstrap) and the autoregressive-sieve bootstrap. This
paper is focused on block resampling but one can read more about boot-
strap methods for time series in [Kreiss and Lahiri, 2012] Chapter 1. Block
bootstrap tries to create psuedo data and replicate the dependence in data
by resampling blocks of data instead of single observations. It has mainly
been used when data are dependent in time (time series) but can also be
used on data dependent in space or in groups (so called cluster data).

For a stationary series, observations removed sufficiently far in time are
uncorrelated. One of the main ideas in block resampling is that, for station-
ary series, individual blocks of observations that are separated far enough in
time will be approximately uncorrelated and can be treated as exchangable.
Depending on the method, you select blocks of the time series, either over-
lapping or not and of fixed or random length, which will generate stationarity
in the samples. The resampling is then made with sampling with replace-
ment from the blocks to create a pseudo times series on which you compute
your statistic of interest. The key idea in this resampling approach is that
if the blocks are sufficiently long the dependence structure of the original
data will present also in the pseudo data.

Since the introduction of block resampling several different block boot-
strap methods have been developed. The non-overlapping block bootstrap,
the moving block bootstrap, the circular block bootstrap and the stationary
bootstrap methods are four of the most commonly used methods, a detailed
description of these can be found in Section 3.3.

3.3 Block bootstrap methods

Common block bootstrap methods are the non-overlapping block bootstrap,
the moving block bootstrap, the circular block bootstrap and the stationary
bootstrap methods. These four methods will be described in detail below.

NBB. The non-overlapping block bootstrap was the initial method based
on the work by [Carlstein, 1986]. The NBB divides the data set Xn of size
n into b non-overlapping blocks of length l, where we suppose 1 < l < n and
n = bl. We define the non-overlapping blocks B1, ..., Bb of length l contained
in Xn as
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B1 = (x1, ..., xl),
B2 = (xl+1, ..., x2l),
...
Bb = (x(b−1)l+1, ..., xn).

The NBB samples are then generated by selecting b blocks at random from
the collection B1, ..., Bb. Stitching these blocks together in the order they
were picked will give the bootstrapped sample.

MBB. Proposed by [Künch, 1989] and [Liu and Singh, 1992] is the mov-
ing block bootstrap method which allows the blocks to overlap. This allows
for more blocks than if they are not allowed to overlap. For a data set of n
observations the MBB split the data into N = n− l + 1 overlapping blocks
of length l where we for simplicity suppose that l divides n. Then we can
define the MBB blocks from Xn as
B1 = (x1, ..., xl)
B2 = (x2, ..., xl+1)
...
BN = (xn−l+1, ..., xn).
From these N blocks, b = n/l blocks will be drawn at random with replace-
ment. The bootstrap sample is given by stitching the b blocks together. An
advantage of this method compared to the NBB method is that by allowing
overlapping blocks we have a wider range of blocks to sample from. This is
especially useful when the sample is small.

CBB. The circular block bootstrap of [Politis and Romano, 1992] has
the main purpose to remove the edge effect of uneven weighting of the obser-
vations at the beginning and at the end in the MBB method. For example,
in the MBB the first sample value will only appear in the first block while the
5th value will appear in five blocks if b ≥ 5. The CBB blocks are defined as
in the MBB method, i.e. overlapping, but uses an end-to-start wrap around
of the data around a circle to make additional blocks. This method is also
useful when data can be considered circular, e.g. the outside temperature
over a year.

SB. The stationary bootstrap, by [Politis and Romano, 1994], differs
from the other three earlier mentioned methods in the sense that block
length is not fixed but a random variable geometrically distributed with
expected value l. Because of the random block length, the number of blocks
is also random. Similar to CBB, the SB method was introduced with the
purpose to remove the uneven weighting of the observations at the beginning
and at the end of the sample.

Some other variants of the block bootstrap is the matched block boot-
strap (MaBB) in [Carlstein et al, 1998], the tapered block bootstrap (TBB)
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[Paparoditis and Politis, 2001], and the generalized seasonal block bootstrap
(GSBB) [Dudek et al, 2013]. Both the MaBB and TBB is used to reduce
an edge effect among the blocks, MaBB by using a stochastic mechanism
to match independent blocks from the MBB method while TBB adjust the
boundary values of the blocks towards a common value (like the series mean).
The GSBB method is used for periodically correlated time series as the main
idea of this method is that it preserves the periodic structure of the time
series.

3.4 Choosing block length

To be able to implement any of the block bootstrap methods we need to
choose the (expected) block length. The optimal block length depends on
the sample size and its correlation structure and differs for different boot-
strap methods. According to [Politis, 2003] there are two main approaches
in deciding block length, either by cross-validation or plug-in methods. In
the cross-validation method we choose a criterion (e.g. the mean squared
error) and minimize the estimated criterion to get an estimate of the opti-
mal block size. The plug-in method involve deriving an expression of the
optimal value and to plug in all unknown parameters in the expression.
The cross-validation method usually involves less analytic work but requires
more computation.

In this thesis we will not look further into the issue of selecting the
optimal block length but more generally look at the performance of the block
bootstrap methods given different block length considered in the simulation
study. For more information about selecting the optimal block length the
interested reader can read about it in [Lahiri, 2003] Chapter 7.

3.5 Confidence intervals

A commonly used method for interval constructing for resampling methods
is the simple percentile interval method in [Efron, 1987]. Since the bootstrap
produces a large sample from the sampling distribution of a statistic, a way
to generate confidence intervals for this statistic is to take the quantiles from
this sample. If we let θ̂∗(α/2) be the 100α/2th percentile of the parameter
estimate of interest from B resampling replications. The percentile interval
with coverage 1-α is obtained by the percentiles [θ̂∗(α/2), θ̂

∗
(1−α/2)]. E.g. using

a bootstrap method we create a replication sample to compute our chosen
bootstrap parameter estimate θ̂ k times. If we choose α=0.05 and k=1000
the 25th and 975th value of the ordered estimates will form a confidence
interval for the estimate θ̂ of confidence level 95 %. Different from standard
asymptotic confidence intervals, the bootstrap percentile intervals will not
be symmetric around the parameter estimate, this is useful for cases when
the true sampling distribution is not symmetric.
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4 The simulation study

We carried out a simulation study to evaluate and compare the performance
of the MBB, the NBB, the CBB, and the SB methods considered in Section
3.3 under some linear time series models. The following sections contains the
simulation design and the simulation results that provide a comparison of the
four block bootstrap methods in terms of their accuracy in model parameter
estimation, the estimates standard deviation and confidence intervals.

4.1 Simulation design

Data were simulated from a set of moving average (MA(2)) and autore-
gressive (AR(2)) models using the arima.sim function in R. AR series were
generated from AR models xt = ϕ1xt1 + ϕ2xt2 + εt with AR parameters
ϕ1 and ϕ2. Similarly, MA series were generated from MA models xt =
θ1εt1 + θ2εt2 + εt with MA parameters θ1 and θ2. The parameters of both
models were chosen at random but so that the series were stationary and
that in one of each model there was a negative parameter. All models have
a mean of zero and the innovations εt are white noise series with observa-
tions independently distributed N(0, 1). The models are found in Table 1.
The model autocorrelations are the theoretical ACFs, defined in Eq. (5) for
the AR(2) model and Eq. (6) for the MA(2) model. Figure 7-10 in the Ap-
pendix illustrate simulated time series of one AR model and one MA model,
namely M1 and M3 with their respective sample ACF, computed with the
acf function in R.

Table 1. Parameter values used in the simulation

Models
AR parameters

ϕ1 ϕ2

Autocorrelation

ρ1 ρ2

AR(2)
M1
M2

0.2 0.4
0.5 -0.3

0.333 0.467
0.384 -0.108

MA parameters

θ1 θ2

Autocorrelation

ρ1 ρ2

MA(2)
M3
M4

0.2 0.3
-0.3 0.4

0.230 0.265
-0.336 0.320

Two influential factors of the general performance of resampling methods
were considered, length of the time series and block length. The replicated
time series, generated by the bootstrap methods, have the same length n
as the simulated time series. The model parameter of interest θ have been
estimated from k = 1000 bootstrap time series to obtain the empirical dis-
tribution. The standard error of the parameter estimate is computed from
the k estimates θ̂∗ using Eq. (8). Confidence intervals are made with the
percentile method considered in Section 3.5 with chosen confidence level α.
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1000 time series (as many as the bootstrap estimates) from the chosen mod-
els M1-M4 are simulated from which we derive parameter estimates which
are used as a bench mark (BM). We use the bench mark as a point of refer-
ence as no better estimate can be made than the ones derived from the true
distribution, hence the bench mark parameters are the indicator of the true
model parameters.

The bias of an estimator is the difference between the expected value of
the estimator and the true value of the parameter being estimated and can
be used to mesure the accuracy of an estimator. We define the bias

Bias[θ̂∗] = E[θ̂∗]− θ,

where in this simulation study θ̂∗ is the mean value of the bootstrap esti-
mates and θ is the mean value of the bench mark estimates.

In the first part of the simulation study we will use a p-value based on

p̂(θ) =
1

T

T∑
i=1

I(θ∗ ≤ θ), (9)

where I(·) is the indicator function, with value 1 when its argument is true
and 0 if not true.

First we compared the behavior of the block bootstrap methods of esti-
mating the sample mean. According to [Lahiri, 2003] page 115, even though
the simulation treats the simple case of sample mean, it provides a repre-
sentative picture of the properties of the four methods also in more general
problems. We looked on the performances using different block lengths for
a fixed set of observations as well as by fix the block length but alter the
number of observations. Next we looked at the accuracy of estimating more
complex parameters as the p/q values and ACF-functions of the AR/MA
models simulated.

4.2 Simulation results

We initially compare the performance of the MBB, the NBB, the CBB, and
the SB methods in terms of making a confidence interval including the true
value of the sample mean. The true value of the sample mean is zero for
all simulated time series. For each bootstrap estimator 1000 replicated time
series were used to create a confidence interval. P -values are constructed
by the indicator function in Eq. (9) of 500 confidence intervals to which the
value 1 is assigned to each confidence interval that contains the true value
and 0 in the other case. From the simulated time series we create a confi-
dence interval of chosen level of significance α = 0.05. If the true parameter
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θ is in the interval [θ̂∗(α/2), θ̂
∗
(1−α/2)] 400 times of the 500 simulation runs the

p-value is 0.80. We fix the number of observations at n = 1000 and vary
the block length between 1-20. Table 2 show the results for model M1 with
4 different block lengths. In the case of the SB method it is the expected
block length we have considered.

Table 2. Fixed number of 1000 observations for M1.

Block length NBB MBB CBB SB

1 0.778 0.768 0.770 0.809

4 0.887 0.897 0.901 0.895

10 0.920 0.940 0.928 0.908

20 0.909 0.936 0.915 0.886

Since α = 0.05 the coverage ratio is 95 % if the bootstrap methods are
preforming well. When the block length is one it is the simple bootstrap
where single elements are sampled with replacements, this means that it will
not take into account the dependence structure of the time series. As we can
see from Table 2 the p-values of this block length is low and we can conclude
that the simple bootstrap preforms poorly in estimating the sample mean.
We can from these results also see that for this time series of size 1000 the
block length l = 10 is the best choice of the tested block lengths as it for
any of the methods shows the highest p-value. Overall the MBB and CBB
methods preforms with a higher accuracy then the two other methods.

The next question we want to answer is how sample size affects the
coverage of probability. In this simulation the same underlying model M1
were used but the block length was fixed at l = 10 and the sample size n of
the time series varied. The results are shown in Table 3. We observe that a

Table 3. Fixed block length of 10 for M1.

Observations NBB MBB CBB SB

50 0.780 0.818 0.824 0.760

100 0.850 0.868 0.854 0.856

500 0.906 0.916 0.914 0.928

1000 0.920 0.940 0.928 0.908

2000 0.930 0.912 0.918 0.916

larger sample not always leads to a higher accuracy of the prediction of the
sample mean in the cases considered. From Section 3.4 we know that the op-
timal block length depends on the sample size so it is possible that we would
have been able to achieve a higher p-value with a sample size of n=2000 us-
ing a larger block length. However we can see that the overall performance
of the MBB and CBB is higher than for the NBB and SB methods in the

15



cases considered. The same observations were made with simulated data
from M2, M3 and M4.

In the following simulations we will investigate the ability of the boot-
strap methods to estimate the ACF and the model parameters. We compare
the methods parameter estimates by their confidence interval, standard er-
ror and bias. We use the acf and arima functions in R to get the parameter
estimates for each replicated time series. A sample size of n = 1000 and
block length l = 10 has been used in these simulations. Figure 1 and 2
show the results of the ACF estimates for lag 0-5 of M1 and M2 with 95 %
confidence intervals. The performance under the MA models can be seen in

Figure 1: Comparison of ACF
estimates for Model 1.

Figure 2: Comparison of ACF
estimates for Model 2.

Fig. 11 and 12 in the Appendix. The simulation indicates that for any given
bootstrap method there will be a weaker correlation among the observations
than in the bench mark values. That is if the autocorrelation is positive we
well see a less positive autocorrelation and if the autocorrelation is negative
it will be less negative. There are methods that would possibly strengthen
the dependence of the replicated time series, such as other bootstrap meth-
ods as the MaBB and TBB mentioned in Section 3.3 and post-blackening
(more about this is found in [Srinivas and Srinivasan, 2000]). However we
have not considered any of these methods in this thesis as we just focus
on comparing the four methods, not finding the best method to replicate a
time series. Further we can observe that the SB method appears to result
in the largest confidence interval. In terms of the standard deviation of the
bootstrap estimator we find the result for each lag and method for Model 1
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Table 4. Standard error of ACF estimates in Model 1.

Method/Lag 1 2 3 4 5

NBB 0.0428 0.0316 0.0373 0.0369 0.0383

MBB 0.0400 0.0302 0.0365 0.0368 0.0356

CBB 0.0411 0.0319 0.0384 0.0362 0.0398

SB 0.0451 0.0379 0.0408 0.0396 0.0413

in Table 4, where we can see that the MBB method provides the estimate
with the overall lowest standard error and the SB method the highest. Sim-
ilar observations were made for Model 2-4. The bias of the ACF estimates
of Model 1 are found in Table 5. We observe that for all lags there is a
underestimation of the autocorrelation as the bias for all ACF estimates are
negative. The bias tend to vary and it is not possible to see that any method
have a smaller or larger bias than any other. The MBB and CBB methods
appear to have similar pattern in terms of the estimate bias.

Table 5. Bias of ACF estimates in Model 1.

Method/Lag 1 2 3 4 5

NBB -0.0307 -0.0606 -0.0608 -0.0757 -0.0646

MBB -0.0136 -0.0712 -0.0581 -0.0720 -0.0501

CBB -0.0128 -0.0724 -0.0611 -0.0761 -0.0728

SB -0.0204 -0.0698 -0.0580 -0.0628 -0.0387

Next we will see the performance of the bootstrap methods in estimating
the parameters of the AR/MA models. We try to refit the pseudo time series
generated from the bootstrap methods to the models they were simulated
from. Assuming that the order p/q of the models are known to be 2 we
fit the models by maximum likelihood estimation using the arima function
in R. Fig. 3 show the results of the four different block bootstrap methods
estimating the two parameters of Model 1. Results for the other models are
found in the Appendix, Fig. 13-15. The black dots represent the bench mark
parameter estimates and the black lines are the parameter values from which
the models are simulated from. We can conclude that the process of fitting
the models using the arima function in R is accurate as the parameters
derived from the BM time series are centered around the true parameters
from which the they were simulated from.

The result from the simulations indicate that the bootstrap estimates
for all methods and models are misspecified to some extent as they are not
centered around the true values. A summary of the results of Model 1 in
terms of the parameter estimators confidence interval, standard error and
bias is found in Table 6. The NBB and CBB methods appears to preform
similarly and have the smallest standard error and the SB method the high-
est standard error. In terms of the estimators bias we can not draw any
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conclusions. For Model 1 we can observe an overestimation of parameter
one and underestimation of parameter 2, however this observation can not
be made for the other parameter estimates of Model 2-4 .

(a) NBB estimates. (b) MBB estimates.

(c) CBB estimates. (d) SB estimates.

Â

Figure 3: Parameter estimates of Model 1.

Table 6. Coefficient estimates for M1.

Method NBB MBB CBB SB

ϕ1∗ 0.195 0.213 0.213 0.209
(0.134, 0.254) (0.158, 0.272) (0.153, 0.273) (0.148, 0.278)

ϕ2∗ 0.3449 0.3225 0.3226 0.3255
(0.274, 0.401) (0.262,0.378) (0.258, 0.381) (0.256, 0.393)

sd(ϕ∗1) 0.0308 0.0302 0.0304 0.0330

sd(ϕ∗2) 0.0323 0.0297 0.0305 0.0349

Bias(ϕ∗1) 0.00341 0.00515 0.00641 0.00409

Bias(ϕ∗2) -0.0707 -0.0148 -0.0148 -0.0109
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To capture the simultaneous effect of both parameter estimates we can
look at the autocorrelation. From the parameter estimates we can derive the
theoretical autocorrelation for lag one and two for the AR and MA models.
We use the estimates from the previous simulation to compute ρ∗1 and ρ∗2
according to Eq. (5)-(6). We see the density plot of ρ∗1 and ρ∗2 of Model 1
in Fig. 4 and 5. The density plots of the two first autocorrelations of Model
2-4 is found in the Appendix, Fig. 16-21. In the figures the black vertical
line is the theoretical value found in Table 1. For Model 1 we can see that
we get a slightly lower autocorrelation estimate of lag 1 than the theoretical
value, and even more so for the second lag. This can also be observed in Fig.
2. This observation can not be made in the other models M2-M4, however
we can conclude that there is an underestimation of the autocorrelation.
That is when the autocorrelation is positive the bootstrap estimates are less
positive and when negative they are less negative.

Figure 4: Estimation of auto-
correlation of lag 1.

Figure 5: Estimation of auto-
correlation of lag 2.

Since the MBB method appears to be preforming well we will look at the
performance of the method under different block lengths to illustrate how
different block length manage to capture the autocorrelation of lag 1. We
considered five different block lengths between 1-50. The result is illustrated
in Fig. 6. We can observe that when block length is 1, meaning the simple
bootstrap, the autocorrelation of lag 1 is estimated to be zero. This implies
that the correlation structure in the sample is completely lost in the pseudo
samples which now appears to be white noise. When block length is 5 we
can observe some correlation and after block length 10 there appear to be
some convergence in how well the bootstrap method is able to capture the
autocorrelation of lag 1.
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Figure 6: Autocorrelation estimate of lag 1 over various block lengths.

5 Conclusion

Resampling methods are commonly used to make inference about model
parameters. There are several resampling methods that can be used when
data is correlated in time such as block bootstrap methods. This thesis
has focused on four different block bootstrap methods, the non-overlapping
block bootstrap, overlapping block bootstrap, circular block bootstrap and
stationary bootstrap. The main idea of these resampling methods are that
by retaining the neighboring observations in blocks the dependence structure
of the original sample is preserved in the bootstrap pseudo time series.

Through a simulation study we found that the the pseudo data generated
from the bootstrap methods always showed a weaker dependence among the
observations than the time series they were sampled from, hence we can draw
the conclusion that even by resampling blocks instead of single observations
we will loose some of the structural from of the original sample. Changing
the block length and sample size affects overall results, but at the same time
it does not make a different decision about the comparison among bootstrap
relative performances under the cases considered in this study. We find that
overall the MBB and the CBB methods give the bootstrap estimators with
the smallest standard error and the SB method the largest. In terms of
the bias of the bootstrap estimators there is no method outperforming the
other.

We have in this thesis looked at some applications of the bootstrap meth-
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ods and ways to illustrate and compare their efficiency. However, there is a
comparison problem of measuring the efficiency since there is different op-
timal block lengths for each sample size and method. In this paper we did
not look further into the optimal block lengths for different samples and we
limited us to a few sample sizes. Nor did we consider the performance of the
block bootstrap methods under non linear time series, which is a possible
topic for further studies in this matter.

The conclusion of this thesis is that bootstrap procedure selection is not
an easy task and should be made with caution. Sample size and dependence
structure plays a role in selecting the optimal bootstrap procedure. We can
also conclude that for any block bootstrap method and sample size consid-
ered in this paper the pseudo data showed a lost or misspecified dependence
among the observations than the data it was sampled from.
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Appendix

Figure 7: Simulated AR(2) model
with parameters ϕ1 = 0.2 and ϕ2 =
0.4.

Figure 8: The ACF of an AR(2) model
with parameters ϕ1 = 0.2 and ϕ2 =
0.4.

Figure 9: Simulated MA(2) model
with parameters θ1 = 0.2 and θ2 =
0.3.

Figure 10: The ACF of a MA(2)
model with parameters θ1 = 0.2 and
θ2 = 0.3.
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Figure 11: ACF estimates of Model 3.

Figure 12: ACF estimates of Model 4.
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(a) NBB method. (b) MBB method.

(c) CBB method. (d) SB method.

Figure 13: Estimation of parameters in an AR(2) model.
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(a) NBB method. (b) MBB method.

(c) CBB method. (d) SB method.

Figure 14: Estimation of parameters in an MA(2) model.
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(a) NBB method. (b) MBB method.

(c) CBB method. (d) SB method.

Figure 15: Estimation of parameters in an MA(2) model.
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Figure 16: Estimation of auto-
correlation of lag 1.

Figure 17: Estimation of auto-
correlation of lag 2.

Figure 18: Estimation of auto-
correlation of lag 1.

Figure 19: Estimation of auto-
correlation of lag 2.
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Figure 20: Estimation of auto-
correlation of lag 1.

Figure 21: Estimation of auto-
correlation of lag 2.
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