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Abstract

The aim of this thesis is to study the convergence to the station-
ary distribution of the time series model GARCH(1,1). This model
is often used when modelling volatility and can be written in terms
of a so-called stochastic recurrence equation. The main result when
studying the solution of this equation, is that it obtains a distribution
which is of power-law type or heavy-tailed. Performing simulation
studies and applying methods from extreme value theory (EVT), the
theoretical results regarding the stationary distribution of the process
have been successfully verified. Moreover we study the time it takes
for the distribution of the process to converge to a heavy-tailed distri-
bution. The convergence appears to happen faster given high values
of todays volatility. The stationary distribution of the process is ob-
tained implementing numerical computations and it can be used to
calculate risk measurements such as value-at-risk (VaR), which is of
importance when assessing the magnitude of risk of extreme events in
finance and insurance.
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1 Introduction

Time series analysis is crucial for financial institutions and insurance com-
panies when modelling volatility and computing risk measurements, such
as value-at-risk (VaR) and expected shortfall (ES). The large increase of
traded assets has contributed to more volatile markets, thus the need for
adequate methods to forecast extreme events is of interest in quantitative
risk management.

Non-linear time series models, such as the generalised autoregressive condi-
tional heteroscedastic (GARCH) models, have been successfully used during
the last decades to model volatility. The reason why such models have been
used by risk managers and quantitative analysts is because they take into
account the well-known phenomena of volatility clustering observed in fi-
nancial markets, that is periods of high volatility are followed by periods of
less volatility. One disadvantage of this approach is that the assumption of
conditional normality does not seem to hold for real financial data and the
magnitude of risk tend to be underestimated. Another approach to address
for this problem is the estimation of extreme quantiles in extreme value
theory (EVT), based on pure statistical theory and methods that allow to
extrapolate beyond the tail of the stationary or marginal distribution of the
stochastic process. In other words, we estimate the tail distribution of the
exceedances, or extreme observations, beyond a given threshold.

Studying the stationary distribution of the model GARCH(1,1) is of in-
terest in this thesis. In [7] it is shown that this model can be written as
a stochastic recurrence equation, which has attracted a lot of attention be-
cause of its wide spectrum of applications in finance and insurance.The most
surprising result is that the tail of the solution to the stochastic recurrence
equation is of power-law type, that is the marginal or stationary distribution
of the process is asymptotically heavy-tailed. Hence obtaining the station-
ary distribution for the process, give us an explicit formula to compute the
probability of extreme events, meaning that it is be possible to compute a
quantile representing a risk measurement.

In this thesis the daily log-returns for the Swedish stock index OMXS30
are used to estimate the parameters of the volatility model using quasi-
maximum likelihood estimation (QMLE). Numerical computations are per-
formed to verify theoretical conditions and to compute the theoretical tail
index of the stationary distribution of the process.

Moreover, the theoretical results are verified implementing simulation stud-
ies where data samples for the solution of the stochastic recurrence equation
are used to estimate the tail index of the distribution using extreme value
theory, for instance applying the peaks over threshold (POT) method, we
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estimate the parameters of the generalised Pareto distribution (GPD). This
to obtain an estimate of the tail index. Each simulation sample studied
represents a GARCH process at some time t, hence we study how the tail
index of the distribution varies over time. Doing inference we assess if the
convergence value of the tail index correponds to the theoretical tail index
value. We also study the kurtosis of some simulation samples to verify that
the distribution of the process converges to a stationary heavy-tailed dis-
tribution. In addition we compare how the results change when assuming
different distributions for the innovations of the volatility model, such as the
standard normal distribution and the standardised t distribution.

It is also of interest to study the speed of convergence of the process to a
stationary distribution, that is we study the time it takes for the GARCH
model to obtain a heavy-tailed stationary distribution. We compute the con-
vergence times of the tail index performing simulation studies for different
start values, where the start values represent different possible values of
todays volatility.
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2 Theoretical framework

Time series analysis consist of methods for analysing time series data in
order to get statistical information and characteristics of the data. It is of
interest to study the dynamic structure of such series. This section gives a
glimpse of the models and theory of interest for this thesis.

2.1 Return series

In financial studies it is often of interest to analyze asset returns instead of
asset prices. The reason is that for the average investor, return of a certain
asset is a complete and scale-free summary of an investment opportunity.
Furthermore, return series are easier to handle than price series and provides
more attractive statistical properties [9].

Let Pt be the price of an asset at time t. The one-period simple gross return
between time t+ 1 and t is defined as

1 +Rt =
Pt+1

Pt
(1)

Taking the natural logarithm of (1) gives the log-return or continuously
compounded return Xt,

Xt = log(1 +Rt) = log

(
Pt+1

Pt

)
= logPt+1 − logPt.

2.2 Autoregressive (AR) model

The autoregressive model is often used to deal with linear dependence in time
series. Autocorrelation is the linear dependence of a variable with itself. An
autoregressive model of order 1, AR(1), is defined as [9], using our notation
for the log-returns,

Xt = φ0 + φ1Xt−1 + Zt,

where {Zt} is assumed to be a white noise series with mean zero and variance
σ2
z .
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2.3 Conditional Heteroscedastic Models

Conditional heteroscedastic models are of main interest in options pricing
and quantitative risk management. The reason to this is that such models
take into account heteroscedaticity, i.e. when the variance is not constant
over time.

Volatilty can be defined as the standard deviation of the series and it has
some characteristics commonly seen in asset returns, such as volatility clus-
ters, periods of high volatility tend to be followed by changes of high volatil-
ity and periods of low volatility tend to be followed by small volatility
changes. Other aspect is that volatility jumps are rare, it evolves over time
continuously. Volatility does not diverge to infinity and it seems to react
differently to a big price increase or a big price drop [9].

There is a variety of these models, but for the purpose of this thesis we
will introduce the autoregressive conditional heteroscedastic (ARCH) model
introduced by Engle (1982) and the generalised autoregressive conditional
heteroscedastic (GARCH) model by Bollerslev (1986).

2.3.1 ARCH model

We start by introducing the conditional mean µt and conditional variance
σ2
t of Xt given information available Ft−1, at time t− 1,

µt = E[Xt|Ft−1], σ2
t = Var(Xt|Ft−1) = E[(Xt − µt)2|Ft−1]

The autoregressive conditionally heteroscedatic process of order p, ARCH(p),
is defined as [7] p. 2,

Xt = σtZt, σ2
t = α0 +

p∑
i=1

αtX
2
t−i, t ∈ Z,

where Zt is an iid sequence of random variables with mean zero and and
variance 1, α0 > 0 and αp ≥ 0 for some p ≥ 0. The quantity σt is the
volatility of Xt.

Then the ARCH(1) model is

Xt = σtZt, σ2
t = α0 + α1X

2
t−1, t ∈ Z.

Often it is assumed that Zt follows the standard normal or standardised t
distribution, i.e. the t distribution is scaled to have mean zero and variance
one, see Section 7.3.
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Notice that large past squared shocks X2
t−1 imply large conditional vari-

ance, thus the experienced volatility clustering in asset returns is taken into
account.

The idea of an ARCH model is that the log-return Xt is serially uncorre-
lated, but dependent. The dependance of Xt can be described by a simple
quadratic function of its lagged values. For a detailed explanation of this
model and its properties see ch. 3 in [9].

2.3.2 GARCH model

To adequately describe the volatility process of asset returns with an ARCH(p),
one may need to have many parameters, i.e. p > 1. To deal with this the
generalised autoregressive conditional heteroscedastic model GARCH(p,q)
is proposed, with p = q = 1 we get

Xt = σtZt, σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1, t ∈ Z, (2)

where α0, α1, β1 > 0 and as before Zt is a white noise series with mean zero
and variance one, see [7] p. 17.

2.4 Stochastic Recurrence Equation

This section is dedicated to the main theoretical approach studied in this
thesis. The stochastic recurrence equation studied by Kesten (1973), see ch.
1 in [7],

Xt = AtXt−1 +Bt t ∈ Z, (3)

has been of interest over the last decades because of its applications in
finance and insurance. One aspect of main importance is that, under general
conditions, the tails of Xt are of power-law-type: light-tailed input variables
(At, Bt) in (3) may cause heavy-tailed output Xt [7]. The power-law tail
behaviour of the marginal distribution of the GARCH processes is of interest
among experts in extreme value theory and time series analysis.

We verify that (2) can be written in terms of (3). Since Xt = σtZt,

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1

= α0 + α1σ
2
t−1Z

2
t−1 + β1σ

2
t−1

= (α1Z
2
t−1 + β1)σ2

t−1 + α0.
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Thus σ2
t = Atσ

2
t−1 +Bt as in (3) with At = α1Z

2
t−1 + β1 and Bt = α0.

It is stated in [9] p. 23, that the foundations of time series analysis is sta-
tionarity and a time series {Xt} is said to be strictly stationary if the joint
distribution of (Xt1 , ..., Xtk) is identical to that of (Xt1+t, ..., Xtk+t) for all
t, where k is an arbitrary positive integer and (t1, ..., tk) is a collection of k
positive integers. In other words, strict stationarity requires that the joint
distribution of (Xt1 , ..., Xtk) is invariant under time shift. This condition is
hard to verify empirically, thus a weaker condition of stationarity is often
assumed. A time series {Xt} is weakly stationary if both the mean of the
series and the covariance between Xt and Xt−` are time-invariant. More
specifically, {Xt} is weakly stationary if E[Xt] = µ, which is constant, and
Cov(Xt, Xt−`) = γ`, which only depends on `. In the condition of weak
stationarity it is assumed that the first two moments of the time series are
finite.

As stated in [7] p. 17, the conditions

α0 > 0 and E[log(α1Z
2
t−1 + β1)] < 0 (4)

are necessary and sufficient for the existence of a non-vanishing a.s. unique
causal strictly stationary solution to the equation

σ2
t = α0 + (α1Z

2
t−1 + β1)σ2

t−1, t ∈ Z. (5)

With the statement above it is meant that conditions (4) are necessary
and sufficient for the existence of a strictly stationary solution to equa-
tion (5), which is nonzero everywhere and with probability one it is unique
causal, i.e. σ2

t is a causal solution to the stochastic recurrence equation of
the GARCH(1,1) model because it is a function of past and present innova-
tions {Zt}, see Section 7.9. In other words conditions for strict stationarity
of {Xt} depend on the distribution of the innovations {Zt}.

Moreover, using Jensen’s inequality and since, by assumption E[Z2
t ] = 1,

E[log(α1Z
2
t−1 + β1)] ≤ log(E[α1Z

2
t−1 + β1]) = log(α1 + β1),

satisfying (4) if α0 > 0 and α1 + β1 < 1. Taking expectations in (5),

E[σ2
t ] = α0 + E[(α1Z

2
t−1 + β1)σ2

t−1]

= α0 + α1E[Z2
t−1σ

2
t−1] + β1E[σ2

t−1]

= α0 + (α1 + β1)E[σ2
t−1].
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Then for α1 + β1 < 1, it follows that,

E[σ2
t ] =

α0

1− (α1 + β1)
<∞, (6)

which ensures not only strict but also second-order stationarity of {σt} and
{Xt}, while the same procedure yields E[σ2

t ] =∞ for α1 + β1 ≥ 1.

2.5 Power-Law tails

In this section we present the definition of univariate regular variation as
in [7] p. 273. Then we present Breiman’s lemma as in [7] p. 275, which is
used to prove and obtain the asymptotical results about the power-law tails
of the solution to the stochastic recurrence equation. This was studied by
Kesten (1973) and Goldie (1991) and we write this result found in Theorem
2.4.7 in [7] p. 61, in terms of the GARCH(1,1) model. Then we explain how
the tail index for the volatility is obtained.

2.5.1 Univariate Regular Variation

A positive measurable function f on (0,∞) is to require that for any λ > 0,

lim
y→∞

f(λy)

f(y)
= λα.

We say that a random variable Y is regularly varying with index α ≥ 0 if the
function f(y) = P(|Y | > y) is regularly varying with index −α and a tail-
balance condition holds: there exist constants p, q ≥ 0 such that p + q = 1
and

lim
y→∞

P(Y > y)

P(|Y | > y)
= p and lim

y→∞

P(Y ≤ −y)

P(|Y | > y)
= q.

In other words, Y has a regularly varying right-tail if

lim
y→∞

P(Y > λy)

P(Y > y)
= λ−α for all λ > 0.
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2.5.2 Breiman’s Lemma

Assume that X and Y are nonnegative independent random variables, Y is
regularly varying with index α > 0 and one of the following conditions hold

1. E[Xα+ε] <∞ for some ε > 0.

2. P(Y > x) ∼ c0x
−α as x→∞ for some c0 > 0 and E[Xα] <∞.

Then

P(XY > z) ∼ E[Xα]P(Y > z), z →∞.

2.5.3 The Kesten-Goldie Theorem Applied to GARCH(1,1)

Assume that

1. A = α1Z
2
t−1 + β1 > 0 almost surely and the law of log(A) conditioned

on {A > 0} is not supported on any of the sets aZ, a ≥ 0.

2. There exists α ≥ 0 such that E[Aα] = 1,E[|B|α] <∞ and
E[Aαmax(logA, 0)] <∞.

3. P(Ax+B = x) < 1 for every x ∈ R.

Then equation (5) has a stationary solution σ2
∞ which satisfies

σ2
∞

d
= Aσ2

∞ +B,

where σ2
∞ is independent of (A,B) and

d
= means equality in distribution.

Moreover there exists a positive constant c+ such that

P(σ2
∞ > x) ∼ c+x

−α, x→∞, (7)

where the constant c+ is defined as

c+ =
1

2αmα
E[|Aσ2

t−1 +B|α − |Aσ2
t−1|α], (8)

and mα = E[|A|α log |A|] > 0.
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2.5.4 Tail index for the stationary distribution of the volatility

To summarise this section we study the tail distribution of the squared log-
returns in order to explain how the tail index of the stationary distribution
of the volatility σt is obtained.

Assume that σ2
t is independent of Z2

t and α ≥ 0. Then

P(X2
t > x) = P(σ2

tZ
2
t > x)

∼ E[(Z2
t )α]P(σ2

t > x)
∼ (2α− 1)!! c+x

−α =: cx−α, x→∞,
(9)

where c = (2α− 1)!!c+. In the second last step in (9) we used the fact that
when Z ∼ N(0, 1), the central moment of order k is E[Zk] = (k − 1)!!,
for k even and 0 otherwise. The notation (2α−1)!! means the double factorial
of (2α−1), i.e. the product of all numbers from (2α−1) to 1 that has the same
parity as (2α− 1). Thus the tail distribution for the conditional variance is

P(σ2
t > x) ∼ c+x

−α, x→∞. (10)

Rewriting (10) yields

P(σt >
√
x) ∼ c+(

√
x)−2α, x→∞,

and since
√
x can be any positive real number, we obtain that the volatility

σt is regularly varying with index 2α, i.e.

P(σt > x) ∼ c+x
−2α, x→∞. (11)

Then the log-returns Xt has an asymptotic tail distribution

P(Xt > x) ∼ cx−2α, x→∞.

This means that the log-returns are regularly varying with index 2α and
the constant c is in this case c = (α − 1)!! c+, when the innovations Zt are
assumed to be standard normal random variables.

When the innovations are standardised t distrbuted variables with ν degrees
of freedom, Zt is regularly varying with index ν. From Breiman’s lemma we
notice that Zt must have higher order finite moments than σt, thus α < ν/2
is required to apply Breiman’s lemma. If α > ν/2, then the tail behaviour
of σtZt is determined by that of Zt rather than σt.
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2.6 Extreme Value Theory (EVT)

Statistical analysis of extremes is vital for many risk management problems.
Catastrophic events such as natural disasters or financial crises can result
in astronomical losses for the banking and insurance industry.

In classical probability theory and statistics most of the results for insurance
and finance are based on sums of random variables, where often approxi-
mations like the central limit theorem (CLT) are assumed. As the CLT is
important when modelling sums of random variables, EVT plays a funda-
mental role when studying the asymptotic behaviour of extreme observa-
tions. The key idea of EVT is to consider the distribution of block maxima
(or minima), this to focus on the tails of the distribution rather than the
center.

The method to analyse the asymptotic tail behaviour of the distribution in
this thesis is the Peaks over threshold (POT) method. This involves esti-
mating the conditional distribution of exceedances beyond some threshold
u, where the exceedances Xk − u are assumed to belong to the generalised
Pareto distribution (GPD).

Consider iid random variables X1, ..., Xn with distribution function FX . The
conditional excess distribution function for X over some threshold u is de-
fined as in [6] p. 7,

Fu(x) = P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
, x ≥ 0,

where Fu(x) is the probability that a loss exceeds u by no more than x given
that the threshold is exceeded.

The conditional excess distribution can be approximated by

Fu(x) ≈ Gξ,β(x), u→∞,

where Gξ,β(x) is the cumulative distribution function for the GPD and is
given by

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ if ξ 6= 0,

1− exp(−x/β) if ξ = 0,

where β > 0, the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when
ξ < 0. The case ξ > 0 corresponds to the heavy-tailed distributions whose
tails decay like power functions such as the Pareto, Student’s t, Cauchy,
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Burr, loggamma and Fréchet distributions. The case ξ = 0 corresponds
to the thin-tailed distributions like the normal, exponential, gamma and
lognormal where the tails decay faster than x−β for every β > 0. Lastly
when ξ < 0 corresponds to the short-tailed distributions with a finite right
endpoint like the uniform and beta distributions.

The tail distribution function for X can be expressed as

P(X > x) = P(X > u)P(X > x|X > u)

= P(X > u)P(X − u > x− u|X > u)

= (1− F (u))(1− Fu(x− u))

≈ (1− F (u))(1−Gξ,β(x− u)), x > u,

where 1−F (u) can be estimated by the empirical distribution function, i.e.

F̄ (u) = 1− F (u) ≈ k

n
,

where n is the sample size and k the number of observations above the
threshold. In this thesis the threshold level is computed as k = nu for some
u ∈ (0, 1).

Then the tail estimator can be written as

P(X > x) = 1− F (x) =
k

n

[
1 + ξ̂

(
x− u
β̂

)]−1/ξ̂

, x > u

In paper [6] p. 9, it is discussed that using this approach to estimate the
tail distribution of the residuals can be viewed as a special case of assuming
conditional t distribution when fitting a GARCH modell. It can be shown
that assuming a conditional t distribution with ν degrees of freedom yields
that the value of ξ in the limiting GPD is the reciprocal of the degrees of
freedom, i.e. ν = 1/ξ.

2.7 Value at Risk (VaR)

As stated in [5] p. 165-166, the value-at-risk (VaR) at level p ∈ (0, 1) of a
portfolio with value X at time 1 is

VaRp(X) = min{m : P(mR0 +X < 0) ≤ p},
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where R0 is the percentage return of a risk-free asset. In words, the VaR of
a position with value X at time 1 is the smallest amount of money that if
added to the position now and invested in the risk-free asset ensures that
the probability of a strictly negative value at time 1 is not greater than p.

In statistical terms VaRp(X) is the (1−p)-quantile of the discounted portfolio
loss L = −X/R0. The u-quantile of a random variable L with distribution
function FL is defined as

F−1
L (u) = min{m : FL(m) ≥ u},

and F−1
L is the inverse if FL is strictly increasing. If FL is both continu-

ous and strictly increasing, then F−1
L (u) is the unique value m such that

FL(m) = u. For a general FL, the quantile value F−1
L (u) is obtained by

plotting the graph of FL and setting FL(m) = u to be the smallest value m
for which FL(m) ≥ u. Then

VaRp(X) = F−1
L (1− p).
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3 Methodology

Figure 1 shows a so-called candlestick chart for the daily prices of OMXS30
from 16th February 2009 to 4th April 2018. Each bar in the candlestick
chart represent the open, close, high and low prices of the index at each
trading day. When the bar is red it indicates that during the tradig day the
price closed lower than its open price and the bar is green in the other case.
It seems that in overall the performance of the index is bullish, or has an
upward trend, but notice that late 2011 and between 2015 and 2016 there
are some remarkable price-falls. This kind of dramatical price changes are
of interest in extreme value theory.

Figure 1: Index prices for OMXS30 (SEK) between 2009-02-16 - 2018-04-16.

In Section 3.1 we study the log-returns data and check if modelling the
volatility with a GARCH model is adequate. Furthermore we estimate the
parameters of the GARCH(1,1) model and fit a distribution to the residuals
of the process using EVT. In Section 3.2 we present the recursive simulation
procedure to obtain samples for the GARCH process. In Section 3.3, nu-
merical computations are performed to compute the theoretical tail index of
the stationary distribution and we verify these results with help of simulated
data. In Section 3.4 we study how the tail index of the stationary distribu-
tion of the GARCH process behaves over time. In particular we compute
the time it takes for the tail index to become stationary. Lastly in Section
3.5 we compute the constant c+ in (11) and obtain an explicit formula for
the stationary distribution of the volatility.
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3.1 GARCH modelling

Before modelling the volatility of the daily log-returns, there are some fea-
tures that need to be taken in consideration, such as the assumption of in-
dependent and identically distributed (iid) innovations and the well known
phenomena of volatility clustering. Lets start by looking at a plot for the
log-returns, see Figure 2. Here we notice that there are indeed some periods
where the price changes are small and other periods where extreme values
or big price changes are present.

Figure 2: Log-returns of OMXS30. Number of observations is 2260.

Furthermore we present descriptive statistics of the log-returns data in Table
1. Notice that the skewness of the data is negative, which implies that
the distribution of the data is weighted to the left. This is illustrated in
Figure 10. Notice that there are observations in the leftmost part of the
histogram. Moreover, the excess kurtosis (E.K.) is larger than 0, indicating
that the distribution of the log-returns have heavier tails than the normal
distribution. See the definition of skewness and kurtosis in Section 7.7.

Series Min Max Median Mean Std. Skeweness E.K.

Xt -0.088 0.062 0.00063 0.00031 0.0121 -0.3302 3.54

Table 1: Descriptive statistics of log-returns.

An autocorrelation plot is an useful tool to determine the presence of auto-
correlation for the log-returns and heteroscedasticity for the squared values
of the log-returns. This plot is based on the autocorrelation function (ACF),
see Section 7.4. The horisontal dashed lines in Figure 3 indicates the 95%
confidence interval for the estimators. If more than 5% of the spikes exceeds
the confidence thresholds the ACF suggest the presence of autocorrelation.
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Figure 3: Autocorrelation samples for daily log-returns. Left: log-returns Xt.
Right: Squared log-returns X2

t .

Figure 3 left panel shows the ACF for the log-returns, here it seems that the
log-returns series do not have any serial correlations since there are only a
few spikes that extend beyond the significance levels. The right panel shows
the ACF for the squared values of the log-returns. Notice the big spikes that
exceeds the threshold levels, such spikes suggest that some ARCH effects
are present in the series. Recall Section 2.3, where one of the objectives
of ARCH-GARCH models is to adress for the need of many parameters in
linear time series models in order to fit data well.

To confirm the above visual analysis we perform a Ljung-Box test, see Sec-
tion 7.5. The null hypothesis is that the log-returns do not have any serial
correlations, i.e. no autocorrelation. The null hypothesis for the squared
log-returns is that heteroscedasticity is not present in the series. The result
is shown in Table 3.

Series P-value

Xt 0.0069
X2
t 9.029e-10

Table 2: Ljung-Box test for log-returns Xt and squared log-returns X2
t . Test

suggest rejection of H0 for both series on 5% confidence level. This indicates
that linear dependency and heteroscedasticity are present in the series.

18



From the result in Table 3 we conclude that a non-linear time series model
seems appropriate for modelling the volatility of the daily log-returns since
heteroscedasticity is present in the series. But on the other hand we find
evidence against the iid assumption.

Moreover we study the residuals of the GARCH fit, i.e.

Ẑ = (zt−n+1, · · · , zt) =

(
xt−n+1 − µ̂
σ̂t−n+1

, . . . ,
xt − µ̂
σ̂t

)
,

where the conditional standard deviation series (σ̂t−n+1, . . . , σ̂t) are com-
puted recursively from (5). It may be appropriate to model the conditional
mean series (µ̂t−n+1, . . . , µ̂t) with an AR model to filter the autocorrelation
observed in the data. This because performing a two-sided t-test where the
null hypothesis that the mean of the log-returns is equal to 0, is not rejected
on 5% significance level (P-value is 0.2137). But for the purpose of this
thesis modelling the conditional mean of the series properly is not of major
interest. Hence the conditional mean µ̂ is estimated with the mean value of
the log-returns.

The residuals are of interest when studying the heavy-tailed structure of
the series and to check adequacy of the model. In Figure 11 the residuals
are plotted against the theoretical quantiles of the normal distribution. The
residuals appears to have a leptokurtic, heavy-tailed, distribution. This con-
tradicts the assumption of conditional normality for the residuals. Moreover
we perform a Ljung-Box test where the null hypothesis is that the residu-
als do not have any serial correlations, i.e. no autocorrelation. The same
test is performed for the squared residuals where the null hypothesis is that
heteroscedasticity is not present in the series.

Series P-value

Ẑ 0.0433

Ẑ2 0.3221

Table 3: Ljung-Box test for residuals and their squared values. Test suggest
rejection of H0 for residuals on 5% confidence level, this indicates that the
iid-hypothesis for the residuals does not seem to hold. On the other hand the
test suggest presence of heteroscedacity for the squared residuals.

Even though the iid assumption does not seem to hold for neither raw
data nor the residuals, for the purpose of this thesis, we assume that the
GARCH(1,1) is a proper volatility model for the log-returns of OMXS30.
This assumption is made because it is of interest to study the explicit formula
of the stochastic recurrence equation according to [7] in order to implement
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simulation procedures to study the stationary distribution of the GARCH
process.

To estimate the coefficients in (5) we use Quasi-Maximum Likelihood estima-
tion (QMLE). This method is particularly relevant for GARCH models be-
cause it provides consistent and asymptotically normal estimators for strictly
stationary GARCH processes [3]. See Section 7.8 for a detailed explanation
of the theory behind this optimisation method. The GARCH(1,1) is opti-
mised to obtain the vector of parameter estimates θ̂ = (µ̂, α̂0, α̂1, β̂1)T . This
thesis concerns the study of equation (5), hence coefficients (α̂0, α̂1, β̂1)T are
of main interest. From the GARCH fit we obtain parameter estimates and
the stochastic recurrence equation of the GARCH(1,1) model is

σ2
t = 0.0000023 + (0.096Z2

t−1 + 0.89)σ2
t−1. (12)

Notice that α̂1 + β̂1 ≈ 0.985 < 1, hence condition (6) is satisfied and ensures
that the process is strictly stationary.

Lastly we fit a distribution for the residuals and the log-returns using EVT
in order to take into account the leptokurtic structure of the tails. For this
we estimate the tail index 1/ξ of the GPD using the POT method from EVT
as in [6] p. 8. Let the ordered residuals z(1) > · · · > z(n) and fix a number of
the data in the tail to be k � n, i.e. k = nu for u = (0.05, 0.1). This gives a
random threshold at the (k+1)th order statistic. The GPD with parameters
ξ and β is then fitted to the excess amounts (z(1) − z(k+1), . . . , z(k) − z(k+1))
over the threshold for all residuals exceeding the threshold. The result is
given in Table 4.

Sample u 1/ξ̂ β̂

Ẑ2 0.05 3.43 1.6687
X2
t 0.05 2.24 0.0003

Ẑ2 0.10 6.58 1.9194
X2
t 0.10 2.90 0.0003

Table 4: Tail index estimation of GPD using POT method for squared resid-
uals and log-returns. This indicates that the distribution of the residuals is
less heavy-tailed than for the log-returns.
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3.2 Recursive simulation

It is of main interest to verify the theoretical results about the heavy-tailed
stationary distribution of the GARCH process. Especially we want to verify
that the solution of the stochastic recurrence equation (13) has a heavy-
tailed distribution asymptotically. Moreover it is of interest to study how
the tail index of the stationary distribution behaves over time and to obtain
the time it takes for the tail index to converge to a certain value.

To obtain samples representing Xt = σtZt, the following recursive simulation
procedure is performed:

1. Create a N by T matrix, each column represents a time-lag t =
0, ..., T − 1 and N is the number of simulations.

2. Choose a start value σ0 and compute recursively σ1, ..., σT−1 according
to (13), where the innovations Zt are standard normal or standardised
t distributed variables.

3. Iterate the simulation N times.

4. Extract for each column t, samples σtZt or σ2
tZ

2
t , to get the desired

simulation sample at time t.

3.3 Tail index

The result from Section 2.5 shows that the stationary distribution of σ2
t in

equation (5) has a power-law tail asymptotically, i.e.

P(σ2
t > x) ∼ c+x

−α∗
, x→∞.

We are interested in finding the theoretical tail index α∗, recall from Section
2.5 that one of the conditions of (11) is that E[Aα

∗
] = 1. Using the parameter

estimates of GARCH(1,1) we apply the following computation to find the
solution of α∗ numerically.

1. Define the sequence {α} ranging between 0 and τ with 0.1 steps, where
τ ∈ [0,∞).

2. Iterate Ai = α̂1 ·Z2
i + β̂1 for i = 1, ..., N , for large N . The innovations

Zi are either random standard normal or standardised t distributed
variables.

3. Approximate E[Aα] with 1
N

∑N
i=1A

α
i , according to the law of large

numbers.

4. Iterate for each value in the sequence {α}.

21



5. Stop the iteration when E[Aα] ≈ 1 to get α∗.

Figure 4 illustrates the numerical computation performed when N = 10000.
When the innovations are random standard normal variables, the theoretical
tail index α∗ is approximately equal to 2.45.

Figure 4: Numerical solution to E[Aα
∗
] = 1. Vertical green line shows that

α∗ ≈ 2.45.

We want to estimate, using the POT method from EVT, the tail index for
simulated data representing X2

t = σ2
tZ

2
t as t goes to infinity. To verify if the

convergence value of the tail index corresponds to the value of the theoretical
tail index α∗ we implement the simulation procedure described in Section
3.2 for T = 1000 and N = 100000. The simulation is performed with start
value σ0 set to be equal to the empirical standard deviation of the log-returns
data. The innovations are random standard normal variables. Each column
in the simulation matrix represents a sample σ2

tZ
2
t . Recall from Section 2.5

that analysing the tail behaviour of the distribution of σ2
tZ

2
t corresponds

to analysing the samples σ2
t asymptotically. For σ2

tZ
2
t the tail index should

converge to a value that is lower than for σ2
t , but both of these values should

correspond to the theoretical tail index value. Thus it is also of interest to
study the convergence value of the tail index for samples σ2

t .

For each column in the obtained simulation matrix, the parameter 1/ξt of
the GPD corresponding to the tail index of the stationary distribution is
estimated using the POT method from EVT where u = 0.05. We get a
vector of tail index estimates, i.e. 1/ξ̂1, ..., 1/ξ̂1000. The convergence value
of the tail index is approximated with the mean value of the parameter
estimates sample according to the law of large numbers, see Section 7.1, i.e.
we get the tail index estimator δ̂ = 1

T

∑T
t=1 1/ξ̂t. The tail index estimator

is tested to assess if it is statistical significant equal to the theoretical tail
index α∗ performing a one sample two-sided t-test on 95% confidence level,
i.e. the null hypothesis being H0 : δ̂ = 2.45 and the alternative hypothesis
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Ha : δ̂ 6= 2.45. The result is shown in Table 5.

Sample σ2
tZ

2
t σ2

t

δ̂ 2.42 (2.37, 2.47) 2.60 (2.20, 2.99)

Table 5: Text in bold indicates that values are statistically significant equal
to the theoretical tail index value α∗ = 2.45. In parenthesis are given the
95% confidence intervals for the t-test. Notice that the tail index convergence
value is lower for σ2

tZ
2
t indicating that the stationary distribution is more

heavy-tailed for σ2
tZ

2
t than for σ2

t .

For the simulation sample σ2
tZ

2
t the null hypothesis that the tail index esti-

mator δ̂ is equal to the theoretical value α∗, is accepted on 5% significance
level (P-value is 0.2587). In the same way the null hypothesis is accepted
for sample σ2

t (P-value is 0.4581), see Table 5. This means that the tail in-
dex α∗ is the true convergence value of the stationary distribution of the
GARCH(1,1) model when the innovations of the process are assumed to be
standard normal variables. Hence we can say that when assuming standard
normal innovations, σ2

tZ
2
t is regularly varying with index 2.42 and σ2

t is
regularly varying with index 2.60, and both of these values are statistically
significant equal to the theoretical index value α∗ = 2.45. This confirms
Breiman’s lemma, see 2.5.

Moreover we assess if σt is regularly varying with index 2α∗. Appling the
POT method from EVT to samples σt we obtain that δ̂ = 5.83. We perform
the following two-sided t-test

H0 : δ̂ = 2α∗ = 4.9, Ha : δ̂ 6= 4.9,

and obtain that on 5% significance level the null hypothesis is accepted (P-
value is 0.101) where the 95% condidence interval for the test is (4.72, 6.93).
Hence σt is regularly varying with index 2α∗. This is what we wanted to
verify in Section 2.5.

We perform the above analysis assuming that the innovations are standard-
ised t distributed variables with ν degrees of freedom. In the same way we
verify if the the tail index estimator δ̂ is statistically significant equal to its
theoretical value α∗. The result can be found in Section 7.10 Table 9.

23



3.4 Tail index convergence

To further analyse the stationary distribution of the GARCH process, we
study how the tail index of the distribution behaves over time. For this we
use the simulation procedure described in Section 3.2 for T = 1000 and
N = 100000 when the innovations are standard normal variables. In the
same way as before the simulation is performed with start value σ0 equal
to the empirical standard deviation of the stock index log-returns. For each
simulation sample σ2

tZ
2
t , the parameter 1/ξt of the GPD, corresponding to

the tail index of the stationary distribution at time t, is estimated using the
POT method from EVT. We set u = 0.05 and obtain a random threshold for
the POT method k = 0.05 · n. Here we get a vector of tail index estimates,
i.e. 1/ξ̂1, ..., 1/ξ̂1000. The tail index estimates are plotted against time,
see Figure 5. Here we see that for both simulation samples the tail index
converges to a stationary value as time goes to infinity. From the plots we
notice that the convergence appears to occur between times 0 and 200.

Figure 5: Tail index behaviour over daily time-lags for samples σ2
tZ

2
t (left)

and samples σ2
t (right) assuming that the innovations Zt ∼ N(0, 1). Ho-

risontal red dashed line represents value of theoretical index α∗ = 2.45.

To obtain the time it takes for the distribution of σ2
tZ

2
t to reach stationarity

we study the simulation samples σ2
tZ

2
t at times t = 0, ..., t∗, ..., 1000, where

t∗ is the convergence time. For each simulation sample, the tail index 1/ξt is
estimated using the POT method from EVT. Then we check the first time
the tail index obtains a value that is less than or equal to the theoretical
tail index value. When the start value of the simulation σ0 is equal to the
empirical standard deviation of the log-returns, we obtain that t∗ = 78, see
Figure 6.
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Figure 6: Convergence time of tail index is t∗ = 78.

Figure 7 illustrates how the distribution of some simulation samples σtZt
changes over time. Here the sample quantiles are plotted against the the-
oretical quantiles of the normal distribution. Notice that when t = 0, the
simulation sample looks like a straight line since we assumed standard nor-
mal distribution for the innovations. As time increases the tails for the
distribution are more leptokurtic. Notice the light-blue line representing
the sample at time 78, it looks very similar to the line at time 1000. Hence
time 78 seems to be the actual convergence time to stationarity of the dis-
tribution for the GARCH process.

Figure 7: Sample quantiles of σtZt at times t = 0, 5, 20, 78, 1000, are plotted
against theoretical quantiles of the normal distribution. As time increases
the tails of the GARCH process are more leptokurtic.

In Table 6 we present descriptive statistics for the distribution of samples
σ0Z0, σ78Z78 and σ1000Z1000. Notice that since we assume standard normal
innovations, the excess kurtosis for σ0Z0 is almost zero. As time increases
the distribution is weighted to the right, this is confirmed by the positive
value of skewness. More important is that the excess kurtosis is much higher
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for samples σ78Z78 and σ1000Z1000, indicating a heavy-tailed distribution. As
seen from Table 6, the kurtosis and skewness are not the same for samples
σ78Z78 and σ1000Z1000. This inidcates that our result regarding the conver-
gence time 78 may not that reliable.

Series Min Max Median Mean Std. Skewness E.K.

σ0Z0 -0.0500 0.0509 3.3e-5 -4.7e-7 0.0121 -0.0016 -0.0062
σ78Z78 -0.1869 0.2177 -4.4e-5 -3.7e-5 0.0134 0.0205 5.13
σ1000Z1000 -0.2034 0.2112 3.6e-5 6.4e-5 0.0136 0.0131 6.75

Table 6: Descriptive statistics for samples σ0Z0, σ78Z78 and σ1000Z1000.

Furthermore we study how the tail index behaves over time when instead of
normality, we assume that the innovations are standardised t distributed. In
the same way as in Section 3.3 we compute the value of the theoretical tail
index when the innovations are t distributed with ν = 5 degrees of freedom
and obtain that α∗ ≈ 1.69. Notice that condition α∗ < ν/2 is satisfied.
Figure 13 in Section 7.10 illustrates how the tail index behaves over time
in this case. In the right plot we study the simulation sample σ2

t . Here the
tail index appears to converge to the theoretical tail index value 1.69. A
one sample two-sided t-test confirms this, i.e. the null hypothesis that the
convergence value of the tail index is equal to the theoretical tail index α∗ is
not rejected on 5% significance level (P-value is 0.20). The 95% confidence
interval for the test is (1.46, 1.74). On the other hand we notice that for
sample σ2

tZ
2
t , the convergence value of the tail index is lower than the value

of the theoretical tail index, see the left plot in Figure 13. Recall Section 3.3
where all the tests performed, assessing if the tail index estimator δ̂ is equal
to the theoretical value of the tail index α∗, are rejected on 5% confidence
level, see Table 9. Intuitively this is because σ2

t has already a heavy-tailed
distribution since we assumed t distributed innovations for the recursive
simulation. Multiplying this by another t distributed variable Z2

t makes the
output more heavy-tailed. Therefore we do not compute the convergence
time when the innovations are t distributed variables.

Lastly we study the convergence times of the tail index when the simula-
tions are implemented for different start values σ0. Here we assume as before
that the innovations are standard normal random variables. The start value
σ0 represents todays volatility. The results can be found in Table 7. The
convergence tends to be faster for higher start values σ0 than for lower,
meaning that for high values of todays volatility, the GARCH process ob-
tains a heavy-tailed distribution faster.
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σ0 0.007 0.009 0.011 0.013 0.015 0.017 0.019 0.021
t∗ 116 91 78 57 57 57 52 52

σ0 0.023 0.025 0.027 0.029
t∗ 52 52 52 52

Table 7: Convergence times t∗ when simulations are performed for different
start values σ0 and innovations are assumed to be standard normal variables.
This indicates that the convergence is faster given higher start values. The
mean convergence time is t∗ = 65.

3.5 The stationary distribution

We verified in Section 3.3 that the tail index α∗ converges to a value which
corresponds to the tail index of the stationary distribution of the GARCH
process. To compute the constant c+ of the stationary distribution in (11)
numerically, we implement the result from equation (8) as follows:

1. Let α = α∗ where α∗ is the theoretical tail index.

2. Choose a start value σ0 and compute recursively σ1, ..., σT−1 accord-
ing to (13), where the innovations Zi are standard normal random
variables.

3. Compute E[|Aiσ2
t−1 + Bi|α − |Aiσ2

t−1|α], where Ai = α̂1Zi + β̂1 and
Bi = α̂0 and σt−1 from step 2. Iterate this for i = 1, ..., N , for large
N . Then approximate the expected value with the mean according to
the law of large numbers.

4. Compute 1
2αmα

where mα = E[|Ai|α log |Ai|], by first iterating |Ai|αlog|Ai|,
i = 1, ..., N , for large N and Ai as in step 3. Then approximate the
expected value with the mean.

5. Lastly compute c+ = 1
2αmα

E[|Aσ2
t−1 +B|α − |Aσ2

t−1|α].

From the computation described above we obtain that c+ ≈ 1.72 · 10−10.
Since α∗ = 2.45, the stationary distribution of σt is

P(σt > x) ∼ 1.72 · 10−10x−4.9, x→∞. (13)

To verify if this result seems reasonable we study the empirical distribution
of σt when t = 78. This because in Section 3.4 we obtained that at time
78, the tail index obtains a stationary value. Hence we study the stationary
distribution of σ78. Using the same recursive simulation procedure described
in Section 3.2 we study σ78 for N = 10000.
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Let F σt(x) be the empirical distribution of the simulation sample σt. We
want to assess if

F σt(x) =
1

N

N∑
i=1

I{σt > x} ≈ P(σt > x). (14)

Figure 8 shows a histogram for the distribution of σ78. The vertical dashed
lines represent the 0.90, 0.95, 0.975, 0.99 and 0.995 quantiles of the sample
data. These are the x values that we want to compare in (15). To compute
the corresponding probabilities for the empirical distribution we use the
indicator function I{σt > x} to count the proportion of values that exceeds
the given x quantile or threshold value, see Table 8.

Figure 8: Histogram of {σ78}. Vertical dashed lines represent the 0.90, 0.95,
0.975, 0.99 and 0.995 quantiles of the sample data.

x 0.017 0.019 0.022 0.027 0.030

F σ78(x) 0.100 0.050 0.025 0.010 0.005

P(σ78 > x) 0.091 0.043 0.022 0.009 0.005

Table 8: Probabilities for stationary vs the empirical distribution of {σ78}.

Notice from Table 8 that in overall the computed probabilities with the
stationary distribution (14) seem to correspond to the probabilities obtained
from the empirical distribution.

28



3.6 Software

The software used in this thesis is R. R is a free software environment for
statistical computing and graphics, see https://www.r-project.org/ for
more information.

The packages used throutout this thesis are tidyquant, quantmod, xts, dplyr,
ggplot2, fitdistrplus, fGarch, QRM and fExtremes. The latter three are aimed
for volatility modelling and extreme value theory. The other packages are
used for data management, fitting distributions and explanatory data anal-
ysis. For a detailed explanation of each package consult https://cran.

r-project.org/web/packages/available_packages_by_name.html.

The simulation procedures and numerical computations used in this thesis
have also been implemented in R.
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4 Results

In Section 3.3 we studied the asymptotic results for the power-law tail of the
non-linear time series model GARCH(1,1). More specific we looked at the
solution of the stochastic recurrence equation (5). First we computed the
theoretical tail index α∗ numerically using condition E[α∗] = 1 from Theo-
rem 2.4.7 in [7] page 61. We first assumed that the innovations are standard
normal random variables. Figure 4 illustrates the numerical solution.

Moreover we implemented a recursive simulation procedure to obtain sam-
ples σ2

tZ
2
t at times t = 0, ..., T − 1, see Section 3.2. This because it was

of main interest to study how the tail index behaves over time. For each
simulation sample, we estimated 1/ξ̂t from the GPD using the POT method
from EVT. Then we introduced the tail index estimator δ̂, which is simply
the mean value of the tail index estimates. A one sample two-sided t-test
was used to test if the tail index estimator is statistically significant equal
to the theoretical tail index value on 5% confidence level, i.e.

H0 : δ̂ =
1

T

T−1∑
t=0

1/ξ̂t = α∗ = 2.45, Ha : δ̂ 6= 2.45.

Here the null hypothesis for the test was accepted for both σ2
tZ

2
t and σ2

t ,
see Table 5. The fact that the null hypothesis was accepted confirms that
studying the distribution of σ2

tZ
2
t corresponds to analysing the distribution

of σ2
t asymptotically. This was discussed in Section 2.5 when we applied

Breiman’s lemma to derive the stationary distribution of σt. We also notice
that the convergence value of the tail index is lower for σ2

tZ
2
t than for σ2

t

indicating that the distribution is more heavy-tailed for σ2
tZ

2
t than for σ2

t .
This result is illustrated in Figure 5.

The tail index estimator δ̂ computed for σ2
tZ

2
t , obtained a value equal to

2.42 when Zt ∼ N(0, 1). Hence σ2
tZ

2
t is regularly varying with index 2.42.

Moreover is σt regularly varying with index 5.83. This value was statistically
significant equal to the theoretical 2α∗ = 4.9. From this we conclude that
when the input variables (At, Bt) of stochastic recurrence equation (3) are
light-tailed, corresponding to the case when the innovations Zt are standard
normal random variables, it generates an output which is heavy-tailed since
the tail index value is positive. This means that after some time the distri-
bution of the stochastic process will converge to a heavy-tailed stationary
distribution.

Furthermore we implemented the same recursive simulation as before to
obtain samples σ2

tZ
2
t and σ2

t , when instead of normality, we assumed that
the innovations are standardised t distributed with ν degrees of freedom.
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We computed the tail index estimator δ̂ and assessed if its value is equal
to the theoretical tail index α∗. The tests failed for samples σ2

tZ
2
t and were

accepted for most of the tests performed when studying samples σ2
t , see

Table 9. How the tail index behaves over time is illustrated in Figure 13.

When the innovations are t distributed with ν = 5 degrees of freedom, we
obtained α∗ = 1.69. The tail index estimator for σ2

tZ
2
t was in this case

δ̂ = 1.223. This implies that σt is regularly varying with index 2δ̂ ≈ 2.45
asymptotically. But since 2α∗ = 3.38 6= 2δ̂, means that when we assume
t distribution for the innovations, the output generated from the GARCH
process is more heavy tailed and the tail index of the distribution for σt
does not correspond to the tail index of σtZt. This result seems logical since
we assume t distribution for the innovations, the t distribution is heavier-
tailed than the normal distribution, thus the input variables (At, Bt) of
the stochastic recurrence equation generates an output which is even more
heavier-tailed.

Moreover we studied the speed of convergence of the tail index. For this
we checked the time when the tail index obtains a value that is less than
or equal to the theoretical tail index. Graphically it seems to correspond
to the actual convergence time of the process, i.e. when the innovations are
assumed to be standard normal variables the convergence time is 78, see
Figure 6.

The obtained convergece time was studied using a QQ-plot where the sample
quantile of σtZt were plotted against the theoretical quantiles of the normal
distribution. As seen in Figure 7, the distribution of σ78Z78 looks very similar
the distribution of σ1000Z1000. Hence it seems reasonable to state that at time
78 the GARCH process obtains a heavy-tailed stationary distribution when
the recursive simulation of the process has start value equal to the empirical
standard deviation of the log-returns for OMSXS30, i.e. σ0 = 0.012. In
Table 6 we looked at the descriptive statistics for the distribution of samples
σ0Z0, σ78Z78, σ1000Z1000, here we noticed that for the latter two samples,
the kurtosis is positive and larger than for σ0Z0, indicating that as time
increases the stationary distribution of the GARCH process converges to a
heavy-tailed distribution, but since there is a small difference in the skewness
and kurtosis values for σ78Z78 and σ1000Z1000, the obtained convergence
value 78 may be questionable.

In addition we computed the convergence times when the recursive simula-
tion of σ2

tZ
2
t was implemented with different start values σ0. This was done

assuming standard normal innovations. The results are summarised in Ta-
ble 7. Figure 9 illustrates this result. Observe that for higher values of σ0

the convergence occurs faster.
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Figure 9: Convergence times t∗ plotted against start values σ0 indicates that
for higher start values, the convergence of tail index is faster.

Lastly we computed the constat c+ in (11), this to get the formula of the
stationary distribution of σt, see (14). This result was verified successfully by
studying the empirical distribution of σt when t was set to the convergence
time of the tail index, i.e. t = 78. The computed probabilities with the
formula of the stationary distribution (11) seemed to correspond to the
proportion of exceedances beyond a threshold (quantile) x in the empirical
distribution, see Table 8.
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5 Conclusion

This thesis concerns a study on the convergence to the stationary distri-
bution of the GARCH(1,1) process. In particular we study the tail index
convergence to stationarity. We conclude that the process obtains a heavy-
tailed distribution when the input variables (At, Bt) of the stochastic recur-
rence equation are light-tailed, i.e. when the innovations are assumed to be
standard normal variables.

Using the log-returns of OMXS30 we fitted a GARCH(1,1) model and es-
timated the coefficients to the stochastic recurrence equation. Here we as-
sumed that the GARCH(1,1) model fits data well. The log-returns data
appeared to have significant serial correlations as discussed in Section 3.1.
The conditional mean of the series could have been fitted using an AR model
but since we wanted to use the explicit formula of the stochastic recurrence
equation to implement simulation procedures, we assumed that the condi-
tional mean of the series is constant.

To properly model the volatility of OMXS30, another non-linear time series
model, i.e. a higher order model, can be fitted and analysed. This may
be the case when modelling volatility of financial time series for predictive
purposes. Fitting another AR-GARCH model for the series implies some
major changes in the structure of the stochastic recurrence equation and
the simulation procedures. This is left for further research.

We also studied the convergence times of the tail index and an interesting
result is that given high values of todays volatility the convergence appears
to be faster than in the case when todays volatility is assumed to be low, see
Figure 9. Volatile markets imply that the risk of extreme events increase,
hence the fact that the convergence to a heavy-tailed distribution of the
process is faster for high volatility values seems reasonable. The mean con-
vergence time when assuming different values of todays volatility is around
time 65. The time-lags in this thesis represent days, this implies that at
least two months of data is required to obtain a stationary distribution for
the process. This is of course under the assumption that the GARCH(1,1)
model fits the log-returns data well.

The importance of this result is that given the stationary distribution of the
process and the amount of data needed to compute it, we can calculate VaRp

in a straightforward manner. Solving x from (11) by inverting the formula
of the stationary distribution gives

x =

(
c+

p

) 1
2α

:= x̂p, (15)
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where p ∈ (0, 1) is the VaR level. Thus VaRp(X) ≈ x̂p.

This means that setting the computed values for the constant of the sta-
tionary distribution c+, the estimated tail index α∗ and the value-at-risk
level p in (16), we can calculate a quantile value x̂p. This quantile value
corresponds to the magnitude of risk for a potential loss in a portfolio, or in
this case, the value-at-risk at level p for the log-returns of OMXS30.

Moreover one would need to backtest this approach of calculating VaR and
compare its performance against other methods for tail estimation. See for
instance [6], where the GPD-approximation appears to be preferable to
model the leptokurtic tails of the residuals of an AR-GARCH process. This
method outperforms various other tail estimation methods when computing
risk measurements.

This study can be applied to multivariate time series models, see for instance
ch. 4 in [7], this is left for further reasearch.
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7 Appendix

7.1 Law of large numbers (LLN)

Using the definition as in [4] p. 330, let X1, X2, ... be a sequence of iid random
variables with finite expectation µ. Then

1

n

n∑
i=1

Xi
p→ µ as n→∞.

7.2 Normal distribution

The density function of normal distributed random variable X, i.e. X ∼
N(µ, σ2), is given by

f(x) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}
.

The expected value is E[X] = µ ∈ R and the variance is Var(X) = σ2 > 0.

X is standard normal if µ = 0 and σ2 = 1, i.e. f(x) = 1√
2π

exp(−1
2x

2). [4]
p. 337.

7.3 Student’s t distribution

The density function of a random variable X that is t distributed with ν > 0
degrees of freedom, i.e. X ∼ t(µ, σ2, ν), is given by

f(x) = C ·
{

1 +
1

νσ2
(x− µ)2

}− ν+1
2

.

The variance is Var(X) = σ2 ν
ν−2 if ν > 2, σ2 > 0 and the expected value is

E[X] = µ if ν > 1, µ ∈ R.

A t distributed random variable with ν degrees of freedom, i.e.X ∼ t(µ, σ2, ν)
converges in distribution to a normal random variable Y ∼ N(µ, σ2) as
ν →∞. [4] p. 338.
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7.4 Autocorrelation function (ACF)

Consider a weakly stationary return series Xt. The correlations between a
variable Xt and its past values Xt−1, Xt−2, ..., Xt−` are referred to as serial
correlations or autocorrelations. The lag-` autocorrelation of Xt is defined
as

ρ` =
Cov(Xt, Xt−`)√

Var(Xt)Var(Xt−`)
=

Cov(Xt, Xt−`)

Var(Xt)
=
γ`
γ0
,

where the property Var(Xt) = Var(Xt−`) for a weakly stationary series is
used. In general the lag-` sample autocorrelation of Xt is defined as

ρ̂` =

∑T
t=`+1(Xt − x̄)(Xt−` − x̄)∑T

t=1(Xt − x̄)2
, 0 ≤ ` < T − 1,

where x̄ =
∑T

t=1Xt/T . If {Xt} is an iid sequence with E[X2
t ] < ∞, then

ρ̂` is asymptotically normal with mean zero and variance 1/T for any fixed
positive integer `. [9] p. 24.

7.5 Ljung-Box test

Consider an iid sequenceX1, ..., Xn with finite-variance . The Ljung-Box test
can be used to test the significance of the autocorrelation coefficient. The
test statistic, which is an improvement of the portmanteau test, is defined as

QLB = n(n+ 2)
h∑
t=1

ρ̂2
`

n− t
, (16)

where n is the length of the series and ρ̂`, ` = 1, ..., h, is the autocorrelation
coefficient. A large value of (17) suggests that the sample autocorrelation of
the data are too large to be from an iid sample. We therefore reject the iid
hypothesis at level α if QLB > χ2

1−α(h), where χ2
1−α(h) is the 1−α quantile

of the chi-squared distribution with h degrees of freedom. [2] p. 30-31.

7.6 T-test

If given a sample x = {xi}ni=1, n > 30, we want to study a hypothetical mean
value µ0 by performing a t-test. The null hypothesis H0 : µ0 = x̄ is tested
against the alternative hypothesis Ha : µ0 6= x̄ by computing the following
test statistic
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T =
x̄− µ0

s2
x/
√
n
∼ tα/2(n− 1).

Here x̄ is the sample mean, s2
x is the sample variance and n the sample size.

The test statistic is t distributed with n− 1 degrees of freedom and the null
hypothesis is rejected on confidence level α if |T | > tα/2(n− 1). [1]

7.7 Skewness and Kurtosis

As stated in [9] p. 8, the third central moment of a random variable X,
measures the symmetry of X with respect to its mean, whereas the 4th cen-
tral moment measures the tail behaviour of X. In statistics, skewness (3rd
normalized central moment) and kurtosis (4th normalized central moment),
are often used to summarise the extent of asymetry and tail thickness.

Skewness is defined as

S(x) = E

[
(X − µx)3

σ3
x

]
,

and kurtosis is defined as

K(x) = E

[
(X − µx)4

σ4
x

]
.

The quantity K(x) − 3 is called excess kurtosis because K(x) = 3 for a
normal distribution. Thus, the excess kurtosis of a normal random variable
is zero. A distribution with positive excess kurtosis is sais to have hevy tails.

7.8 Quasi-maximum likelihood estimation (QMLE)

We write this optimising method as in ch. 7 [3], but using the notations in
this thesis.

Assume that the observationsX1, ..., Xn constitute a realisation of a GARCH(p,q)
process,

{
Xt = σtZt

σ2
t = α0 +

∑p
i=1 αiZ

2
t−i +

∑q
j=1 βjσ

2
t−j ∀t ∈ Z,
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where Zt is a sequence of iid variables with mean zero and variance 1, α0 >
0, αi ≥ 0 (i = 1, ..., p), and βj ≥ 0 (j = 1, ..., q). The orders p and q are
assumed to be known. The vector of parameters

θ = (θ1, ..., θp+q+1)T := (α0, α1, ..., αp, β1, ..., βq)
T

belongs to a parameter space of the form

Θ ⊂ (0,+∞)× [0,∞)p+q.

The true value of the parameter is unknown, and is denoted by

θ0 = (α0, α1, ..., αp, β1, ..., βq)
T .

To write the likelihood of the model the Gaussian quasi-likelihood func-
tion is assumed for the innovation Zt, which, conditionally on initial values
X0, ..., X1−q, σ̃

2
0, ..., σ̃

2
1−p to be specified below, coincides with the likelihood

when Zt are distributed as standard Gaussian or normal. The conditional
Gaussian quasi-likelihood is given by

Ln(θ) = Ln(θ;X1, ..., Xn) =
n∏
t=1

1√
2πσ̃2

t

exp

(
−X

2
t

2σ̃2
t

)

where σ̃2
t are recursively defined, for t ≥ 1, by

σ̃2
t = σ̃2

t (θ) = α0 +

p∑
i=1

αiZ
2
t−i +

q∑
j=1

βj σ̃
2
t−j .

A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ).

Taking the logarithm, it is seen that maximizing the likelihood is equivalent
to minimizing, with respect to θ,

Ĩn(θ) =
1

n

n∑
t=1

˜̀
t, where ˜̀

t = ˜̀
t(θ) =

X2
t

σ̃2
t

+ log σ̃2
t .

A QMLE is thus a measurable solution of the equation
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θ̂n = arg min
θ∈Θ

Ĩn(θ).

For more information about the choice of the initial values, likelihood equa-
tions and asymptotic properties, see ch. 7 [3].

7.9 Causality

As stated in [7] p. 10, the solution Xt to the stochastic recurrence equation
3 is causal or non-anticipative, if for every t, Xt is a measurable function of
past and present noise variables (As, Bs)s≤t.

7.10 Figures and Tables

Figure 10: Histogram for log-returns of OMXS30 illustrates that the data is
weighted to the left, i.e. negative skeweness.
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Figure 11: Plot of residuals against the theoretical quantiles of the normal
distribution shows that the distribution of residuals is leptokurtic.

Sample σ2
tZ

2
t σ2

t

Z-dist. α∗ δ̂ (C.I.) δ̂ (C.I.)

t4 1.46 1.054 (1.053, 1.056) 1.431 (1.412, 1.450)
t5 1.69 1.223 (1.220, 1.226) 1.598 (1.455, 1.740)
t6 1.76 1.367 (1.364, 1.370) 2.034 (1.732, 2.335)
t7 1.89 1.480 (1.477, 1.484) 1.900 (1.746, 2.055)
t8 1.85 1.572 (1.568, 1.577) 2.097 (1.856, 2.338)
t9 1.94 1.650 (1.645, 1.655) 2.135 (1.636, 2.633)

Table 9: Text in bold indicates that values are statistically significant equal
to the theoretical tail index value α∗. In parenthesis are given the 95% con-
fidence intervals for the t-test.
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Figure 12: Numerical solution to E[Aα
∗
] = 1 when Zt ∼ t5. Vertical green

line shows that α∗ ≈ 1.65.

Figure 13: Tail index behaviour over daily time-lags for sample σ2
tZ

2
t (left

plot) and σ2
t (right plot) assuming the innovations Zt ∼ t5. Horisontal red

dashed line represents value of theoretical tail index α∗ = 1.69.
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